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Introduction:	

Why do we need N(k)LO?
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Theory needed only for	

parameter extraction

Peak
H ⇾ ɣ ɣ

Shape
Z H ⇾ l l + inv.

Background SHAPE needed. 
Flexible MC for both signal and 
background validated and tuned 

to data

HARD

Rate
H ⇾ W+ W-

Relies on prediction for both 
shape and normalization. 

Complicated interplay of best 
simulations and data

VERY HARD
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New physics?

• No NP has been discovered yet	

• Either there is no NP, or it is hiding very well	

• If it is there, it will be a ‘Hard’ or ‘very Hard’ discovery	

• Need for accurate predictions for signal and background



Marco Zaro, 25-12-2015 5

2) Measurement of parameters

• E.g.: Extracting the top mass from leptonic observables	

• Start with pseudo-data with mtpd=174.3 GeV	

• Use theoretical predictions with different accuracy	

!
!
!
!
!
!

• Large differences appear in the reconstructed mt, due to 
different TH accuracies	


• Better TH simulations improve central value and reliability of 
uncertainties Frixione, Mitov arXiv:1407.2763

relevant to the mt extraction performed by using only three observables (#1, #4, and #5),

or all of them. These two parts thus are in one-to-one correspondence with (the first row

of) tables 8 and 9, respectively.

Scenario i = 1 i = 1⊕ 2 i = 1⊕ 2⊕ 3

Observables #1, #4, #5

LO+PS+MS 173.61+1.10
−1.34[1.0] 173.63+1.10

−1.34[1.0] 173.62+1.10
−1.34[1.0]

NLO+PS 174.40+0.75
−0.81[3.5] 174.43+0.75

−0.81[3.5] 174.60+0.75
−0.79[3.2]

LO+PS 173.68+1.08
−1.31[0.8] 173.68+1.08

−1.31[0.9] 173.75+1.08
−1.31[0.9]

fNLO 174.73+0.72
−0.74[5.5] 174.72+0.71

−0.74[5.6] 175.18+0.64
−0.71[4.6]

fLO 175.84+0.90
−1.05[1.2] 175.75+0.89

−1.05[1.2] 175.82+0.89
−1.04[1.2]

All observables

LO+PS+MS 175.98+0.63
−0.69[16.9] 176.05+0.63

−0.68[17.8] 176.12+0.61
−0.68[18.9]

NLO+PS 175.43+0.74
−0.80[29.2] 176.20+0.73

−0.79[30.1] 175.67+0.73
−0.76[31.2]

LO+PS 187.90+0.6
−0.6[428.3] 187.71+0.60

−0.60[424.2] 187.83+0.58
−0.60[442.8]

fNLO 174.41+0.72
−0.73[96.6] 174.82+0.71

−0.73[93.1] 175.44+0.70
−0.68[94.8]

fLO 197.31+0.42
−0.35[2496.1] 197.19+0.42

−0.35[2505.6] 197.48+0.36
−0.35[3005.6]

Table 10: Combined extracted values of mt, for various scenarios and two choices of the set of
observables. The pseudodata top mass is mpd

t = 174.32 GeV.

From the upper part of table 10, we see that the use of observables #1, #4, and #5

leads to central mt values which may not be in perfect agreement with the pseudodata

value mpd
t , but are not far from it either, irrespective of the calculational scenario consid-

ered. Furthermore, both the errors and the χ2 values are totally reasonable, and rather

consistent with those of table 8. These findings need not be surprising, because they

could be anticipated in sect. 3.2.2, where observables #1, #4, and #5 have been shown

to be fairly insensitive to shower, NLO, and spin-correlation effects. These effects are ulti-

mately the difference between each of the scenarios considered here, and our reference one,

NLO+PS+MS. It is therefore instructive to see what happens when observables #2 and

#3 are used in the extractions as well (lower part of table 10). Not only the differences

among the central results for the extracted top mass are much larger than before (and

particularly so at the LO in absence of proper spin correlations), but it is especially the

χ2 values that increase dramatically, in spite of (and, in a sense, thanks to) the fact that

the errors remain quite moderate. This is exactly the situation that has been described

in sect. 2.3: the extraction of mt from individual observables is always acceptable and

affected by small errors; however, if the underlying theoretical description is incompatible

with that of the (pseudo)data, the different results will be mutually incompatible. A (cer-

tainly non-unique) way of making explicit the presence of such incompatibilities is through

the computation of a χ2. The lower part of table 10 is thus another, very explicit way

of showing why considering a large number of observables with different characteristics is

always beneficial, in this or in other template-based methods.
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mildly compensated by that due to µF ). Thus, the moments computed with scale #3

will be slightly larger than their analogues in the pseudodata. For the reasons explained in

sect. 2.3, this difference then results in a lower (than the input mpd
t ) value for the extracted

top mass, which is what we see in the third row of table 7. The same effect, but (slightly)

in the opposite direction, is at play in the case of scales #1 and #2. Here, the numerical

values of such scales at large pT ’s relative to their small pT counterparts are closer to those

relevant to the pseudodata scales than in the case of scale #3, whence closer-to-mpd
t central

results for the top mass. Given these opposite behaviours, not surprisingly the average of

the three results is closer to mpd
t than any of them; such an average is biased towards the

results of µ̂(1) and µ̂(2), owing to their errors being smaller than those associated with the

extractions with µ̂(3).

scale i = 1 i = 1⊕ 2 i = 1⊕ 2⊕ 3

1 174.67+0.75
−0.77[3.0] 174.67+0.75

−0.77[3.0] 174.61+0.74
−0.77[3.2]

2 174.81+0.83
−0.80[6.2] 174.80+0.82

−0.80[6.2] 174.85+0.82
−0.80[6.1]

3 172.63+1.85
−1.16[0.2] 172.64+1.82

−1.15[0.2] 172.58+1.81
−1.15[0.2]

1⊕ 2⊕ 3 174.44+0.92
−0.87 174.44+0.92

−0.87 174.43+0.91
−0.87

Table 8: As in table 7, with the extractions performed by using observables #1, #4, and #5. The
pseudodata top mass is mpd

t = 174.32 GeV.

We now repeat the combination procedure that has led to the results of table 7, by

including, on top of the mt values obtained with observable #1, also those relevant to

observables #4 and #5; the new combined results are presented in table 8. By far and

large, all comments relevant to table 7 can be repeated here. There is a decrease (less than

10% for all scales) of the errors, which is not large because of two facts: observable #1

induces the smallest errors (in the present observable set), and the observables considered

are sizably correlated, as documented in appendix B. By adding more observables one

starts to see the effects of the inclusion of higher moments; although statistically not

significant, there are trends in the central values which were not visible in the case of a

single observable.

scale i = 1 i = 1⊕ 2 i = 1⊕ 2⊕ 3

1 174.48+0.73
−0.77[5.0] 174.55+0.72

−0.76[5.0] 174.56+0.71
−0.76[5.1]

2 174.73+0.77
−0.80[4.3] 174.74+0.76

−0.79[4.3] 174.91+0.75
−0.79[4.1]

3 172.54+1.03
−1.07[1.6] 172.46+0.99

−1.05[1.6] 172.22+0.95
−1.04[1.4]

1⊕ 2⊕ 3 174.16+0.81
−0.85 174.17+0.80

−0.84 174.17+0.78
−0.84

Table 9: As in table 7, with the extractions performed by using all observables. The pseudodata
top mass is mpd

t = 174.32 GeV.

Finally, in table 9 we present the results obtained by combining the extractions of mt

from all observables; thus, according to the discussion given in sect. 2.3, these have to be
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How to compute a cross-section

pp

µFµF
x1E x2E

`+ `�

long distance
long distance

Phase-space 
integral

Parton density 
functions

Parton-level cross 
section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b
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Perturbation theory at work

• The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter	


!

!

• Remember:  
 
Both coupling and cross section depend on unphysical scales	


Parton-level cross section⇥̂ab�X(ŝ, µF , µR)

�̂ = ↵b
s�0 + ↵b+1

s �1 + ↵b+2
s �2 + ↵b+3

s �3 + . . .

↵s = ↵s(µR) �i = �i(µR, µF )
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Perturbation theory at work

• The inclusion of higher orders improves the reliability of 
a given computation	

• More reliable description of total  

rates and shapes	

• Residual uncertainties related to  

the arbitrary scales in the process  
decrease	


• The computational complexity  
grows exponentially	


• NLO is mandatory for LHC  
physics (in particular at RunII)!
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4

LO NLO NNLO NNNLO
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pp�h+X gluon fusion
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S /TeV

FIG. 3: The gluon fusion cross-section at all perturbative or-
ders through N3LO in the scale interval [mH

4 ,mH ] as a func-

tion of the center-of-mass energy
p
S.

top-quark is infinitely heavy and can be integrated out,
see eq. (2). Moreover, we assumed that all other quarks
have a zero Yukawa coupling. Finite quark mass e↵ects
are important, but it is su�cient that they are inlcuded
through NLO or NNLO. Indeed, finite quark-mass e↵ects
have been computed fully through NLO in QCD [30],
while subleading top-quark mass corrections have been
computed at NNLO systematically as an expansion in
the inverse top-quark mass [34]. In these references it
was observed that through NLO finite quark mass ef-
fects amount to about 8% of the K-factor. At NNLO,
the known 1

m
top

corrections a↵ect the cross-section at

the ⇠ 1% level. A potentially significant contribution
at NNLO which has not yet been computed in the lit-
erature originates from diagrams with both a top and
bottom quark Yukawa coupling. Assuming a similar per-
turbative pattern as for top-quark only diagrams in the
e↵ective theory, eq. (2), higher-order e↵ects could be of
the order of 2%. We thus conclude that the computation
of the top-bottom interference through NNLO is highly
desired in the near future.

Finally, the computation of the hadronic cross-section
relies crucially on the knowledge of the strong coupling
constant and the parton densities. After our calculation,
the uncertainty coming from these quantities has become
dominant. Further progress in the determination of par-
ton densities must be anticipated in the next few years
due to the inclusion of LHC data in the global fits and the
impressive advances in NNLO computations, improving
the theoretical accuracy of many standard candle pro-
cesses.

To conclude, we have presented in this Letter the
computation of the gluon-fusion Higgs production cross-
section through N3LO in perturbative QCD. While a
thorough study of the impact of electroweak and quark
mass e↵ects is left for future work, we expect that the re-
maining theoretical uncertainty on the inclusive Higgs
production cross-section is expected to be reduced to
roughly half, which will bring important benefits in the
study of the properties of the Higgs boson at the LHC
Run 2. Besides its direct phenomenological impact, we
believe that our result is also a major advance in our un-
derstanding of perturbative QCD, as it opens the door to
push the theoretical predictions for large classes of inclu-
sive processes to N3LO accuracy, like Drell-Yan produc-
tion, associated Higgs production and Higgs production
via bottom fusion. Moreover, on the more technical side,
our result constitutes the first independent validation of
the gluon splitting function at NNLO [14], because the
latter is required to cancel all the infrared poles in the
inclusive cross-section. In addition, we expect that the
techniques developed throughout this work are not re-
stricted to inclusive cross-sections, but it should be pos-
sible to extend them to certain classes of di↵erential dis-
tributions, like rapidity distributions for Drell-Yan and
Higgs production, thereby paving the way to a new era
of precision QCD.
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8.1 Jet multiplicity 7

cross-section. The level of precision of the measurement does not allow to probe the improve-
ment expected from the inclusion of the NLO terms. For larger jet multiplicity the difference
between predictions and data is still within the uncertainties.
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-310

-210

-110

1

10

210

310

Data

2j@NLO 3,4j@LO + PS)≤Sherpa2 (

4j@LO + PS)≤Madgraph + Pythia6 (

CMS Preliminary
 (8 TeV)-119.6 fb

 (R = 0.5) JetsTanti-k
| < 2.4 jetη > 30 GeV, |jet

T
p

 ll channel→*γZ/

  [
pb

]
je

ts
/d

N
σd

jetsN= 1 = 2 = 3 = 4 = 5 = 6 = 7

Sh
er

pa
2/

D
at

a

0.5

1

1.5

Stat. unc. (gen)

jetsN
= 1 = 2 = 3 = 4 = 5 = 6 = 7

M
ad

G
ra

ph
/D

at
a

0.5

1

1.5

Stat. unc. (gen)

jetsN 1≥  2≥  3≥  4≥  5≥  6≥  7≥

-310

-210

-110

1

10

210

310

Data

2j@NLO 3,4j@LO + PS)≤Sherpa2 (

4j@LO + PS)≤Madgraph + Pythia6 (

CMS Preliminary
 (8 TeV)-119.6 fb

 (R = 0.5) JetsTanti-k
| < 2.4 jetη > 30 GeV, |jet

T
p

 ll channel→*γZ/

  [
pb

]
je

ts
/d

N
σd

jetsN 1≥  2≥  3≥  4≥  5≥  6≥  7≥

Sh
er

pa
2/

D
at

a

0.5

1

1.5

Stat. unc. (gen)

jetsN
 1≥  2≥  3≥  4≥  5≥  6≥  7≥

M
ad

G
ra

ph
/D

at
a

0.5

1

1.5

Stat. unc. (gen)

Figure 2: Cross section measured as a function of the (left) exclusive and (right) inclusive jet
multiplicity distributions compared to the SHERPA and MADGRAPH Monte Carlo predictions.
The lower panels show the ratios of the theory predictions to data. Error bars around the
experimental points show the statistical uncertainty, while the crosshatched bands indicate the
statistical plus systematic uncertainties added in quadrature. The colored filled band around
the MC prediction represents the statistical uncertainty of the generated sample.

6 8 Results

Table 1: Break down of the uncertainties on the cross section measurements as a function of jet
multiplicity. The column denoted Tot. Unc. contains the total uncertainty; the column denoted
stat contains the statistical uncertainty; the remaining columns contain the different systematic
uncertainties.

Njets Tot. Unc. [%] stat [%] JEC [%] JER [%] PU [%] Bgnd [%] Lumi [%] Unf [%] Eff [%]
= 1 5.4 0.11 4.5 0.55 0.29 0.05 2.6 1.5 1.3
= 2 6.9 0.24 6.3 0.36 0.32 0.25 2.6 1.5 1.2
= 3 9.0 0.58 8.5 0.35 0.37 0.54 2.6 1.3 1.2
= 4 11 1.3 11 0.28 0.46 0.93 2.6 1.2 1.4
= 5 15 3.0 15 0.52 0.75 1.3 2.6 2.6 1.5
= 6 21 7.5 19 0.48 1.5 2.1 2.6 2.2 1.4
= 7 27 19 17 2.40 4.1 3.0 2.6 2.5 1.6

The estimate of the total systematic uncertainty on the cross section measurements is made by
varying independently and in both directions (up and down) each of the contributing factor.
These different systematic uncertainties are added in quadrature assuming they are indepen-
dent.

8 Results
The measurements in the Z ! µ+µ� and Z ! e+e� channels are combined using a weighted
average.

Comparison to theory

The measured cross sections as a function of exclusive and inclusive jet multiplicities (Njets), jet
transverse momenta (pT), scalar sum of the jet transverse momenta (HT) and jet pseudorapidi-
ties (|h|) are compared to results obtained from the following MC calculations:

• Tree level with parton shower computed with MADGRAPH 5 [1] interfaced with
PYTHIA 6, for parton shower and hadronization, with the same configuration as de-
scribed in section 3. The total cross section is normalised to the NNLO cross section
computed with FEWZ. This NNLO normalisation is not applied to the other predic-
tion that follows.

• Multileg NLO with parton shower computed with Sherpa 2 [2] and Blackhat [33, 34]
for the one-loop corrections. The matrix elements include the five processes pp !
Z+ N jet, N = 0 . . . 4, with an NLO accuracy for N  2 and LO accuracy for N = 3, 4.
The CT10 PDF is used. The merging of parton shower and matrix elements is done
with the MEPS@NLO method [35] and QCUT parameter set to 20 GeV.

The uncertainty from the PDF, including the contribution coming from the uncertainty on as,
has been evaluated with the CT10 PDF set on the tree level calculation (MADGRAPH) and goes
from 1.5% to 5.5% (68% confidence level uncertainty) depending on the jet multiplicity, the
highest values are obtained for the highest multiplicities.

8.1 Jet multiplicity

The measured cross sections, for the combination of the two decay channels (Z ! µ+µ� and
Z ! e+e�), as a function of exclusive and inclusive jet multiplicities are shown in Fig. 2, for a
total number of up to seven jets in the final state.

The agreement with the predictions is very good for jet multiplicities going up to the maximum
number of final state partons included in the matrix elements, namely 4 in the MC generators
used here. It is already good at tree level (MADGRAPH) renormalised to the NNLO inclusive

CMS PAS SMP-13-007

Figure 1: Exclusive jet multiplicity. Data from ref. [28], compared to Herwig++ (left

panel) and Pythia8 (right panel) predictions. The FxFx uncertainty envelope (“Var”)

and the fully-inclusive central result (“inc”) are shown as green bands and red histograms

respectively. See the end of sect. 2 for more details on the layout of the plots.

Figure 2: As in fig. 1, for the transverse momentum of the 1st jet.

Figure 3: As in fig. 1, for the transverse momentum of the 3rd jet.

is entirely dominated by MC e↵ects, and formally of LL accuracy. The impact of multi-

parton matrix elements, measured by the distance between the FxFx and the inclusive

– 11 –
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In these lectures:

• How to compute effectively a NLO cross section?	


• How to compute loops?	


• How to deal with infrared divergences?	


• How to generate events to be showered at NLO?

10



Marco Zaro, 25-12-2015 11

NLO

• NLO evolution: 	

• e.g. pp→W+n jets

n=

year

1 3 52 40

19
78

19
89

20
02

20
09

20
10

20
13

Alta
re

lli, 
Ell

is, 
Mar

tin
ell

i

Arn
old

, E
llis

, R
en

o

Cam
pb

ell
, E

llis

Bla
ck

Hat+
Sh

er
pa
 

Ell
is, 

Meln
iko

v, z
an

de
rig

hi

Bla
ck

Hat+
Sh

er
pa

Bla
ck

Hat+
Sh

er
pa

#virt diag	

ud→̄W+ ng

2 43 416 4489 57026 …



Marco Zaro, 25-12-2015 11

NLO

• NLO evolution: 	

• e.g. pp→W+n jets

n=

year

1 3 52 40

19
78

19
89

20
02

20
09

20
10

20
13

Alta
re

lli, 
Ell

is, 
Mar

tin
ell

i

Arn
old

, E
llis

, R
en

o

Cam
pb

ell
, E

llis

Bla
ck

Hat+
Sh

er
pa
 

Ell
is, 

Meln
iko

v, z
an

de
rig

hi

Bla
ck

Hat+
Sh

er
pa

Bla
ck

Hat+
Sh

er
pa

#virt diag	

ud→̄W+ ng

2 43 416 4489

NLO revolution!
57026 …



Marco Zaro, 25-12-2015 12

NLO revolution

• Amazing development of computational techniques to 
tackle any process at NLO 	

• Local subtraction	

• Computation of loop MEs	

• Tensor reduction	

• Generalized unitarity	

• Integrand reduction

Frixione, Kunszt, Signer, hep-ph/9512328	

Catani, Seymour, hep-ph/9605323

Passarino, Veltman,1979	

Denner, Dittmaier, hep-ph/509141	


Binoth, Guillet, Heinrich, Pilon, Reiter, arXiv:0810.0992

Bern, Dixon, Dunbar, Kosower, hep-ph/9403226 + …	

Ellis, Giele, Kunszt,  arXiv:0708.2398 	


+ Melnikov, arXiv:0806.3467

Ossola, Papadopoulos, Pittau, hep-ph/0609007	

Del Aguila, Pittau, hep-ph/0404120	


Mastrolia, Ossola, Reiter, Tramontano, arXiv:1006.0710
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Going NLO

• NLO is the first order where the scale dependence in αs and 
PDFs is compensated by loop corrections	

• First reliable predictions for rates and uncertainties 	


• Better description of final state (inclusion of extra radiation)	

• Opening of new partonic channels from real emissions 

13
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NLO: how to?

• Three ingredients need to be computed at NLO	

!

!

!

!

!

!

!

• Remember: virtual and reals are not separately finite, but their 
sum is (KLN theorem). Divergences have to be subtracted 
before numerical integration. We will shortly see how

14

Born  
cross section

Virtual  
corrections

Real-emission  
corrections

�NLO =

Z

n

↵b
sd�0 +

Z

n

↵b+1
s d�V +

Z

n+1
↵b+1
s d�R
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How to compute loops?

15
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k1

kn

k2

k3 k4

k5
D0

D1

D2

D3
Dm�1

q + k1

q . . .

q
+
. . .+

k
5

l
l

l
• Consider a m-point one-loop diagram with n external momenta	

!
!
!
!
!
!

• The integral to compute is

Computing loops numerically

16

d�V = 2<[ ]

Z
ddl

N(l)

D0D1 . . . Dm�1
Di = (l + pi)

2 �m2
i

p1 = k1

p2 = k2

p3 = k3 + k4 + k5
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A hint…

• Any one-loop integral can be cast in the form	

!

!

• that is, a linear combination of scalar integrals	

• Only scalar integrals with up to 4 denominators are 

needed → the basis is finite!	

• The coefficients depend only on external momenta and 

parameters.

17

Z
ddl

N(l)

D0D1 . . . Dm�1
=

X
coe↵i

Z
ddl

1
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Scalar integrals

• Scalar integrals are known and available as libraries 
FF (van Oldenborgh, CPC 66,1991)  
QCDLoop (Ellis, Zanderighi, arXiv:0712.1851)  
OneLOop (Van Hameren, arXiv:1007.4716)  

18

M1loop =
X

i0,i1,i2,i3

di0i1i2i3Di0i1i2i3

+
X
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How to compute the coefficients?

• Several techniques exist	

• Computation of loop MEs	

• Tensor reduction	

• Generalized unitarity	

• Integrand reduction

Passarino, Veltman,1979	

Denner, Dittmaier, hep-ph/509141	


Binoth, Guillet, Heinrich, Pilon, Reiter, arXiv:0810.0992

Bern, Dixon, Dunbar, Kosower, hep-ph/9403226 + …	

Ellis, Giele, Kunszt,  arXiv:0708.2398 	


+ Melnikov, arXiv:0806.3467

Ossola, Papadopoulos, Pittau, hep-ph/0609007	

Del Aguila, Pittau, hep-ph/0404120	


Mastrolia, Ossola, Reiter, Tramontano, arXiv:1006.0710

In these lectures
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Integrand reduction

• Can we take away the integral? 	

!

!

• Of course not, we must take into account for terms 
which integrate to 0, the so-called spurious terms:

20
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Spurious terms

• The functional form of the spurious terms is known and 
depends on the rank (powers of l in the numerator) and 
on the number of denominators. Del Aguila, Pittau, hep-ph/0404120	


• E.g. a rank-1 box	

!

!

• The integral is 0

21

d̃i0i1i2i3(l) = d̃i0i1i2i3 ✏
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�
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ddl
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⇢
2p

�
3
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OPP decomposition	

Ossola, Papadopoulos, Pittau, hep-ph/0609007	


!
!

• If we multiply both sides times D0D1…Dm-1 we get

22
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Getting the coefficients

• N(l) is known from the diagrams and the functional 
form of spurious terms is known too	

• We can sample N(l) at various values of the loop momentum, 

and get a system of linear equations	

• The sampling can be done numerically	

• By choosing smart values of l (in the complex plane), the 

system can be greatly simplified	

• E.g. we can choose l such that

23

D1(l
±) = D2(l

±) = D3(l
±) = D4(l

±) = 0

N(l±) = (d1234 + d̃1234(l
±))

Y

i 6=1,2,3,4

Di(l
±)
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Getting the coefficients

• Two values of l and the knowledge of the spurious 
terms functional form are enough to extract the box 
coefficient	

!

!

• Similarly, all the box coefficients can be determined	

• Then one can move on to the triangles (choosing l such 

that 3 denominators vanish)	

• Then to the bubbles, and finally to the tadpoles

24

d1234 =
1

2

 
N(l+)Q
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N(l�)Q
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!
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Getting the coefficient:	

recap

• For each PS point, we have to solve a system of 
equations numerically	


• The system reduces when special values of the loop 
momentum are chosen	


• N(l) can be the numerator of the full matrix element, of 
a single diagram or anything in between	


• For a given PS point, the numerator has to be sampled 
several times (~50 for a 4-point diagrams)

25
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The evil is in the details:	

Complications in d dimensions

• So far, we did not care much about the number of 
dimensions we were using	


• In general, external momenta and polarisations are in 4 
dimensions; only the loop momentum is in d	


• To be more rigorous, we compute the integral

26

Z
ddl

N(l, l̃)

D̄0D̄1 . . . D̄m�1
l̄ = l + l̃

D̄i = (l̄ + pi)
2 �mi = (l + pi)

2 �m2
i + l̃2 = Di + l̃2

l · l̃ = 0 l̄ · pi = l · pi l̄ · l̄ = l · l + l̃ · l̃

d-dim 4-dim ε-dim
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Implications

• The reduction should be consistently done in d 
dimensions

27

M1loop =
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That is why the rational terms are needed
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The rational terms	

OPP, arXiv:0802.1876

• In the OPP method, two types of rational terms are there: 
R=R1+R2	


• Both originate from the UV part of the model, but only R1 can 
be computed in the OPP decomposition	


• R1 originates from the denominators (propagators) in the loops	

!
!

• The denominator structure is known, so these terms can be 
directly included in the OPP reduction	


• R1 contributions are proportional to

28
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R2

• R2 terms originate from the numerator.  
Integrals with rank ≥2 can have terms in the numerator ~ to l̃2	


• This dependence can be quite hidden and become explicit only 
after having done the Clifford algebra	


• Since we want a fully numerical approach, these terms cannot 
be obtained directly with the OPP reduction	


• Within a given (renormalizable) model, only a finite set of terms 
that can give rise to these terms exists. They can be identified 
and computed as the “R2 counterterms”

29
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R2 Feynman rules

• In a renormalizable theory, only up to 4-point integrals 
contribute to the R2 terms	


• They can be included in the computation using special Feynman 
rules (as it is done for the UV renormalisation). For example:	

!
!
!
!
!
!

• Similarly to the UV counterterms, the R2 terms are model 
dependent and need to be explicitly computed for BSM models 
This is now automated for renormalizable theories

30

p

µ1,a1 µ2,a2
=
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48π2
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2
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(
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)
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]
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(
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ig4Ncol

96π2

∑

P (234)

{

[ δa1a2δa3a4 + δa1a3δa4a2 + δa1a4δa2a3

Ncol

+ 4Tr(ta1ta3ta2ta4 + ta1ta4ta2ta3) (3 + λHV )

−Tr({ta1ta2}{ta3ta4}) (5 + 2λHV )
]
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=

ig2
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Figure 2: Effective vertices contributing to R2 in pure QCD.
∑

P (234) stands for a summation over
the six permutations of the indices 2, 3 and 4, and {taitaj} ≡ taitaj + taj tai . λHV = 1 in the HV
scheme and λHV = 0 in the FDH scheme. Ncol is the number of colors and Nf is the number of
fermions running in the quark loop.

– 5 –

Draggiotis, Garzelli, Papadopoulos, Pittau, arXiv:0903.0356

Degrande, arXiv:1406.3030



Marco Zaro, 25-12-2015

MadLoop  
Hirschi et al, arXiv:1103.0621

• How to automate loop computation?	

• Exploit MadGraph’s capabilities to generate tree-level diagrams	

• Loop diagrams with n external legs can be cut, leading to tree 

diagrams with n+2 legs

31

≡

≡

Diag 1 = [u⇤(6)g⇤(5)u⇤(A)]

Diag 3 = [u⇤(A)u⇤(6)g⇤(5)]

• All diagrams with 2 extra particles are 
generated, those which are needed are 
filtered out	


• Each diagram is assigned a tag, which helps 
removing mirror/cyclic configurations	


• Additional filters to remove tadpole/
bubbles on external legs	


• Contract with Born, do the color algebra, 
re-glue the cut particle, etc…	


• Add UV and R2 counterterms as extra 
vertices
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Process µ nlf Cross section (pb)

LO NLO

a.1 pp→ tt̄ mtop 5 123.76±0.05 162.08±0.12

a.2 pp→ tj mtop 5 34.78±0.03 41.03± 0.07

a.3 pp→ tjj mtop 5 11.851±0.006 13.71± 0.02

a.4 pp→ tb̄j mtop/4 4 25.62±0.01 30.96± 0.06

a.5 pp→ tb̄jj mtop/4 4 8.195±0.002 8.91± 0.01

b.1 pp→ (W+ →)e+νe mW 5 5072.5±2.9 6146.2±9.8

b.2 pp→ (W+ →)e+νe j mW 5 828.4±0.8 1065.3±1.8

b.3 pp→ (W+ →)e+νe jj mW 5 298.8±0.4 300.3± 0.6

b.4 pp→ (γ∗/Z →)e+e− mZ 5 1007.0±0.1 1170.0±2.4

b.5 pp→ (γ∗/Z →)e+e− j mZ 5 156.11±0.03 203.0± 0.2

b.6 pp→ (γ∗/Z →)e+e− jj mZ 5 54.24±0.02 56.69± 0.07

c.1 pp→ (W+ →)e+νebb̄ mW + 2mb 4 11.557±0.005 22.95± 0.07

c.2 pp→ (W+ →)e+νett̄ mW + 2mtop 5 0.009415±0.000003 0.01159±0.00001

c.3 pp→ (γ∗/Z →)e+e−bb̄ mZ + 2mb 4 9.459±0.004 15.31± 0.03

c.4 pp→ (γ∗/Z →)e+e−tt̄ mZ + 2mtop 5 0.0035131±0.0000004 0.004876±0.000002

c.5 pp→ γtt̄ 2mtop 5 0.2906±0.0001 0.4169±0.0003

d.1 pp→W+W− 2mW 4 29.976±0.004 43.92± 0.03

d.2 pp→W+W− j 2mW 4 11.613±0.002 15.174±0.008

d.3 pp→W+W+ jj 2mW 4 0.07048±0.00004 0.1377±0.0005

e.1 pp→HW+ mW +mH 5 0.3428±0.0003 0.4455±0.0003

e.2 pp→HW+ j mW +mH 5 0.1223±0.0001 0.1501±0.0002

e.3 pp→HZ mZ +mH 5 0.2781±0.0001 0.3659±0.0002

e.4 pp→HZ j mZ +mH 5 0.0988±0.0001 0.1237±0.0001

e.5 pp→Htt̄ mtop +mH 5 0.08896±0.00001 0.09869±0.00003

e.6 pp→Hbb̄ mb +mH 4 0.16510±0.00009 0.2099±0.0006

e.7 pp→Hjj mH 5 1.104±0.002 1.036± 0.002

Table 2: Results for total rates, possibly within cuts, at the 7 TeV LHC, obtained with MadFKS

and MadLoop. The errors are due to the statistical uncertainty of Monte Carlo integration. See
the text for details.

• In the case of process c.5, the photon has been isolated with the prescription of

ref. [13], with parameters

δ0 = 0.4 , n = 1 , ϵγ = 1 , (2.3)

and parton-parton or parton-photon distances defined in the ⟨η,ϕ⟩ plane. The photon
is also required to be hard and central:

p(γ)T ≥ 20 GeV ,
∣∣∣η(γ)

∣∣∣ ≤ 2.5 . (2.4)

– 7 –
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Process Syntax Cross section (pb)

Vector boson +jets LO 13 TeV NLO 13 TeV

a.1 pp→W± p p > wpm 1.375 ± 0.002 · 105 +15.4%
−16.6%

+2.0%
−1.6% 1.773 ± 0.007 · 105 +5.2%

−9.4%
+1.9%
−1.6%

a.2 pp→W±j p p > wpm j 2.045 ± 0.001 · 104 +19.7%
−17.2%

+1.4%
−1.1%

2.843 ± 0.010 · 104 +5.9%
−8.0%

+1.3%
−1.1%

a.3 pp→W±jj p p > wpm j j 6.805 ± 0.015 · 103 +24.5%
−18.6%

+0.8%
−0.7% 7.786 ± 0.030 · 103 +2.4%

−6.0%
+0.9%
−0.8%

a.4 pp→W±jjj p p > wpm j j j 1.821 ± 0.002 · 103 +41.0%
−27.1%

+0.5%
−0.5% 2.005 ± 0.008 · 103 +0.9%

−6.7%
+0.6%
−0.5%

a.5 pp→Z p p > z 4.248 ± 0.005 · 104 +14.6%
−15.8%

+2.0%
−1.6% 5.410 ± 0.022 · 104 +4.6%

−8.6%
+1.9%
−1.5%

a.6 pp→Zj p p > z j 7.209 ± 0.005 · 103 +19.3%
−17.0%

+1.2%
−1.0%

9.742 ± 0.035 · 103 +5.8%
−7.8%

+1.2%
−1.0%

a.7 pp→Zjj p p > z j j 2.348 ± 0.006 · 103 +24.3%
−18.5%

+0.6%
−0.6% 2.665 ± 0.010 · 103 +2.5%

−6.0%
+0.7%
−0.7%

a.8 pp→Zjjj p p > z j j j 6.314 ± 0.008 · 102 +40.8%
−27.0%

+0.5%
−0.5%

6.996 ± 0.028 · 102 +1.1%
−6.8%

+0.5%
−0.5%

a.9 pp→ γj p p > a j 1.964 ± 0.001 · 104 +31.2%
−26.0%

+1.7%
−1.8% 5.218 ± 0.025 · 104 +24.5%

−21.4%
+1.4%
−1.6%

a.10 pp→ γjj p p > a j j 7.815 ± 0.008 · 103 +32.8%
−24.2%

+0.9%
−1.2% 1.004 ± 0.004 · 104 +5.9%

−10.9%
+0.8%
−1.2%

Table 1: Sample of LO and NLO rates for vector-boson production, possibly within cuts and in association with jets, at the 13-TeV

LHC. Where relevant, the notation understands the sum of the W+ and W− cross sections, and wpm is a label that includes both W+ and

W−, defined from the shell with define wpm = w+ w-. All cross sections are calculated in the five-flavour scheme. Results at the NLO

accuracy for W/Z plus jets are also available in MCFM for up to two jets [207–209], including heavy-flavour identification [210–214],

and in POWHEG [215–217]. NLO cross sections for W plus three jets have appeared in refs. [218, 219]. The BlackHat+SHERPA

collaboration has provided samples and results for up to Z plus four jets and W plus five jets at the NLO [220–224]. NLO+PS merged

samples for W plus up to three jets are also available in SHERPA [225]. γ plus up to three jets calculations have been presented in

refs. [226, 227]. We do not show cross sections for EW-induced V plus two jets processes with V = γ, Z,W±, which are available in

VBFNLO [228] and have been studied in ref. [229].
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Process Syntax Cross section (pb)

Four vector bosons LO 13 TeV NLO 13 TeV

c.21∗ pp→W+W−W+W− (4f) p p > w+ w- w+ w- 5.721± 0.014 · 10−4 +3.7%
−3.5%

+2.3%
−1.7%

9.959± 0.035 · 10−4 +7.4%
−6.0%

+1.7%
−1.2%

c.22∗ pp→W+W−W±Z (4f) p p > w+ w- wpm z 6.391± 0.076 · 10−4 +4.4%
−4.1%

+2.4%
−1.8%

1.188± 0.004 · 10−3 +8.4%
−6.8%

+1.7%
−1.2%

c.23∗ pp→W+W−W±γ (4f) p p > w+ w- wpm a 8.115± 0.064 · 10−4 +2.5%
−2.5%

+2.2%
−1.7%

1.546± 0.005 · 10−3 +7.9%
−6.3%

+1.5%
−1.1%

c.24∗ pp→W+W−ZZ (4f) p p > w+ w- z z 4.320± 0.013 · 10−4 +4.4%
−4.1%

+2.4%
−1.7%

7.107± 0.020 · 10−4 +7.0%
−5.7%

+1.8%
−1.3%

c.25∗ pp→W+W−Zγ (4f) p p > w+ w- z a 8.403± 0.016 · 10−4 +3.0%
−2.9%

+2.3%
−1.7%

1.483± 0.004 · 10−3 +7.2%
−5.8%

+1.6%
−1.2%

c.26∗ pp→W+W−γγ (4f) p p > w+ w- a a 5.198± 0.012 · 10−4 +0.6%
−0.9%

+2.1%
−1.6%

9.381± 0.032 · 10−4 +6.7%
−5.3%

+1.4%
−1.1%

c.27∗ pp→W±ZZZ p p > wpm z z z 5.862± 0.010 · 10−5 +5.1%
−4.7%

+2.4%
−1.8%

1.240± 0.004 · 10−4 +9.9%
−8.0%

+1.7%
−1.2%

c.28∗ pp→W±ZZγ p p > wpm z z a 1.148± 0.003 · 10−4 +3.6%
−3.5%

+2.2%
−1.7%

2.945± 0.008 · 10−4 +10.8%
−8.7%

+1.3%
−1.0%

c.29∗ pp→W±Zγγ p p > wpm z a a 1.054± 0.004 · 10−4 +1.7%
−1.9%

+2.1%
−1.7%

3.033± 0.010 · 10−4 +10.6%
−8.6%

+1.1%
−0.8%

c.30∗ pp→W±γγγ p p > wpm a a a 3.600± 0.013 · 10−5 +0.4%
−1.0%

+2.0%
−1.6%

1.246± 0.005 · 10−4 +9.8%
−8.1%

+0.9%
−0.8%

c.31∗ pp→ZZZZ p p > z z z z 1.989± 0.002 · 10−5 +3.8%
−3.6%

+2.2%
−1.7%

2.629± 0.008 · 10−5 +3.5%
−3.0%

+2.2%
−1.7%

c.32∗ pp→ZZZγ p p > z z z a 3.945± 0.007 · 10−5 +1.9%
−2.1%

+2.1%
−1.6%

5.224± 0.016 · 10−5 +3.3%
−2.7%

+2.1%
−1.6%

c.33∗ pp→ZZγγ p p > z z a a 5.513± 0.017 · 10−5 +0.0%
−0.3%

+2.1%
−1.6%

7.518± 0.032 · 10−5 +3.4%
−2.6%

+2.0%
−1.5%

c.34∗ pp→Zγγγ p p > z a a a 4.790± 0.012 · 10−5 +2.3%
−3.1%

+2.0%
−1.6%

7.103± 0.026 · 10−5 +3.4%
−3.2%

+1.6%
−1.5%

c.35∗ pp→ γγγγ p p > a a a a 1.594± 0.004 · 10−5 +4.7%
−5.7%

+1.9%
−1.7%

3.389± 0.012 · 10−5 +7.0%
−6.7%

+1.3%
−1.3%

Table 4: Sample of NLO rates for four-boson production, possibly within cuts, at the LHC 13 TeV. wpm is a label that includes W+ and W−

and is defined via define wpm = w+ w-. All cross sections calculated in the 5-flavor scheme, except the processes with at least two W -bosons to
prevent top resonant contributions from appearing at NLO. For all processes in this table NLO QCD corrections have never been computed before.
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Process Syntax Cross section (pb)

Heavy quarks+vector bosons LO 13 TeV NLO 13 TeV

e.1 pp→W± bb̄ (4f) p p > wpm b b∼ 3.074± 0.002 · 102 +42.3%
−29.2%

+2.0%
−1.6%

8.162± 0.034 · 102 +29.8%
−23.6%

+1.5%
−1.2%

e.2 pp→Z bb̄ (4f) p p > z b b∼ 6.993± 0.003 · 102 +33.5%
−24.4%

+1.0%
−1.4% 1.235± 0.004 · 103 +19.9%

−17.4%
+1.0%
−1.4%

e.3 pp→ γ bb̄ (4f) p p > a b b∼ 1.731± 0.001 · 103 +51.9%
−34.8%

+1.6%
−2.1% 4.171± 0.015 · 103 +33.7%

−27.1%
+1.4%
−1.9%

e.4∗ pp→W± bb̄ j (4f) p p > wpm b b∼ j 1.861± 0.003 · 102 +42.5%
−27.7%

+0.7%
−0.7% 3.957± 0.013 · 102 +27.0%

−21.0%
+0.7%
−0.6%

e.5∗ pp→Z bb̄ j (4f) p p > z b b∼ j 1.604± 0.001 · 102 +42.4%
−27.6%

+0.9%
−1.1%

2.805± 0.009 · 102 +21.0%
−17.6%

+0.8%
−1.0%

e.6∗ pp→ γ bb̄ j (4f) p p > a b b∼ j 7.812± 0.017 · 102 +51.2%
−32.0%

+1.0%
−1.5% 1.233± 0.004 · 103 +18.9%

−19.9%
+1.0%
−1.5%

e.7 pp→ tt̄ W± p p > t t∼ wpm 3.777± 0.003 · 10−1 +23.9%
−18.0%

+2.1%
−1.6% 5.662± 0.021 · 10−1 +11.2%

−10.6%
+1.7%
−1.3%

e.8 pp→ tt̄ Z p p > t t∼ z 5.273± 0.004 · 10−1 +30.5%
−21.8%

+1.8%
−2.1% 7.598± 0.026 · 10−1 +9.7%

−11.1%
+1.9%
−2.2%

e.9 pp→ tt̄ γ p p > t t∼ a 1.204± 0.001 · 100 +29.6%
−21.3%

+1.6%
−1.8% 1.744± 0.005 · 100 +9.8%

−11.0%
+1.7%
−2.0%

e.10∗ pp→ tt̄ W±j p p > t t∼ wpm j 2.352± 0.002 · 10−1 +40.9%
−27.1%

+1.3%
−1.0%

3.404± 0.011 · 10−1 +11.2%
−14.0%

+1.2%
−0.9%

e.11∗ pp→ tt̄ Zj p p > t t∼ z j 3.953± 0.004 · 10−1 +46.2%
−29.5%

+2.7%
−3.0% 5.074± 0.016 · 10−1 +7.0%

−12.3%
+2.5%
−2.9%

e.12∗ pp→ tt̄ γj p p > t t∼ a j 8.726± 0.010 · 10−1 +45.4%
−29.1%

+2.3%
−2.6%

1.135± 0.004 · 100 +7.5%
−12.2%

+2.2%
−2.5%

e.13∗ pp→ tt̄ W−W+ (4f) p p > t t∼ w+ w- 6.675± 0.006 · 10−3 +30.9%
−21.9%

+2.1%
−2.0% 9.904± 0.026 · 10−3 +10.9%

−11.8%
+2.1%
−2.1%

e.14∗ pp→ tt̄ W±Z p p > t t∼ wpm z 2.404± 0.002 · 10−3 +26.6%
−19.6%

+2.5%
−1.8% 3.525± 0.010 · 10−3 +10.6%

−10.8%
+2.3%
−1.6%

e.15∗ pp→ tt̄ W±γ p p > t t∼ wpm a 2.718± 0.003 · 10−3 +25.4%
−18.9%

+2.3%
−1.8% 3.927± 0.013 · 10−3 +10.3%

−10.4%
+2.0%
−1.5%

e.16∗ pp→ tt̄ ZZ p p > t t∼ z z 1.349± 0.014 · 10−3 +29.3%
−21.1%

+1.7%
−1.5%

1.840± 0.007 · 10−3 +7.9%
−9.9%

+1.7%
−1.5%

e.17∗ pp→ tt̄ Zγ p p > t t∼ z a 2.548± 0.003 · 10−3 +30.1%
−21.5%

+1.7%
−1.6% 3.656± 0.012 · 10−3 +9.7%

−11.0%
+1.8%
−1.9%

e.18∗ pp→ tt̄ γγ p p > t t∼ a a 3.272± 0.006 · 10−3 +28.4%
−20.6%

+1.3%
−1.1%

4.402± 0.015 · 10−3 +7.8%
−9.7%

+1.4%
−1.4%

Table 6: Sample of LO and NLO total rates for the production of heavy quarks in association with vector bosons, possibly within

cuts and in association with jets, at the 13-TeV LHC. Processes that explicitly involve b-quarks in the final state, and process e.13,

are calculated in the four-flavour scheme, while all of the others are in the five-flavour scheme. Results are available in the literature

for Wbb̄ [66,292–295], Zbb̄ [66,294,296], tt̄γ [297], tt̄Z [66,298,299], tt̄W [66,299,300] production. For the majority of the processes in

this table, NLO corrections are calculated in this work for the first time.
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Process Syntax Cross section (pb)

Vector-boson pair +jets LO 13 TeV NLO 13 TeV

b.1 pp→W+W− (4f) p p > w+ w- 7.355± 0.005 · 101 +5.0%
−6.1%

+2.0%
−1.5% 1.028± 0.003 · 102 +4.0%

−4.5%
+1.9%
−1.4%

b.2 pp→ZZ p p > z z 1.097± 0.002 · 101 +4.5%
−5.6%

+1.9%
−1.5% 1.415± 0.005 · 101 +3.1%

−3.7%
+1.8%
−1.4%

b.3 pp→ZW± p p > z wpm 2.777± 0.003 · 101 +3.6%
−4.7%

+2.0%
−1.5% 4.487± 0.013 · 101 +4.4%

−4.4%
+1.7%
−1.3%

b.4 pp→ γγ p p > a a 2.510± 0.002 · 101 +22.1%
−22.4%

+2.4%
−2.1%

6.593± 0.021 · 101 +17.6%
−18.8%

+2.0%
−1.9%

b.5 pp→ γZ p p > a z 2.523± 0.004 · 101 +9.9%
−11.2%

+2.0%
−1.6% 3.695± 0.013 · 101 +5.4%

−7.1%
+1.8%
−1.4%

b.6 pp→ γW± p p > a wpm 2.954± 0.005 · 101 +9.5%
−11.0%

+2.0%
−1.7%

7.124± 0.026 · 101 +9.7%
−9.9%

+1.5%
−1.3%

b.7 pp→W+W−j (4f) p p > w+ w- j 2.865± 0.003 · 101 +11.6%
−10.0%

+1.0%
−0.8% 3.730± 0.013 · 101 +4.9%

−4.9%
+1.1%
−0.8%

b.8 pp→ZZj p p > z z j 3.662± 0.003 · 100 +10.9%
−9.3%

+1.0%
−0.8% 4.830± 0.016 · 100 +5.0%

−4.8%
+1.1%
−0.9%

b.9 pp→ZW±j p p > z wpm j 1.605± 0.005 · 101 +11.6%
−10.0%

+0.9%
−0.7% 2.086± 0.007 · 101 +4.9%

−4.8%
+0.9%
−0.7%

b.10 pp→ γγj p p > a a j 1.022± 0.001 · 101 +20.3%
−17.7%

+1.2%
−1.5% 2.292± 0.010 · 101 +17.2%

−15.1%
+1.0%
−1.4%

b.11∗ pp→ γZj p p > a z j 8.310± 0.017 · 100 +14.5%
−12.8%

+1.0%
−1.0% 1.220± 0.005 · 101 +7.3%

−7.4%
+0.9%
−0.9%

b.12∗ pp→ γW±j p p > a wpm j 2.546± 0.010 · 101 +13.7%
−12.1%

+0.9%
−1.0%

3.713± 0.015 · 101 +7.2%
−7.1%

+0.9%
−1.0%

b.13 pp→W+W+jj p p > w+ w+ j j 1.484± 0.006 · 10−1 +25.4%
−18.9%

+2.1%
−1.5%

2.251± 0.011 · 10−1 +10.5%
−10.6%

+2.2%
−1.6%

b.14 pp→W−W−jj p p > w- w- j j 6.752± 0.007 · 10−2 +25.4%
−18.9%

+2.4%
−1.7% 1.003± 0.003 · 10−1 +10.1%

−10.4%
+2.5%
−1.8%

b.15 pp→W+W−jj (4f) p p > w+ w- j j 1.144± 0.002 · 101 +27.2%
−19.9%

+0.7%
−0.5% 1.396± 0.005 · 101 +5.0%

−6.8%
+0.7%
−0.6%

b.16 pp→ZZjj p p > z z j j 1.344± 0.002 · 100 +26.6%
−19.6%

+0.7%
−0.6% 1.706± 0.011 · 100 +5.8%

−7.2%
+0.8%
−0.6%

b.17 pp→ZW±jj p p > z wpm j j 8.038± 0.009 · 100 +26.7%
−19.7%

+0.7%
−0.5% 9.139± 0.031 · 100 +3.1%

−5.1%
+0.7%
−0.5%

b.18 pp→ γγjj p p > a a j j 5.377± 0.029 · 100 +26.2%
−19.8%

+0.6%
−1.0% 7.501± 0.032 · 100 +8.8%

−10.1%
+0.6%
−1.0%

b.19∗ pp→ γZjj p p > a z j j 3.260± 0.009 · 100 +24.3%
−18.4%

+0.6%
−0.6% 4.242± 0.016 · 100 +6.5%

−7.3%
+0.6%
−0.6%

b.20∗ pp→ γW±jj p p > a wpm j j 1.233± 0.002 · 101 +24.7%
−18.6%

+0.6%
−0.6%

1.448± 0.005 · 101 +3.6%
−5.4%

+0.6%
−0.7%

Table 2: Sample of LO and NLO rates for vector-boson pair production, possibly within cuts and in association with jets, at the 13-TeV

LHC; we also report the integration errors, and the fractional scale (left) and PDF (right) uncertainties. See table 1 for the meaning

of wpm. All cross sections are calculated in the five-flavour scheme, except for processes b.1, b.7, and b.15, which are obtained in the

four-flavour scheme to avoid resonant-top contributions. NLO results for V V production have been known for some time [243–252],

are publicly available in MCFM and in VBFNLO [241], and are matched to parton showers in MC@NLO [24] and POWHEG [253].

NLO results for V V with up to an extra jet have been made available in POWHEG [254, 255]. NLO corrections to γγ plus up to

three jets are also known [256–260]. Other available results are: W±W±jj [261], W±W±jj (EW+QCD) [262], Zγj [263], Wγjj [264],

WZjj [265], Wγj [266,267], WZj [268]. We do not show results for NLO corrections to EW-induced production of V V plus two jets,

such as W±W∓jj [269], WZjj [270], and ZZjj [271], which can also be obtained with POWHEG and VBFNLO.
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Process Syntax Cross section (pb)

Three vector bosons +jet LO 13 TeV NLO 13 TeV

c.1 pp→W+W−W± (4f) p p > w+ w- wpm 1.307± 0.003 · 10−1 +0.0%
−0.3%

+2.0%
−1.5% 2.109± 0.006 · 10−1 +5.1%

−4.1%
+1.6%
−1.2%

c.2 pp→ZW+W− (4f) p p > z w+ w- 9.658± 0.065 · 10−2 +0.8%
−1.1%

+2.1%
−1.6% 1.679± 0.005 · 10−1 +6.3%

−5.1%
+1.6%
−1.2%

c.3 pp→ZZW± p p > z z wpm 2.996± 0.016 · 10−2 +1.0%
−1.4%

+2.0%
−1.6% 5.550± 0.020 · 10−2 +6.8%

−5.5%
+1.5%
−1.1%

c.4 pp→ZZZ p p > z z z 1.085± 0.002 · 10−2 +0.0%
−0.5%

+1.9%
−1.5%

1.417± 0.005 · 10−2 +2.7%
−2.1%

+1.9%
−1.5%

c.5 pp→ γW+W− (4f) p p > a w+ w- 1.427± 0.011 · 10−1 +1.9%
−2.6%

+2.0%
−1.5% 2.581± 0.008 · 10−1 +5.4%

−4.3%
+1.4%
−1.1%

c.6 pp→ γγW± p p > a a wpm 2.681± 0.007 · 10−2 +4.4%
−5.6%

+1.9%
−1.6%

8.251± 0.032 · 10−2 +7.6%
−7.0%

+1.0%
−1.0%

c.7 pp→ γZW± p p > a z wpm 4.994± 0.011 · 10−2 +0.8%
−1.4%

+1.9%
−1.6% 1.117± 0.004 · 10−1 +7.2%

−5.9%
+1.2%
−0.9%

c.8 pp→ γZZ p p > a z z 2.320± 0.005 · 10−2 +2.0%
−2.9%

+1.9%
−1.5%

3.118± 0.012 · 10−2 +2.8%
−2.7%

+1.8%
−1.4%

c.9 pp→ γγZ p p > a a z 3.078± 0.007 · 10−2 +5.6%
−6.8%

+1.9%
−1.6% 4.634± 0.020 · 10−2 +4.5%

−5.0%
+1.7%
−1.3%

c.10 pp→ γγγ p p > a a a 1.269± 0.003 · 10−2 +9.8%
−11.0%

+2.0%
−1.8% 3.441± 0.012 · 10−2 +11.8%

−11.6%
+1.4%
−1.5%

c.11 pp→W+W−W±j (4f) p p > w+ w- wpm j 9.167± 0.010 · 10−2 +15.0%
−12.2%

+1.0%
−0.7% 1.197± 0.004 · 10−1 +5.2%

−5.6%
+1.0%
−0.8%

c.12∗ pp→ZW+W−j (4f) p p > z w+ w- j 8.340± 0.010 · 10−2 +15.6%
−12.6%

+1.0%
−0.7%

1.066± 0.003 · 10−1 +4.5%
−5.3%

+1.0%
−0.7%

c.13∗ pp→ZZW±j p p > z z wpm j 2.810± 0.004 · 10−2 +16.1%
−13.0%

+1.0%
−0.7% 3.660± 0.013 · 10−2 +4.8%

−5.6%
+1.0%
−0.7%

c.14∗ pp→ZZZj p p > z z z j 4.823± 0.011 · 10−3 +14.3%
−11.8%

+1.4%
−1.0%

6.341± 0.025 · 10−3 +4.9%
−5.4%

+1.4%
−1.0%

c.15∗ pp→ γW+W−j (4f) p p > a w+ w- j 1.182± 0.004 · 10−1 +13.4%
−11.2%

+0.8%
−0.7% 1.233± 0.004 · 103 +18.9%

−19.9%
+1.0%
−1.5%

c.16 pp→ γγW±j p p > a a wpm j 4.107± 0.015 · 10−2 +11.8%
−10.2%

+0.6%
−0.8%

5.807± 0.023 · 10−2 +5.8%
−5.5%

+0.7%
−0.7%

c.17∗ pp→ γZW±j p p > a z wpm j 5.833± 0.023 · 10−2 +14.4%
−12.0%

+0.7%
−0.6% 7.764± 0.025 · 10−2 +5.1%

−5.5%
+0.8%
−0.6%

c.18∗ pp→ γZZj p p > a z z j 9.995± 0.013 · 10−3 +12.5%
−10.6%

+1.2%
−0.9% 1.371± 0.005 · 10−2 +5.6%

−5.5%
+1.2%
−0.9%

c.19∗ pp→ γγZj p p > a a z j 1.372± 0.003 · 10−2 +10.9%
−9.4%

+1.0%
−0.9% 2.051± 0.011 · 10−2 +7.0%

−6.3%
+1.0%
−0.9%

c.20∗ pp→ γγγj p p > a a a j 1.031± 0.006 · 10−2 +14.3%
−12.6%

+0.9%
−1.2% 2.020± 0.008 · 10−2 +12.8%

−11.0%
+0.8%
−1.2%

Table 3: Sample of LO and NLO rates for triple-vector-boson production, possibly within cuts and in association with one jet, at the

13-TeV LHC; we also report the integration errors, and the fractional scale (left) and PDF (right) uncertainties. See table 1 for the

meaning of wpm. All cross sections are calculated in the five-flavour scheme, except for processes with at least two W bosons, where the

four-flavour scheme is adopted to avoid resonant-top contributions. Triple-vector-boson cross sections at the NLO have been computed

recently: Zγγ [263, 272], γγW± [273], γZW± [274], WWγ and ZZγ [275], ZZW and WWW [276], γγγ [277, 278], ZZZ [279]. The

complete set of triple-vector-boson cross sections at the NLO is also available in VBFNLO [241]. Except for γγW±j and W+W−W±j

that have appeared in ref. [280] and ref. [281] respectively, V V V j cross sections at the NLO have been computed here for the first

time.
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Process Syntax Cross section (pb)

Heavy quarks and jets LO 13 TeV NLO 13 TeV

d.1 pp→ jj p p > j j 1.162± 0.001 · 106 +24.9%
−18.8%

+0.8%
−0.9% 1.580± 0.007 · 106 +8.4%

−9.0%
+0.7%
−0.9%

d.2 pp→ jjj p p > j j j 8.940± 0.021 · 104 +43.8%
−28.4%

+1.2%
−1.4% 7.791± 0.037 · 104 +2.1%

−23.2%
+1.1%
−1.3%

d.3 pp→ bb̄ (4f) p p > b b∼ 3.743± 0.004 · 103 +25.2%
−18.9%

+1.5%
−1.8%

6.438± 0.028 · 103 +15.9%
−13.3%

+1.5%
−1.7%

d.4∗ pp→ bb̄j (4f) p p > b b∼ j 1.050± 0.002 · 103 +44.1%
−28.5%

+1.6%
−1.8% 1.327± 0.007 · 103 +6.8%

−11.6%
+1.5%
−1.8%

d.5∗ pp→ bb̄jj (4f) p p > b b∼ j j 1.852± 0.006 · 102 +61.8%
−35.6%

+2.1%
−2.4%

2.471± 0.012 · 102 +8.2%
−16.4%

+2.0%
−2.3%

d.6 pp→ bb̄bb̄ (4f) p p > b b∼ b b∼ 5.050± 0.007 · 10−1 +61.7%
−35.6%

+2.9%
−3.4% 8.736± 0.034 · 10−1 +20.9%

−22.0%
+2.9%
−3.4%

d.7 pp→ tt̄ p p > t t∼ 4.584± 0.003 · 102 +29.0%
−21.1%

+1.8%
−2.0% 6.741± 0.023 · 102 +9.8%

−10.9%
+1.8%
−2.1%

d.8 pp→ tt̄j p p > t t∼ j 3.135± 0.002 · 102 +45.1%
−29.0%

+2.2%
−2.5% 4.106± 0.015 · 102 +8.1%

−12.2%
+2.1%
−2.5%

d.9 pp→ tt̄jj p p > t t∼ j j 1.361± 0.001 · 102 +61.4%
−35.6%

+2.6%
−3.0%

1.795± 0.006 · 102 +9.3%
−16.1%

+2.4%
−2.9%

d.10 pp→ tt̄tt̄ p p > t t∼ t t∼ 4.505± 0.005 · 10−3 +63.8%
−36.5%

+5.4%
−5.7% 9.201± 0.028 · 10−3 +30.8%

−25.6%
+5.5%
−5.9%

d.11 pp→ tt̄bb̄ (4f) p p > t t∼ b b∼ 6.119± 0.004 · 100 +62.1%
−35.7%

+2.9%
−3.5% 1.452± 0.005 · 101 +37.6%

−27.5%
+2.9%
−3.5%

Table 5: Sample of LO and NLO total rates for the production of heavy quarks and/or jets, possibly within cuts, at the 13-TeV LHC;

we also report the integration errors, and the fractional scale (left) and PDF (right) uncertainties. Processes d.1 and d.2, as well as

processes involving at least a top pair, are computed in the five-flavour scheme. Processes that explicitly involve b-quarks in the final

state are calculated in the four-flavour scheme. For processes d.3–d.6 we require 2 (or 4) b-jets in the final state with |η| < 2.5. For

processes d.1–d.6, we require the (b)-jets to have pT > 80 GeV, with at least one of them with pT > 100 GeV. Calculations of cross

sections at the NLO for this class of processes are available in the literature as well as in public codes: from the seminal results for

the hadroproduction of a heavy quark pair [282–286], to their NLO+PS implementation in MC@NLO [169] and POWHEG [287], to

tt̄j [288] (also including top decays [254,289] and parton shower effects [290]), to the computation of tt̄jj [291]. Merged NLO+PS results

for tt̄ plus jets are also available [188,292,293]. NLO results for three jets [294], four jets [73], and up to five jets [295,296] have been

published. Two- and three-jet event generation is available in POWHEG [297, 298]. Calculations for bb̄bb̄ [299, 300], tt̄bb̄ [301–303],

and tt̄tt̄ [304] production have appeared in the literature.
–
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And much more!	

(EW/BSM/…)
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How to compute loops:	

Summary

• There has been an enormous progress in loop 
computation techniques in the recent years	


• For one-loop computation, we need to find the coefficient 
which multiply the scalar integrals	


• OPP is a powerful method to compute the coefficients 
numerically. Some cares need to be taken because of 
dimensional regularisation
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Infrared divergences
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Branching

• Let us consider the branching of a gluon from a quark 
 
 
Where kt is the transverse momentum of the gluon kt=Esinθ.  
It diverges in the soft (z→1) and collinear (kt →0) region	


• These singularities cancel with the virtual contribution, which 
comes from the integration of the loop momentum	

!
!

• The cancelation happens if we cannot distinguish between the 
case of no branching, and of a soft or collinear branching 
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3.2 Initial-state parton splitting, DGLAP evolution
3.2.1 Final and initial-state divergences
In Eq. (26a) we wrote the universal form for the final-state ‘splitting’ of a quark into a quark and a soft
gluon. Let’s rewrite it with different kinematic variables, considering a hard process h with cross section
σh, and examining the cross section for h with an extra gluon in the final state, σh+g. We have

p
zp

E =

θ

(1−z)p

σh σh+g ≃ σh
αsCF

π

dz

1− z

dk2t
k2t

, (41)

where E in Eq. (26a) corresponds to E = (1 − z)p and we’ve introduced kt = E sin θ ≃ Eθ. If we
avoid distinguishing a collinear q+ g pair from a plain quark (measurements with IRC safe observables)
then, as we argued before, the divergent part of the gluon emission contribution always cancels with a
related virtual correction

p p
σh σh+V ≃ −σh

αsCF

π

dz

1− z

dk2t
k2t

. (42)

Now let us examine what happens for initial-state splitting, where the hard process occurs after the
splitting and the momentum entering the hard process is modified p→ zp:

zp
p

(1−z)p

σh σg+h(p) ≃ σh(zp)
αsCF

π

dz

1− z

dk2t
k2t

, (43)

where we have made explicit the hard process’s dependence on the incoming momentum, and we assume
that σh involves momentum transfers ∼ Q ≫ kt, so that we can ignore the extra transverse momentum
entering σh. For virtual terms, the momentum entering the process is unchanged, so we have

p p
σh σg+h(p) ≃ −σh(p)

αsCF

π

dz

1− z

dk2t
k2t

, (44)

The total cross section then gets contributions with two different hard cross sections:

σg+h + σV+h ≃
αsCF

π

∫ Q2

0

dk2t
k2t

︸ ︷︷ ︸

infinite

∫ 1

0

dz

1− z
[σh(zp)− σh(p)]

︸ ︷︷ ︸

finite

. (45)

Note the limits on the integrals, in particular theQ2 upper limit on the transverse-momentum integration:
the approximations we’re using are valid as long as the transverse momentum emitted in the initial state is
much smaller than the momentum transfers Q that are present in the hard process. Of the two integrations
in Eq. (45), the one over z is finite, because in the region of the soft divergence, z → 1, the difference of
hard cross sections, [σh(zp) − σh(p)], tends to zero. In contrast, the kt integral diverges in the collinear
limit: the cross section with an incoming parton (and virtual corrections) appears not to be collinear safe.
This is a general feature of processes with incoming partons: so how are we then to carry out calculations
with initial-state hadrons?

In Section 2.3.1, when trying to make sense of final-state divergences, we introduced a (non-
perturbative) cutoff. Let’s do something similar here, with a cutoff, µF, called a factorization scale
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Cancelation of divergences

• The KLN theorem tells us that divergences from the virtual and 
real emission cancel in the sum if observables are insensitive to 
soft and collinear branchings (IR-safety)	


• When doing an analytic computation in dimensional 
regularisation, divergences appear as poles in the regularisation 
parameter ε	


• In the real emissions, poles appear after the phase space 
integration in d dimension
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Infrared safety

• In order to have meaningful predictions in fixed-order 
perturbation theory, observables must be IR-safe, i.e. not 
sensitive to the emission of soft or collinear partons.	


• In particular, if an observable depends on the momentum pi, it 
must not be sensitive on the branching pi→pj+pk, where either 
pj is soft or pj and pk are collinear	


• For example	

• The number of gluons in an event is not IR-safe	

• The number of jets with pT > pTmin is IR-safe
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�NLO =

Z
d4�nB +

Z
d4�nV +

Z
d4�n+1R

Phase space integration

• For complicated processes the integrations have to be done via 
MonteCarlo techniques, in an integer number of dimensions	


• Divergences have to be canceled explicitly	

• Slicing/Subtraction methods have been developed to extract 

divergences from the phase-space integrals

39
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Example

• Suppose that we can cast the phase space integral in the form	

!
!
!

• We introduce a regulator which renders the integral finite	

!
!
!

• The divergence shows as a pole in ε. How can we extract the 
pole?

40
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Phase space slicing

• We introduce a small parameter δ≪1:

41
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Phase space slicing

• We introduce a small parameter δ≪1:
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Phase space slicing

• We introduce a small parameter δ≪1:
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Subtraction method

• Add and subtract g(0)/x
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Subtraction method
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Subtraction method

• Add and subtract g(0)/x
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• In both cases the pole is extracted and we end up with a finite 
remainder:	

!
!

• Subtraction acts like a plus distribution	

• Slicing works only for small δ, and one has to prove the δ-

independence of cross section and distribution; subtraction is 
exact	


• In both methods there are cancelation between large numbers. 
If for a given observable                     or we choose a too small 
bin size, instabilities will arise (we cannot ask for an infinite 
resolution)	


• Subtraction is more flexible: good for automation

Slicing vs Subtraction
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Z
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NLO with subtraction

• Including the subtraction terms the expression becomes	

!

!

!

!

!

!

• Terms in brackets are finite and can be integrated 
numerically in d=4 and independently one from another
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The subtraction term

• The subtraction term C should be chosen such that:	

• It exactly matches the singular behaviour of R	

• It can be integrated numerically in a convenient way	

• It can be integrated exactly in d dimension, leading to the soft 

and/or collinear poles in the dimensional regulator	

• It is process independent (overall factor times Born)	


• QCD comes to help: structure of divergences is universal:
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Two subtraction methods

Dipole subtraction 
Catani, Seymour, hep-ph/9602277 & hep-ph/9605323	


• Most used method	

• Recoil taken by one parton  
→N3 scaling	


• Method evolves from cancelation of 
soft divergences	


• Proven to work for simple and 
complicated processes	


• Automated in MadDipole, 
AutoDipole, Sherpa, Helac-NLO, …

46

FKS subtraction 
Frixione, Kunszt, Signer, hep-ph/9512328	


• Less known method	

• Recoil distributed among all particles 
→N2 scaling	


• Probably (?) more efficient because less 
subtraction terms are needed	


• Method evolves from cancelation of 
collinear divergences	


• Proven to work for simple and 
complicated processes	


• Automated in MadGraph5_aMC@NLO 
and in the Powheg box/Powhel
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FKS subtraction #1	

Phase space partition

• Let us consider the real emission	

!

• The matrix element |Mn+1|2 diverges as	

!

!

• Partition the phase space in order to have at most one 
soft and one collinear singularity
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FKS subtraction #2	

Plus prescriptions

• Use plus prescriptions in yij and ξi to subtract the divergences	

!
!
!

• Plus prescriptions are defined as	

!
!

• Maximally three counterevents are needed	

• Soft counterevent (ξi→0)	

• Collinear counterevents (yij→1)	

• Soft-collinear counterevents (ξi→0 and yij→1)
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Kinematics of counterevents 

• If i and j are on-shell in the event, for the counterevent the 
combined particle i+j must be on shell	


• i+j can be put on shell only be reshuffling the momenta of the 
other particles	


• It can happen that event and counterevent end up in different 
histogram bins	

• Use IR-safe observables and don’t ask for infinite resolution!	

• Still, these precautions do not eliminate the problem…
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3.2 Initial-state parton splitting, DGLAP evolution
3.2.1 Final and initial-state divergences
In Eq. (26a) we wrote the universal form for the final-state ‘splitting’ of a quark into a quark and a soft
gluon. Let’s rewrite it with different kinematic variables, considering a hard process h with cross section
σh, and examining the cross section for h with an extra gluon in the final state, σh+g. We have

p
zp

E =

θ

(1−z)p

σh σh+g ≃ σh
αsCF

π

dz

1− z

dk2t
k2t

, (41)

where E in Eq. (26a) corresponds to E = (1 − z)p and we’ve introduced kt = E sin θ ≃ Eθ. If we
avoid distinguishing a collinear q+ g pair from a plain quark (measurements with IRC safe observables)
then, as we argued before, the divergent part of the gluon emission contribution always cancels with a
related virtual correction

p p
σh σh+V ≃ −σh

αsCF

π

dz

1− z

dk2t
k2t

. (42)

Now let us examine what happens for initial-state splitting, where the hard process occurs after the
splitting and the momentum entering the hard process is modified p→ zp:

zp
p

(1−z)p

σh σg+h(p) ≃ σh(zp)
αsCF

π

dz

1− z

dk2t
k2t

, (43)

where we have made explicit the hard process’s dependence on the incoming momentum, and we assume
that σh involves momentum transfers ∼ Q ≫ kt, so that we can ignore the extra transverse momentum
entering σh. For virtual terms, the momentum entering the process is unchanged, so we have

p p
σh σg+h(p) ≃ −σh(p)

αsCF

π

dz

1− z

dk2t
k2t

, (44)

The total cross section then gets contributions with two different hard cross sections:

σg+h + σV+h ≃
αsCF

π

∫ Q2

0

dk2t
k2t

︸ ︷︷ ︸

infinite

∫ 1

0

dz

1− z
[σh(zp)− σh(p)]

︸ ︷︷ ︸

finite

. (45)

Note the limits on the integrals, in particular theQ2 upper limit on the transverse-momentum integration:
the approximations we’re using are valid as long as the transverse momentum emitted in the initial state is
much smaller than the momentum transfers Q that are present in the hard process. Of the two integrations
in Eq. (45), the one over z is finite, because in the region of the soft divergence, z → 1, the difference of
hard cross sections, [σh(zp) − σh(p)], tends to zero. In contrast, the kt integral diverges in the collinear
limit: the cross section with an incoming parton (and virtual corrections) appears not to be collinear safe.
This is a general feature of processes with incoming partons: so how are we then to carry out calculations
with initial-state hadrons?

In Section 2.3.1, when trying to make sense of final-state divergences, we introduced a (non-
perturbative) cutoff. Let’s do something similar here, with a cutoff, µF, called a factorization scale
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An example in 4-lepton production

• The NLO result shows the typical 
peak-dip structure that hampers fixed-
order computation	


• Can be cured by increasing the statistics

50

Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between

the various predictions are larger in this case. In particular, aMC@LO is closer to NLO

than to LO, which is a consequence of the more important role played by extra radiation in

this case (as one expects, the present one being a correlation between two particles rather

than a single-inclusive observable). Again, the closeness of NLO and aMC@NLO results

shows the desired perturbative behaviour. The more significant impact of extra radiation

on this variable is reflected in the slightly larger scale dependence at large pT ’s w.r.t. what

happens for the transverse momentum of the individual leptons discussed before. The two

leptonic channels agree well, also when removing the Z-id cuts.

Figure 3 shows two observables constructed after applying the Z-id cuts, namely the

pseudorapidity of lepton pairs with opposite charge which are also Z-id matched (left

panel; this is then the pseudorapidity of would-be Z bosons), and the azimuthal distance

between leptons of opposite charge which are not Z-id matched (right panel; thus, these

are leptons emerging from different would-be Z bosons). As in the case of fig. 2, there are

two entries in each histogram for any given event. These two observables are dominated

by small transverse momenta, and therefore it is not suprising that, at both O(α0
S) and
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Can we generate unweighted 	

events at NLO?

• Another consequence of the kinematic mismatch is that 
we cannot generate events at NLO	


• n+1-body contribution and n-body contribution are not 
bounded from above → unweighting not possible	


• Further ambiguity on which kinematics to use for the 
unweighted events
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Filling histograms on-the-fly

• In practice, two set of momenta are generated during the MC 
integration	

• A n-body set, for Born, virtuals and counterterms	

• A n+1-body set, for the real emission	


• The various terms are computed. Cuts are applied on the 
corresponding momenta and histograms are filled with the 
weight and kinematics of each term
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Instabilities at fixed order

• Besides the mis-binning problem, the 
kinematics mismatch can lead to odd 
behaviours of certain observables, in 
particular when some constraint coming 
from the n-body kinematics is relaxed in 
the n+1-body one 
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Figure 2: Same as in fig. 1, with the cuts of eq. (3.1).
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Subtracting IR divergences:	

Summary

• Virtual and real matrix element are not finite, but their sum is. 
Subtraction methods can be used to extract divergences for 
real-emission matrix elements and cancel explicitly the poles 
from the virtuals	


• Event and counterevents have different kinematics. Unweighting 
is not possible, we need to fill plots on-the-fly with weighted 
events	


• For plots, only IR-safe observable with finite resolution must be 
used!
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Intermezzo:	

Is it all at NLO?

• Suppose we have a code for pp→t t ̄@NLO. Are all the 
following (IR-safe) variables described at NLO?	

• top pT	

• t t ̄pair pT	

• t t ̄pair invariant mass	

• jet pT	

• t t ̄azimuthal distance 
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Matching NLO predictions and 	

parton showers

56
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Matching NLO predictions and 	

parton showers

• Parton showers evolve hard partons by emitting extra 
QCD radiation down to a more realistic final state made 
of hadrons	


• This resums the effect of soft gluon radiations, and cures 
fixed-order instabilities	


• After the parton shower, a fully exclusive description of 
the event is available	


• NLO corrections are inclusive by definition, but they 
provide the first reliable estimate of rates and 
uncertainties

57

Can we attach a parton shower to NLO simulations?
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Fixed order instabilities, again
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Warning: double counting!

• There is a double counting between real emission and 
the parton shower	


• There is also double counting between the virtuals and 
the non-emission probability from the Sudakov factor

59

Parton shower

...

...Born+Virtual:

Real emission:
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Double counting the virtuals

• The Sudakov factor Δ, which is responsible for the resummation 
performed by the shower, is the no-emission probability (1-P, P 
being the emission probability)	


• Δ therefore contains implicitly contributions from the virtual 
corrections	


• We should therefore avoid to double counting the contribution 
from the virtuals in the matrix element and in the Sudakov	


• Because of unitarity, what is double counted in the virtuals is 
exactly opposite to what is double counted by the reals
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How to avoid double counting at NLO?

• Two methods exist:	

• MC@NLO Frixione, Webber hep-ph/0204244	


• Powheg Nason, hep-ph/0409146

61
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• Let us assume we can generate events separately for Born, 
virtuals and real emissions, and that we pass them to a parton 
shower	

!

• Do we get the NLO cross section?	

• Let us expand the shower operator at order αS (0 or 1 emission) 

Naive (wrong) matching

62
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Naive (wrong) matching

• At order αS we get	

!
!
!
!

• Which is not the NLO 
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�(Q,Q0) = exp

✓Z
d�1MC

◆

MC@NLO matching

• In the MC@NLO formalism, double counting can be cured by 
the so-called Monte Carlo counterterms, defined as	

!
!

• The MC@NLO cross section is defined as	

!
!

• Again, if we expand up to αS we recover the NLO 
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MC@NLO matching
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the so-called Monte Carlo counterterms, defined as	

!
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!
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MC@NLO matching

• In the MC@NLO formalism, double counting can be cured by 
the so-called Monte Carlo counterterms, defined as	

!
!

• The MC@NLO cross section is defined as	

!
!

• Again, if we expand up to αS we recover the NLO 

64

MC =

����
@�MC

1

@�1

����
↵s(t)

2⇡
Pa!bc

d�MC@NLO

dO
=

✓
B + V +

Z
d�1MC

◆
d�n I

n
MC(O) + (R�MC) d�n+1I

n+1
MC (O)

IMC = 1�
Z

d�1MC + d�1MC

d�“MC@NLO”

dO
=


B + V +

Z
d�1MC

�
d�n + d�n+1 [R�MC]

+ B

�
Z

d�1MC + d�1MC

�
d�n



Marco Zaro, 25-12-2015

The MC counterterm

• MC has some remarkable properties:	

• It avoids double counting when matching to PS	

• It matches the singular behaviour of the real-emission ME, 

making it possible to unweight events (some special cares are 
needed for the soft region)	


• It ensures a smooth matching: NLO+PS has the same shape of 
the shower in the soft/collinear region; in the hard region, it 
approaches the NLO	


• It is PS dependent, as it depends on the PS details. For each PS, 
we need its own MC counterterms

65

←Just shown
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Unweighting

• MC is by construction what the shower does to go 
from n to n+1. It matches exactly R in the soft-collinear 
region. Furthermore, it has the same kinematics as R, 
therefore there is no reshuffling needed. The n and n+1 
body contributions are separately finite and bounded. 
Unweighted events can be generated!	

• S-events, with n-body kinematics	

• H-events, with n+1-body kinematics

66

d�MC@NLO

dO
=

✓
B + V +

Z
d�1MC

◆
d�n I

n
MC(O) + (R�MC) d�n+1I

n+1
MC (O)



Marco Zaro, 25-12-2015

Smooth matching

• In the soft/collinear region,  
so that	

!
!

• In the hard region, MC=0 (it is bound to 
be zero far from singular regions).  
The only contribution comes from the 
real-emission ME
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The MC counterterms and  
the FKS subtraction

• The MC counterterms already make the cross-section finite. 
Are the local counterterms still needed?	


• Yes, because we cannot integrate MC analytically to extract the 
poles	


• In practice, we have
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Negative weights

• Events are generated for n- and n+1-body kinematics 
separately	


• Nothing guarantees that the two contributions are 
separately positive	


• The unweighting has to be done up to a sign, and the sign 
should be taken into account when filling plots	


• Remember: results are physical only after having showered 
the events!
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Powheg

• Let us consider the LO+PS cross-section expanded up to the 
first emission: 	

!
!

• We could think of going NLO by replacing the Born with the 
NLO cross section	

!
!

• Of course, there is double counting. This is in particular due by 
the fact that the integral in the Sudakov does not contain R
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A modified Sudakov

• In order to avoid double counting one could use a modified 
Sudakov 	

!
!

• Such that	

!
!

• But the total rate is not the NLO! The second parentheses does 
not integrate to 1. It has to be modified to	

!
!

• Where t is the scale at which R/B is evaluated
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d�
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• Note that	

!
!

• Therefore	

!
!

• So the [] integrates to 1. The NLO normalisation is kept	

• If one expands at order αS:	

!
!

• Double counting is avoided

Properties
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Comments

• The Powheg cross section has the same structure as an ordinary 
shower, with a global K-factor correction and a different Sudakov 
for the first emission	


• Note that when matching to PS one has to veto emissions 
harder than t (in the Powheg formalism, is has to be interpreted 
as transverse momentum), even for showers with a different 
ordering variable	

• Formula to be modified for angular-ordered PS in order to 

keep color coherence	

• MC@NLO and Powheg are formally equivalent at NLO level. In 

practice, there are many differences between the two
73
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MC@NLO vs Powheg

• The two matching procedure can be cast in a single formula	

!
!

• With	

!
!

• And the real-emission ME has been split in a singular and non-
singular (finite) part	

!

• The difference between the two methods is in Rs:
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Effect of F

75
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10−3

10−2

10−1

0 50 100 150 200 250

dσ
/d

pT h
[p

b
/G

eV
]

pT
h [GeV]

mh = 140 GeV - LHC@7TeV

Hqt NNLL+NNLO

MC@NLO (Pythia)

POWHEG (Pythia)

POWHEG (Pythia) DAMP140

10−3

10−2

10−1

0 50 100 150 200 250

dσ
/d

pT h
[p

b
/G

eV
]

pT
h [GeV]

mh = 140 GeV - LHC@7TeV

Hqt NNLL+NNLO

Use of F (pT ) ̸= 1 brings the POWHEG curve significantly down.

Note that this is formally an O(α4
S
) effect

F =
h2

h2 + p2T
pT≫h are suppressed 

MC@NLO naturally matches analytic 
resummation+FO curve at large pT	

Powheg (without damping) overshoots 
the FO	

Damping recovers matching at large pT
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Comparison and summary

76

MC@NLO POWHEG

Parton showers are (usually) not exact in the soft limit: 
MC@NLO needs an artificial smoothing ☹ ☺
MC@NLO does not exponentiate the non-singular part of the 
real emission amplitudes ☺ ☹
MC@NLO does not require any tricks for treating Born zeros ☺ ☹
POWHEG is independent from the parton shower  
(although, in general the shower should be a truncated vetoed) ☹ ☺
POWHEG has (almost) no negatively weighted events ☹ ☺
Automation of the methods:  
http://amcatnlo.cern.ch, http://powhegbox.mib.infn.it, http://
www.sherpa-mc.de

☺ ☺

http://amcatnlo.cern.ch
http://powhegbox.mib.infn.it
http://www.sherpa-mc.de

