[4] | 1 | // -*- C++ -*-
|
---|
| 2 | // ---------------------------------------------------------------------------
|
---|
| 3 | //
|
---|
| 4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
| 5 | //
|
---|
| 6 | // This is part of the implementation of the HepLorentzVector class:
|
---|
| 7 | // Those methods which originated from ZOOM and which deal with relativistic
|
---|
| 8 | // kinematic properties.
|
---|
| 9 | //
|
---|
| 10 |
|
---|
| 11 | #ifdef GNUPRAGMA
|
---|
| 12 | #pragma implementation
|
---|
| 13 | #endif
|
---|
| 14 |
|
---|
| 15 | #include "CLHEP/Vector/defs.h"
|
---|
| 16 | #include "CLHEP/Vector/LorentzVector.h"
|
---|
| 17 | #include "CLHEP/Vector/ZMxpv.h"
|
---|
| 18 |
|
---|
| 19 | #include <cmath>
|
---|
| 20 |
|
---|
| 21 | namespace CLHEP {
|
---|
| 22 |
|
---|
| 23 | //-******************
|
---|
| 24 | // Metric flexibility
|
---|
| 25 | //-******************
|
---|
| 26 |
|
---|
| 27 | ZMpvMetric_t HepLorentzVector::setMetric( ZMpvMetric_t m ) {
|
---|
| 28 | ZMpvMetric_t oldMetric = (metric > 0) ? TimePositive : TimeNegative;
|
---|
| 29 | if ( m == TimeNegative ) {
|
---|
| 30 | metric = -1.0;
|
---|
| 31 | } else {
|
---|
| 32 | metric = 1.0;
|
---|
| 33 | }
|
---|
| 34 | return oldMetric;
|
---|
| 35 | }
|
---|
| 36 |
|
---|
| 37 | ZMpvMetric_t HepLorentzVector::getMetric() {
|
---|
| 38 | return ( (metric > 0) ? TimePositive : TimeNegative );
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | //-********
|
---|
| 42 | // plus
|
---|
| 43 | // minus
|
---|
| 44 | //-********
|
---|
| 45 |
|
---|
| 46 | double HepLorentzVector::plus (const Hep3Vector & ref) const {
|
---|
| 47 | double r = ref.mag();
|
---|
| 48 | if (r == 0) {
|
---|
| 49 | ZMthrowA (ZMxpvZeroVector(
|
---|
| 50 | "A zero vector used as reference to LorentzVector plus-part"));
|
---|
| 51 | return ee;
|
---|
| 52 | }
|
---|
| 53 | return ee + pp.dot(ref)/r;
|
---|
| 54 | } /* plus */
|
---|
| 55 |
|
---|
| 56 | double HepLorentzVector::minus (const Hep3Vector & ref) const {
|
---|
| 57 | double r = ref.mag();
|
---|
| 58 | if (r == 0) {
|
---|
| 59 | ZMthrowA (ZMxpvZeroVector(
|
---|
| 60 | "A zero vector used as reference to LorentzVector minus-part"));
|
---|
| 61 | return ee;
|
---|
| 62 | }
|
---|
| 63 | return ee - pp.dot(ref)/r;
|
---|
| 64 | } /* plus */
|
---|
| 65 |
|
---|
| 66 | HepLorentzVector HepLorentzVector::rest4Vector() const {
|
---|
| 67 | return HepLorentzVector (0, 0, 0, (t() < 0.0 ? -m() : m()));
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | //-********
|
---|
| 71 | // beta
|
---|
| 72 | // gamma
|
---|
| 73 | //-********
|
---|
| 74 |
|
---|
| 75 | double HepLorentzVector::beta() const {
|
---|
| 76 | if (ee == 0) {
|
---|
| 77 | if (pp.mag2() == 0) {
|
---|
| 78 | return 0;
|
---|
| 79 | } else {
|
---|
| 80 | ZMthrowA (ZMxpvInfiniteVector(
|
---|
| 81 | "beta computed for HepLorentzVector with t=0 -- infinite result"));
|
---|
| 82 | return 1./ee;
|
---|
| 83 | }
|
---|
| 84 | }
|
---|
| 85 | if (restMass2() <= 0) {
|
---|
| 86 | ZMthrowC (ZMxpvTachyonic(
|
---|
| 87 | "beta computed for a non-timelike HepLorentzVector"));
|
---|
| 88 | // result will make analytic sense but is physically meaningless
|
---|
| 89 | }
|
---|
| 90 | return sqrt (pp.mag2() / (ee*ee)) ;
|
---|
| 91 | } /* beta */
|
---|
| 92 |
|
---|
| 93 | double HepLorentzVector::gamma() const {
|
---|
| 94 | double v2 = pp.mag2();
|
---|
| 95 | double t2 = ee*ee;
|
---|
| 96 | if (ee == 0) {
|
---|
| 97 | if (pp.mag2() == 0) {
|
---|
| 98 | return 1;
|
---|
| 99 | } else {
|
---|
| 100 | ZMthrowC (ZMxpvInfiniteVector(
|
---|
| 101 | "gamma computed for HepLorentzVector with t=0 -- zero result"));
|
---|
| 102 | return 0;
|
---|
| 103 | }
|
---|
| 104 | }
|
---|
| 105 | if (t2 < v2) {
|
---|
| 106 | ZMthrowA (ZMxpvSpacelike(
|
---|
| 107 | "gamma computed for a spacelike HepLorentzVector -- imaginary result"));
|
---|
| 108 | // analytic result would be imaginary.
|
---|
| 109 | return 0;
|
---|
| 110 | } else if ( t2 == v2 ) {
|
---|
| 111 | ZMthrowA (ZMxpvInfinity(
|
---|
| 112 | "gamma computed for a lightlike HepLorentzVector -- infinite result"));
|
---|
| 113 | }
|
---|
| 114 | return 1./sqrt(1. - v2/t2 );
|
---|
| 115 | } /* gamma */
|
---|
| 116 |
|
---|
| 117 |
|
---|
| 118 | //-***************
|
---|
| 119 | // rapidity
|
---|
| 120 | // pseudorapidity
|
---|
| 121 | // eta
|
---|
| 122 | //-***************
|
---|
| 123 |
|
---|
| 124 | double HepLorentzVector::rapidity() const {
|
---|
| 125 | register double z = pp.getZ();
|
---|
| 126 | if (fabs(ee) == fabs(z)) {
|
---|
| 127 | ZMthrowA (ZMxpvInfinity(
|
---|
| 128 | "rapidity for 4-vector with |E| = |Pz| -- infinite result"));
|
---|
| 129 | }
|
---|
| 130 | if (fabs(ee) < fabs(z)) {
|
---|
| 131 | ZMthrowA (ZMxpvSpacelike(
|
---|
| 132 | "rapidity for spacelike 4-vector with |E| < |Pz| -- undefined"));
|
---|
| 133 | return 0;
|
---|
| 134 | }
|
---|
| 135 | double q = (ee + z) / (ee - z);
|
---|
| 136 | //-| This cannot be negative now, since both numerator
|
---|
| 137 | //-| and denominator have the same sign as ee.
|
---|
| 138 | return .5 * log(q);
|
---|
| 139 | } /* rapidity */
|
---|
| 140 |
|
---|
| 141 | double HepLorentzVector::rapidity(const Hep3Vector & ref) const {
|
---|
| 142 | register double r = ref.mag2();
|
---|
| 143 | if (r == 0) {
|
---|
| 144 | ZMthrowA (ZMxpvZeroVector(
|
---|
| 145 | "A zero vector used as reference to LorentzVector rapidity"));
|
---|
| 146 | return 0;
|
---|
| 147 | }
|
---|
| 148 | register double vdotu = pp.dot(ref)/sqrt(r);
|
---|
| 149 | if (fabs(ee) == fabs(vdotu)) {
|
---|
| 150 | ZMthrowA (ZMxpvInfinity(
|
---|
| 151 | "rapidity for 4-vector with |E| = |Pu| -- infinite result"));
|
---|
| 152 | }
|
---|
| 153 | if (fabs(ee) < fabs(vdotu)) {
|
---|
| 154 | ZMthrowA (ZMxpvSpacelike(
|
---|
| 155 | "rapidity for spacelike 4-vector with |E| < |P*ref| -- undefined "));
|
---|
| 156 | return 0;
|
---|
| 157 | }
|
---|
| 158 | double q = (ee + vdotu) / (ee - vdotu);
|
---|
| 159 | return .5 * log(q);
|
---|
| 160 | } /* rapidity(ref) */
|
---|
| 161 |
|
---|
| 162 | double HepLorentzVector::coLinearRapidity() const {
|
---|
| 163 | register double v = pp.mag();
|
---|
| 164 | if (fabs(ee) == fabs(v)) {
|
---|
| 165 | ZMthrowA (ZMxpvInfinity(
|
---|
| 166 | "co-Linear rapidity for 4-vector with |E| = |P| -- infinite result"));
|
---|
| 167 | }
|
---|
| 168 | if (fabs(ee) < fabs(v)) {
|
---|
| 169 | ZMthrowA (ZMxpvSpacelike(
|
---|
| 170 | "co-linear rapidity for spacelike 4-vector -- undefined"));
|
---|
| 171 | return 0;
|
---|
| 172 | }
|
---|
| 173 | double q = (ee + v) / (ee - v);
|
---|
| 174 | return .5 * log(q);
|
---|
| 175 | } /* rapidity */
|
---|
| 176 |
|
---|
| 177 | //-*************
|
---|
| 178 | // invariantMass
|
---|
| 179 | //-*************
|
---|
| 180 |
|
---|
| 181 | double HepLorentzVector::invariantMass(const HepLorentzVector & w) const {
|
---|
| 182 | double m2 = invariantMass2(w);
|
---|
| 183 | if (m2 < 0) {
|
---|
| 184 | // We should find out why:
|
---|
| 185 | if ( ee * w.ee < 0 ) {
|
---|
| 186 | ZMthrowA (ZMxpvNegativeMass(
|
---|
| 187 | "invariant mass meaningless: \n"
|
---|
| 188 | "a negative-mass input led to spacelike 4-vector sum" ));
|
---|
| 189 | return 0;
|
---|
| 190 | } else if ( (isSpacelike() && !isLightlike()) ||
|
---|
| 191 | (w.isSpacelike() && !w.isLightlike()) ) {
|
---|
| 192 | ZMthrowA (ZMxpvSpacelike(
|
---|
| 193 | "invariant mass meaningless because of spacelike input"));
|
---|
| 194 | return 0;
|
---|
| 195 | } else {
|
---|
| 196 | // Invariant mass squared for a pair of timelike or lightlike vectors
|
---|
| 197 | // mathematically cannot be negative. If the vectors are within the
|
---|
| 198 | // tolerance of being lightlike or timelike, we can assume that prior
|
---|
| 199 | // or current roundoffs have caused the negative result, and return 0
|
---|
| 200 | // without comment.
|
---|
| 201 | return 0;
|
---|
| 202 | }
|
---|
| 203 | }
|
---|
| 204 | return (ee+w.ee >=0 ) ? sqrt(m2) : - sqrt(m2);
|
---|
| 205 | } /* invariantMass */
|
---|
| 206 |
|
---|
| 207 | //-***************
|
---|
| 208 | // findBoostToCM
|
---|
| 209 | //-***************
|
---|
| 210 |
|
---|
| 211 | Hep3Vector HepLorentzVector::findBoostToCM() const {
|
---|
| 212 | return -boostVector();
|
---|
| 213 | } /* boostToCM() */
|
---|
| 214 |
|
---|
| 215 | Hep3Vector HepLorentzVector::findBoostToCM (const HepLorentzVector & w) const {
|
---|
| 216 | double t = ee + w.ee;
|
---|
| 217 | Hep3Vector v = pp + w.pp;
|
---|
| 218 | if (t == 0) {
|
---|
| 219 | if (v.mag2() == 0) {
|
---|
| 220 | return Hep3Vector(0,0,0);
|
---|
| 221 | } else {
|
---|
| 222 | ZMthrowA (ZMxpvInfiniteVector(
|
---|
| 223 | "boostToCM computed for two 4-vectors with combined t=0 -- "
|
---|
| 224 | "infinite result"));
|
---|
| 225 | return Hep3Vector(v*(1./t)); // Yup, 1/0 -- that is how we return infinity
|
---|
| 226 | }
|
---|
| 227 | }
|
---|
| 228 | if (t*t - v.mag2() <= 0) {
|
---|
| 229 | ZMthrowC (ZMxpvTachyonic(
|
---|
| 230 | "boostToCM computed for pair of HepLorentzVectors with non-timelike sum"));
|
---|
| 231 | // result will make analytic sense but is physically meaningless
|
---|
| 232 | }
|
---|
| 233 | return Hep3Vector(v * (-1./t));
|
---|
| 234 | } /* boostToCM(w) */
|
---|
| 235 |
|
---|
| 236 | } // namespace CLHEP
|
---|
| 237 |
|
---|