1 | // -*- C++ -*-
|
---|
2 | // ---------------------------------------------------------------------------
|
---|
3 | //
|
---|
4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
5 | //
|
---|
6 | // This is part of the implementation of the HepLorentzVector class:
|
---|
7 | // Those methods which originated from ZOOM and which deal with relativistic
|
---|
8 | // kinematic properties.
|
---|
9 | //
|
---|
10 |
|
---|
11 | #ifdef GNUPRAGMA
|
---|
12 | #pragma implementation
|
---|
13 | #endif
|
---|
14 |
|
---|
15 | #include "CLHEP/Vector/defs.h"
|
---|
16 | #include "CLHEP/Vector/LorentzVector.h"
|
---|
17 | #include "CLHEP/Vector/ZMxpv.h"
|
---|
18 |
|
---|
19 | #include <cmath>
|
---|
20 |
|
---|
21 | namespace CLHEP {
|
---|
22 |
|
---|
23 | //-******************
|
---|
24 | // Metric flexibility
|
---|
25 | //-******************
|
---|
26 |
|
---|
27 | ZMpvMetric_t HepLorentzVector::setMetric( ZMpvMetric_t m ) {
|
---|
28 | ZMpvMetric_t oldMetric = (metric > 0) ? TimePositive : TimeNegative;
|
---|
29 | if ( m == TimeNegative ) {
|
---|
30 | metric = -1.0;
|
---|
31 | } else {
|
---|
32 | metric = 1.0;
|
---|
33 | }
|
---|
34 | return oldMetric;
|
---|
35 | }
|
---|
36 |
|
---|
37 | ZMpvMetric_t HepLorentzVector::getMetric() {
|
---|
38 | return ( (metric > 0) ? TimePositive : TimeNegative );
|
---|
39 | }
|
---|
40 |
|
---|
41 | //-********
|
---|
42 | // plus
|
---|
43 | // minus
|
---|
44 | //-********
|
---|
45 |
|
---|
46 | double HepLorentzVector::plus (const Hep3Vector & ref) const {
|
---|
47 | double r = ref.mag();
|
---|
48 | if (r == 0) {
|
---|
49 | ZMthrowA (ZMxpvZeroVector(
|
---|
50 | "A zero vector used as reference to LorentzVector plus-part"));
|
---|
51 | return ee;
|
---|
52 | }
|
---|
53 | return ee + pp.dot(ref)/r;
|
---|
54 | } /* plus */
|
---|
55 |
|
---|
56 | double HepLorentzVector::minus (const Hep3Vector & ref) const {
|
---|
57 | double r = ref.mag();
|
---|
58 | if (r == 0) {
|
---|
59 | ZMthrowA (ZMxpvZeroVector(
|
---|
60 | "A zero vector used as reference to LorentzVector minus-part"));
|
---|
61 | return ee;
|
---|
62 | }
|
---|
63 | return ee - pp.dot(ref)/r;
|
---|
64 | } /* plus */
|
---|
65 |
|
---|
66 | HepLorentzVector HepLorentzVector::rest4Vector() const {
|
---|
67 | return HepLorentzVector (0, 0, 0, (t() < 0.0 ? -m() : m()));
|
---|
68 | }
|
---|
69 |
|
---|
70 | //-********
|
---|
71 | // beta
|
---|
72 | // gamma
|
---|
73 | //-********
|
---|
74 |
|
---|
75 | double HepLorentzVector::beta() const {
|
---|
76 | if (ee == 0) {
|
---|
77 | if (pp.mag2() == 0) {
|
---|
78 | return 0;
|
---|
79 | } else {
|
---|
80 | ZMthrowA (ZMxpvInfiniteVector(
|
---|
81 | "beta computed for HepLorentzVector with t=0 -- infinite result"));
|
---|
82 | return 1./ee;
|
---|
83 | }
|
---|
84 | }
|
---|
85 | if (restMass2() <= 0) {
|
---|
86 | ZMthrowC (ZMxpvTachyonic(
|
---|
87 | "beta computed for a non-timelike HepLorentzVector"));
|
---|
88 | // result will make analytic sense but is physically meaningless
|
---|
89 | }
|
---|
90 | return sqrt (pp.mag2() / (ee*ee)) ;
|
---|
91 | } /* beta */
|
---|
92 |
|
---|
93 | double HepLorentzVector::gamma() const {
|
---|
94 | double v2 = pp.mag2();
|
---|
95 | double t2 = ee*ee;
|
---|
96 | if (ee == 0) {
|
---|
97 | if (pp.mag2() == 0) {
|
---|
98 | return 1;
|
---|
99 | } else {
|
---|
100 | ZMthrowC (ZMxpvInfiniteVector(
|
---|
101 | "gamma computed for HepLorentzVector with t=0 -- zero result"));
|
---|
102 | return 0;
|
---|
103 | }
|
---|
104 | }
|
---|
105 | if (t2 < v2) {
|
---|
106 | ZMthrowA (ZMxpvSpacelike(
|
---|
107 | "gamma computed for a spacelike HepLorentzVector -- imaginary result"));
|
---|
108 | // analytic result would be imaginary.
|
---|
109 | return 0;
|
---|
110 | } else if ( t2 == v2 ) {
|
---|
111 | ZMthrowA (ZMxpvInfinity(
|
---|
112 | "gamma computed for a lightlike HepLorentzVector -- infinite result"));
|
---|
113 | }
|
---|
114 | return 1./sqrt(1. - v2/t2 );
|
---|
115 | } /* gamma */
|
---|
116 |
|
---|
117 |
|
---|
118 | //-***************
|
---|
119 | // rapidity
|
---|
120 | // pseudorapidity
|
---|
121 | // eta
|
---|
122 | //-***************
|
---|
123 |
|
---|
124 | double HepLorentzVector::rapidity() const {
|
---|
125 | register double z = pp.getZ();
|
---|
126 | if (fabs(ee) == fabs(z)) {
|
---|
127 | ZMthrowA (ZMxpvInfinity(
|
---|
128 | "rapidity for 4-vector with |E| = |Pz| -- infinite result"));
|
---|
129 | }
|
---|
130 | if (fabs(ee) < fabs(z)) {
|
---|
131 | ZMthrowA (ZMxpvSpacelike(
|
---|
132 | "rapidity for spacelike 4-vector with |E| < |Pz| -- undefined"));
|
---|
133 | return 0;
|
---|
134 | }
|
---|
135 | double q = (ee + z) / (ee - z);
|
---|
136 | //-| This cannot be negative now, since both numerator
|
---|
137 | //-| and denominator have the same sign as ee.
|
---|
138 | return .5 * log(q);
|
---|
139 | } /* rapidity */
|
---|
140 |
|
---|
141 | double HepLorentzVector::rapidity(const Hep3Vector & ref) const {
|
---|
142 | register double r = ref.mag2();
|
---|
143 | if (r == 0) {
|
---|
144 | ZMthrowA (ZMxpvZeroVector(
|
---|
145 | "A zero vector used as reference to LorentzVector rapidity"));
|
---|
146 | return 0;
|
---|
147 | }
|
---|
148 | register double vdotu = pp.dot(ref)/sqrt(r);
|
---|
149 | if (fabs(ee) == fabs(vdotu)) {
|
---|
150 | ZMthrowA (ZMxpvInfinity(
|
---|
151 | "rapidity for 4-vector with |E| = |Pu| -- infinite result"));
|
---|
152 | }
|
---|
153 | if (fabs(ee) < fabs(vdotu)) {
|
---|
154 | ZMthrowA (ZMxpvSpacelike(
|
---|
155 | "rapidity for spacelike 4-vector with |E| < |P*ref| -- undefined "));
|
---|
156 | return 0;
|
---|
157 | }
|
---|
158 | double q = (ee + vdotu) / (ee - vdotu);
|
---|
159 | return .5 * log(q);
|
---|
160 | } /* rapidity(ref) */
|
---|
161 |
|
---|
162 | double HepLorentzVector::coLinearRapidity() const {
|
---|
163 | register double v = pp.mag();
|
---|
164 | if (fabs(ee) == fabs(v)) {
|
---|
165 | ZMthrowA (ZMxpvInfinity(
|
---|
166 | "co-Linear rapidity for 4-vector with |E| = |P| -- infinite result"));
|
---|
167 | }
|
---|
168 | if (fabs(ee) < fabs(v)) {
|
---|
169 | ZMthrowA (ZMxpvSpacelike(
|
---|
170 | "co-linear rapidity for spacelike 4-vector -- undefined"));
|
---|
171 | return 0;
|
---|
172 | }
|
---|
173 | double q = (ee + v) / (ee - v);
|
---|
174 | return .5 * log(q);
|
---|
175 | } /* rapidity */
|
---|
176 |
|
---|
177 | //-*************
|
---|
178 | // invariantMass
|
---|
179 | //-*************
|
---|
180 |
|
---|
181 | double HepLorentzVector::invariantMass(const HepLorentzVector & w) const {
|
---|
182 | double m2 = invariantMass2(w);
|
---|
183 | if (m2 < 0) {
|
---|
184 | // We should find out why:
|
---|
185 | if ( ee * w.ee < 0 ) {
|
---|
186 | ZMthrowA (ZMxpvNegativeMass(
|
---|
187 | "invariant mass meaningless: \n"
|
---|
188 | "a negative-mass input led to spacelike 4-vector sum" ));
|
---|
189 | return 0;
|
---|
190 | } else if ( (isSpacelike() && !isLightlike()) ||
|
---|
191 | (w.isSpacelike() && !w.isLightlike()) ) {
|
---|
192 | ZMthrowA (ZMxpvSpacelike(
|
---|
193 | "invariant mass meaningless because of spacelike input"));
|
---|
194 | return 0;
|
---|
195 | } else {
|
---|
196 | // Invariant mass squared for a pair of timelike or lightlike vectors
|
---|
197 | // mathematically cannot be negative. If the vectors are within the
|
---|
198 | // tolerance of being lightlike or timelike, we can assume that prior
|
---|
199 | // or current roundoffs have caused the negative result, and return 0
|
---|
200 | // without comment.
|
---|
201 | return 0;
|
---|
202 | }
|
---|
203 | }
|
---|
204 | return (ee+w.ee >=0 ) ? sqrt(m2) : - sqrt(m2);
|
---|
205 | } /* invariantMass */
|
---|
206 |
|
---|
207 | //-***************
|
---|
208 | // findBoostToCM
|
---|
209 | //-***************
|
---|
210 |
|
---|
211 | Hep3Vector HepLorentzVector::findBoostToCM() const {
|
---|
212 | return -boostVector();
|
---|
213 | } /* boostToCM() */
|
---|
214 |
|
---|
215 | Hep3Vector HepLorentzVector::findBoostToCM (const HepLorentzVector & w) const {
|
---|
216 | double t = ee + w.ee;
|
---|
217 | Hep3Vector v = pp + w.pp;
|
---|
218 | if (t == 0) {
|
---|
219 | if (v.mag2() == 0) {
|
---|
220 | return Hep3Vector(0,0,0);
|
---|
221 | } else {
|
---|
222 | ZMthrowA (ZMxpvInfiniteVector(
|
---|
223 | "boostToCM computed for two 4-vectors with combined t=0 -- "
|
---|
224 | "infinite result"));
|
---|
225 | return Hep3Vector(v*(1./t)); // Yup, 1/0 -- that is how we return infinity
|
---|
226 | }
|
---|
227 | }
|
---|
228 | if (t*t - v.mag2() <= 0) {
|
---|
229 | ZMthrowC (ZMxpvTachyonic(
|
---|
230 | "boostToCM computed for pair of HepLorentzVectors with non-timelike sum"));
|
---|
231 | // result will make analytic sense but is physically meaningless
|
---|
232 | }
|
---|
233 | return Hep3Vector(v * (-1./t));
|
---|
234 | } /* boostToCM(w) */
|
---|
235 |
|
---|
236 | } // namespace CLHEP
|
---|
237 |
|
---|