
SciPost Phys. Core 8, 021 (2025)

Fast Perfekt: Regression-based refinement of fast simulation

Moritz Wolf1⋆, Lars O. Stietz1,2†, Patrick L. S. Connor1,3◦,
Peter Schleper1 and Samuel Bein1,4‡

1 University of Hamburg, Institute of Experimental Physics, Hamburg, Germany
2 Hamburg University of Technology, Institute of Mathematics,

Chair Computational Mathematics, Hamburg, Germany
3 Center for Data and Computing in Natural Sciences, Hamburg, Germany

4 Université catholique de Louvain, Louvain-la-Neuve, Belgium

⋆ moritz.wolf@uni-hamburg.de , † lars.stietz@tuhh.de , ‡ samuel.bein@uclouvain.be

Abstract

The availability of precise and accurate simulation is a limiting factor for interpreting
and forecasting data in many fields of science and engineering. Often, one or more
distinct simulation software applications are developed, each with a relative advantage
in accuracy or speed. The quality of insights extracted from the data stands to increase if
the accuracy of faster, more economical simulation could be improved to parity or near
parity with more resource-intensive but accurate simulation. We present Fast Perfekt, a
machine-learned regression to refine the output of fast simulation that employs residual
neural networks. A deterministic morphing model is trained using a unique schedule
that makes use of the ensemble loss function MMD, with the option of an additional
pair-based loss function such as the MSE. We explore this methodology in the context
of an abstract analytical model and in terms of a realistic particle physics application
featuring jet properties in hadron collisions at the CERN Large Hadron Collider. The
refinement makes maximum use of existing domain knowledge, and introduces minimal
computational overhead to production.

Copyright M. Wolf et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2024-10-22
2025-01-20
2025-02-14

Check for
updates

doi:10.21468/SciPostPhysCore.8.1.021

Contents

1 Introduction 2

2 Method 3
2.1 Network architecture 3
2.2 Loss functions 4
2.3 Training 5

3 Analytical example 6
3.1 Data set 6
3.2 Training 6

◦ Currrent affiliation: CERN

1

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021
mailto:moritz.wolf@uni-hamburg.de
mailto:lars.stietz@tuhh.de
mailto:samuel.bein@uclouvain.be
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCore.8.1.021&domain=pdf&date_stamp=2025-02-14
https://doi.org/10.21468/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

4 Application to collider physics 8
4.1 Data set 9
4.2 Training 9
4.3 Results 10

5 Conclusions 12

A Appendix 13

References 14

1 Introduction

The use of simulated data is essential in science and engineering to interpret and predict real-
world data. Often, two simulation applications are developed to fulfill different purposes: one
resource-intensive application (fullsim) that emulates real data as accurately as possible, and
a faster application (fastsim) that produces large data sets with reduced computing overhead
while sacrificing a degree of accuracy. The former (latter) is advantageous when bias (statisti-
cal precision) is a limiting factor. In fields such as climate and weather modeling, fullsim might
predict regional ambient patterns whereas fastsim models global forecasts [1]. In precision
measurements and searches for new physics with particle colliders, fullsim may be used for
emulating background events [2], while 10 [3–5] or 100 [6] times faster fastsim is used for
events corresponding to signal models with many free parameters [7,8].

Significant computing and scientific benefits could be realized if fastsim were made highly
accurate while maintaining its speed advantage. Recent approaches have been developed in
particle physics to render data emulated by fastsim more accurate. For example, the DCTR [9]
approach weights simulated data points such that their distributions more closely agree with
target (fullsim) data, correcting distributions of features and their correlations. Limitations
can arise, however, because the weights are specific to the underlying process, the support
is limited to the domain of the input, and the weights reduce the statistical precision of the
fastsim data. Other methods employ a Wasserstein metric or integral loss function to update
simulated features via a mapping [10–12], the first using generative methods and the last
two being deterministic mappings. These approaches can be effective in refining simulation
without introducing weights. However, these methods typically do not exploit all relevant
information present in the training samples, in particular the object-to-object correlations be-
tween fastsim and fullsim. Moreover, while probability density functions (PDFs) of the refined
feature(s) may agree well with the target, the transformation may not be unique and can lead
to degraded correlations with features not directly used by the network. More generally, ma-
chine learning has been used to replace components of fast simulation like the modeling of
calorimeter showers, such as the seminal work [13], with a broad review given in [14]; similar
techniques have been applied in ATLAS fastsim [3]. There are also efforts to replace the entire
simulation frameworks with generative normalizing flows in CMS [15].

In this article, we propose Fast Perfekt, a deterministic regression-based approach to render
the output features of fastsim uniquely consistent with fullsim. The relatively simple method
employs two similar training data sets, a fastsim input set and a target fullsim set, to train
a refiner network that morphs fastsim features directly. The training procedure utilizes one
or more loss functions, the primary maximum mean discrepancy (MMD) [16] loss, which
measures the similarity between two PDFs, and optionally a secondary MSE loss to measure
sample-to-sample similarity. Fast Perfekt aims to provide refinement of fastsim that is

2

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

• accurate in both the bulk and tails of distributions;

• effective in modeling correlations among several available and hidden features;

• weightless, preserving statistical precision; and

• fast and deterministic to ensure efficiency and traceability.

Fast Perfekt makes maximum use of domain knowledge in two senses. First, it takes fastsim
as a baseline and applies only a residual correction, avoiding the task of learning the target
data from scratch. Second, Fast Perfekt makes use of hidden information embedded in the
sample-based matching between the input and target data.

Initial concepts of this method were previously reported as an application to CMS fast
simulation (FastSim) [17]. The concept and procedure for training the network are described
in Section 2. The methods are demonstrated in Section 3 using an example based on an
abstract analytical data set. Fast Perfekt is then applied in a realistic physics application in
Section 4 featuring jet substructure variables in LHC experiments. Section 5 summarizes the
main findings, impact and limitations.

2 Method

Two alternate training schema are proposed, depending on the nature of the training data: a
single-stage training procedure using only an ensemble loss, and a 2-stage procedure making
use of ensemble and pair-based losses. Two data sets are required to train the network: an
input set processed with the fastsim and a target set processed with the fullsim. Often, the
fastsim and fullsim share one or more identical algorithmic aspects, for example, the ground
truth (GT). It is suggested to synchronize any random variables where possible, for example,
by using the same GT, and preparing the data with a unique matching between each fastsim
and fullsim sample. When such synchronization is possible, the 2-stage training is suggested;
otherwise, the single-stage schema has to be employed.

Let x′ be a set of fastsim features to be refined. These features, or correlations among
them, presumably exhibit inaccuracies with respect to the fullsim features x. Each element
of x′ is taken as input to the refiner network along with any conditioning variables, such as
the GT values g of the given object, together defining the vector a′ = (g,x′)⊺. Additional
features h′ are hidden, either unavailable or not chosen among the set to be refined, but
may also be important for downstream or upstream analysis. The network outputs refined
features x̂ whose properties and correlations to the hidden features corr(x̂,h′) are estimators
of the fullsim features x and correlations corr(x,h), respectively. We note that the network
goal is to render fastsim features more fullsim-like, and not more like the GT values; we also
note that the network cannot refine the hidden variables themselves, but only correlations to
them. A simple schematic of the sampling and training procedure is given in Figure 1.

2.1 Network architecture

The network architecture is inspired by the ResNet model [18], as shown in Figure 2. The
input to each residual block is added back to its output via skip connections, which reduces the
job of the network to determining residual corrections to the fastsim features. This is suitable
for refinement problems where the fastsim already provides a reasonable approximation of
the fullsim, including its stochastic dimensionality. Each residual block consists of two hidden
layers for model flexibility, and we employ fully-connected (FC) linear layers in the residual
blocks.

3

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

Figure 1: A schema of the Fast Perfekt training and evaluation. The fullsim features x
and h and fastsim features x′ and h′ share the same ground truth g. The refiner
network is trained to apply a residual correction to obtain the refined fastsim data
set x̂. The hidden features are used for an evaluation meta-study (green box) but are
not incorporated into the training procedure (yellow box).

Figure 2: Architecture of the refiner neural network (NN). The yellow elements rep-
resent fully-connected layers (FC). A residual block is made of two FC layers and a
skip connection. The n{x ,g,L} numbers correspond to the dimensions of the corre-
sponding vectors and nB is the number of residual blocks.

The weights and biases are initialized according to the Fixup method [19] such that before
training, the network behaves as the identity function and returns the fastsim features: The
last FC layer of each residual block and the final layer of the network are initialized to have
zero weights and biases; the first layers of the network and of each residual block are initialized
using the Kaiming-initialization [20]. The number of skip blocks nB and nodes per internal
layer nL are adjusted to ensure sufficient network flexibility for accurate refinement. The
values of the network hyperparameters used in the two studies are shown in Table 3, and
other details specific to the individual study are discussed in Sections 3 and 4.

2.2 Loss functions

The loss functions measure the similarity between the target data set A= {ai}i=1,...m and output
data set Â= {âi}i=1,...m, where ai = (a1

i , ..., ana
i) and âi = (â1

i , ..., âna
i), with data set size m and

number of dimensions na. The primary loss, which compares the multidimensional PDFs of
the fullsim and refined fastsim data, is the MMD [16]. We employ the biased estimator

MMDb(θ) =
1

m2

m
∑

i, j=1

k(ai,aj) +
1

m2

m
∑

i, j=1

k(âi(θ), âj(θ))−
2

m2

m
∑

i, j=1

k(ai, âj(θ)) , (1)

with Gaussian kernel function

k(a, â) = exp

�

−
na
∑

l=1

(âl − al)2

σ2
l

�

, (2)

4

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

where θ is the vector of trainable network parameters and l is the dimension index. The
bandwidths of the kernel function (2) are set to the median Euclidean distance between the
target and input in the respective dimension, σl = median{∥a′li − al

j∥2 : i, j ∈ [m]} [16]. The
single-stage recipe and the second stage of the 2-stage recipe use only this loss. The 2-stage
method also makes use of the unbiased estimate MMDu given by

MMDu(θ) =
1

m(m− 1)

m
∑

i=1

m
∑

i ̸= j

k(ai,aj) +
1

m(m− 1)

m
∑

i=1

m
∑

i ̸= j

k(âi(θ), âj(θ))−
2

m2

m
∑

i, j=1

k(ai, âj(θ)) , (3)

as well as the mean squared error (MSE):

MSE(θ) =
1
m

m
∑

i=1

||âi(θ)− ai||22 . (4)

The biased and unbiased estimators of the MMD are highly correlated, but MMDu has
properties that better facilitate convergence in the first training stage, due to its having a
well-defined expectation value of 0 for two i.i.d. data sets. This condition is reached via
a constrained optimization, where we employ the modified differential method of multipli-
ers (MDMM) [21], which identifies saddle points in the space of the network parameters and
Lagrange multiplier λ. Then, MMDb is better suited for refining the finest details because of
its well-defined lower boundary at 0 corresponding to two ensembles in perfect agreement.
Minimizing the MSE alone would result in significant biases due to regression to the mean.
However, because it encodes information about correlations among visible and hidden fea-
tures, minimizing the MSE conditionally while constraining MMDu to 0 serves to protect or
restore correlations.

To assess the network performance more robustly, we incorporate information about the
hidden features in the loss by including h and h′ in the vectors a and â. This yields the so-
called omniscient MMD, which is used for evaluation but not for training. We also examine
binned ratios of the refined and target PDFs and a χ2 statistic derived from the comparison of
these PDFs. These measures are not used in the training at any stage but only for studying the
performance of the network.

2.3 Training

When the GT is not synchronized for the training and target samples, such as when simulation
is being refined to better match real data, we suggest a single-stage training using MMDb
as the only loss. When the samples are synchronized, we suggest a 2-stage prescription. In
the first stage, the MMDu and MSE losses are used simultaneously to guide the network to a
configuration close to its global optimum, and in the second stage MMDb is used on its own to
bring the network into the minimum. Details of the 2-stage recipe are given in the following.

In the first stage, the MSE is minimized while constraining MMDu to 0, which is the expec-
tation value for two i.i.d. distributions. The purpose of the first stage is to achieve maximum
similarity between the associated sample pairs (MSE) while improving and preserving consis-
tency between the output and target distributions (MMDu).

The Lagrangian used in the MDMM is

L(θ ,λ) =MSE(θ)−λ
�

ϵ −MMDu(θ)
�

−
δ

2

�

ϵ −MMDu(θ)
�2

, (5)

with ϵ = 0. The Lagrangian (5) is minimized with respect to the network parameters θ and
maximized with respect to the Lagrange multiplier λ. The MSE and MMDu may be correlated
at the start of training, but they eventually become anti-correlated as the network converges

5

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

to a point along the Pareto front. The MDMM algorithm constrains the MMDu loss to a desired
value along the front. The quadratic term in Equation (5) provides a damping effect with a
constant parameter δ.

After the MDMM converges, in the second stage of the training, only the MMDb loss is
minimized with respect to the trainable network parameters, and the refiner is allowed to
converge to its unconditional optimum. This second stage is needed to fine-tune the agreement
between the fullsim and refined fastsim, particularly in the tails of distributions.

3 Analytical example

We consider an analytical two-dimensional data set based on simple expressions that play the
role of GT, fullsim, and fastsim. The first dimension is the feature x to be refined. The second
dimension is the hidden feature h and is not taken as input to the network nor to the training
loss, but is included in the study to demonstrate the impact of the training method.

3.1 Data set

A single GT data set is synthesized by sampling a bimodal 2D Gaussian mixture probability
density comprising the sum of two 2D Gaussian distributions with different means and covari-
ance matrices, giving a large population L and a small population s:

GL ∼N (µL ,ΣL) , Gs ∼N (µs,Σs) . (6)

Taking m = 250000 to be the total number of data samples g = (xGT, hGT)T used, a large
population in the GT distribution is sampled from GL with 0.85m samples g0, . . . ,g0.85m−1
and a small population is sampled from Gs with 0.15m samples g0.85m, . . . ,gm, without loss of
generality.

To produce the fullsim and fastsim data sets, the GT data are smeared and shifted. Smear-
ing is added based on two independent random variables with covariance Σfast,Σfull as

Sfast ∼N (0,Σfast) , Sfull ∼N (0,Σfull) . (7)

For maximum generality, different bias values bfast and bfull are added to the small populations
for the fastsim and fullsim. A summary of the values defining the analytical data set are
documented in Table 4 in the Appendix. The analytical data set is shown in Figure 3.

3.2 Training

A ResNet-like model as described in Section 2.1 is trained with hyperparameters given in Ta-
ble 3 in the Appendix. We present the results after training with only the MSE loss, with the
single-stage, and with the 2-stage prescriptions described in Section 2.3.

The results of training using only the MSE loss are shown in Figure 4 (left column). As
anticipated, regression to the mean effects are observed. The modified fastsim underestimates
the tails and overestimates the bulk of the distributions. Importantly, however, this network
correctly assigns the centers of the two populations to their target, thus removing the bias in
original fastsim related to the hidden feature.

The results of training with only the MMDb loss are shown in Figure 4 (middle column).
The agreement in the projection of the refined feature appears to be improved. However, the
populations are not correctly assigned to their correct positions based on the target data. The
network uses data points from the large population to compensate for the small population
and fills the hole resulting in the large population with data points from the small population.

6

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

0

1

2

3

hi
dd

en
 fe

at
ur

e

0.00

0.05

0.10
de

ns
ity

fastsim
fullsim
GT

3 2 1 0 1 2 3 4
x

0.0
0.5
1.0
1.5
2.0

R
at

io
 to

 fu
lls

im

Figure 3: Distributions of the data sets including the unrefined fastsim, target fullsim,
and GT. The sub-figures show a scatter plot of the complete information (top), a
histogram of the feature to be considered for refinement (center), and a histogram
of the bin-by-bin ratio of fastsim counts to fullsim counts (bottom). For the scatter
plot a random subset of 500 data points is considered for illustration purposes.

In other words, the correlations between the available and hidden features remain broken
even when the training has converged to the minimum MMDb value.

Each loss brings its own advantage and disadvantage. Minimizing MSE loss alone results
in accurate bias correction but poor modeling of the target PDF, whereas minimizing MMD
alone results in a good modeling of the refined PDF but poorly models the correlation.

Figure 4 (right column) shows the results of the 2-stage training outlined in Section 2. First,
the MSE and MMDu are minimized simultaneously using the MDMM algorithm, which learns
to fulfill the constraint MMDu = 0. After around 30 epochs, the network has converged, and
the second stage begins, where the MMDb alone is minimized. This network results in well-
modeled bulk and tails exceeding the accuracy of the network trained only with MMD, as can
be seen in Table 1, and also results in the two refined populations being correctly matched to
the target fullsim. The omniscient MMD, which measures the accuracy while accounting for
the refined as well as hidden features, is significantly lower after the 2-stage training procedure
than after either of the single-loss versions.

In conclusion, after minimizing only the MMD, good refinement can be achieved when
examining the space of the refined feature. However, the converged network is not unique,
and is sensitive to the initialization of the weights. By incorporating a pair-based loss (MSE) in
the initial training stage via the MDMM algorithm, the final network is constrained to render
equivalent samples more similar, which leads to more accurate correlations between the re-
fined and hidden feature. The network learns correlations between the available and hidden
features through the MSE because the matching criterion implicitly carries information about
the unseen features. The benefits of the MSE are maximal when the biased features occupy
relatively empty regions of the domain.

7

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

0

1

2

3

hi
dd

en
 fe

at
ur

e

0.00

0.05

0.10

de
ns

ity

refined
fullsim
fastsim

2 0 2 4
x

0.0

0.5

1.0

1.5

2.0

R
at

io
 to

 fu
lls

im

2 0 2 4
x

2 0 2 4
x

0 20 40 60 80 100
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Lo
ss

 v
al

ue

Train
MSE ×10 2

MMDu

Validation
MMDb

Omniscient MMDb

0 20 40 60 80 100
Epoch

0 25 50 75 100 125
Epoch

MDMM × 10 1

Figure 4: Distributions of the fastsim, refined fastsim, and fullsim data sets, as well
as loss curves for the MSE-only training (left), the MMD-only training (middle), and
the 2-stage training (right). For the scatter plots a random subset of 500 data points
is considered for illustration purposes.

Table 1: Results of the refinement applied to the analytical example. The degree of
refinement is quantified by the lowering of the (omniscient) MMD, MSE and χ2/ndof
compared to the original fastsim.

Fullsim vs. Fastsim Refined (MMD-only) Refined (2-stage)

Omniscient MMDb × 103 38.39± 2.90 45.11± 3.03 0.33± 0.17
MMDb × 103 39.07± 3.70 0.41± 0.30 0.23± 0.15

MSE× 103 1384± 63 602± 24 200± 6
χ2/ndof 3493 28 20

4 Application to collider physics

The refinement protocol using the 2-stage training scheme introduced above is applied to a
realistic example tailored to high-energy physics data collected at the LHC. The data set is de-
scribed, choices regarding the training process are discussed, and the results of the refinement
application follow.

8

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

4.1 Data set

Analysis of LHC data relies on the accurate simulation of both particle collisions and the re-
construction of produced particles. In proton-proton collisions at the LHC, particles of various
types are produced, and the final states often feature one or more jets, which are sprays of col-
limated hadrons. Correctly simulating the production and reconstruction of jets is of high im-
portance across a wide range of investigation, for example, unfolding measurements [22,23]
as well as searches for physics beyond the standard model, e.g. Refs. [24, 25]. Likewise,
searches for new heavy states often probe for processes with highly boosted decay products
that merge into so-called fat jets [26], which exhibit distinct or exotic substructure properties.

Jets are notoriously difficult to model because their production mechanisms are only partly
calculable with perturbative methods and because the energetic response of the detectors is
a complicated function of the detector geometry, event activity, and radiation exposure. Con-
siderable effort has been made to accurately model jets in state-of-the-art fullsim models such
as GEANT4-based [27–29] applications of ATLAS and CMS. Fullsim processing time per event
ranges from 10s of second to a few minute per event, depending on the underlying physics
process. In fastsim programs, such as ATLAS AtlFast3 [3], CMS FastSim [4,5], the processing
time is only a few seconds, but due to simplified assumptions in the calorimetry and track-
ing detectors, mismodeling of jets is often compounded. In parametric simulators, such as
the Delphes framework [6], the processing time per event ranges in the milliseconds, but jet
mismodeling arises due to simplified energy response parametrizations.

In this section, we examine the potential for Fast Perfekt to refine mismodeled fastsim jets.
This method does not generate or modify intermediate representations of jets or their energy
deposits in the detector but functions directly on analysis-level observables. Incorporating Fast
Perfekt increases the CPU time per event by around one millisecond, negligible compared to
current fastsim and around half of the processing time of Delphes.

We consider a set of jet substructure observables called N-subjettiness τN [30]. Ratios
such as τ2/τ1 provide information on the compositeness of the jets to infer the unobservable
particles from which they originated. A GT data set is generated based on proton-proton
collisions at

p
s = 13TeV using the PYTHIA 8.1 software package [31], consisting of events with

a pair of top quarks in the final state. These events are then processed twice in parallel using
Delphes, once with the default CMS detector implementation and treated as the fullsim data
set, and once with a “flawed” implementation yielding the data set we treat as the fastsim. The
flaw is introduced by setting the β parameter [30] to 0.9 rather than 1.0, inducing an angle-
dependent bias in the N-subjettiness, and setting the energy resolution of the electromagnetic
calorimeter to a constant of 1% rather than the default values, which depend on transverse
momentum pT and pseudorapidity η [32,33].

The data set used for training consists of approximately 1 million GT jets and their respec-
tive fastsim and fullsim jets, which are associated to each other based on their trajectories. It
is split into train, validation, and test data sets consisting of 160, 40, and 40 batches of 4096
jet triplets, each constituting a matched GT, fullsim, and fastsim jet.

4.2 Training

The refinement network is trained as described in Section 2 using the hyperparameters given
in Table 3. The refinement is applied to the three-dimensional space of N-subjettiness ratios
with fastsim versions given to the network as inputs along with their respective GT values:

x′ =
�τ2
τ1

, τ3
τ2

, τ4
τ3

�⊺
, (8)

g=
�

τGT
2

τGT
1

,
τGT

3

τGT
2

,
τGT

4

τGT
3

�⊺
. (9)

9

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

0 200 400 600 800 1000
Epoch

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

Lo
ss

 v
al

ue

Train
MSE × 10 1

MMDb
MMDu

Validation
Omniscient MMDb

MDMM × 10 3

Figure 5: The MSE, (omniscient) MMD, and λ during the training. The switch to
stage two (MMD-only) after epoch 118 is visible as kinks in the curves.

Additionally, 6 hidden observables are part of the data set and are used for evaluation: the
jet mass, pT, η, the distance to the closest neighbor jet dR =

Æ

dη2 + dϕ2 (with azimuthal
angle ϕ), and the numbers of charged and neutral jet constituents N(ch) and N(ne). For the
calculation of the omniscient MMD, a log10 transformation is applied to the jet mass and pT.

Figure 5 shows the evolution of the loss functions, MSE, MMDb, and MMDu, together with
the Lagrange multiplier λ and the omniscient MMDb as evaluation metric. For the first stage,
a global factor of 10 is applied to MMDu to make its order of magnitude similar to that of the
MSE loss. The switch to stage two happens when the MDMM algorithm has converged, which
is the case after 118 epochs.

4.3 Results

Figure 6 shows the distributions of the N-subjettiness ratios for the three sets of jets: fullsim,
original fastsim, and refined fastsim. It is apparent that the refinement leads to a more accu-
rate simulation both in the bulks and tails of the distributions. Evaluating the performance
beyond one-dimensional projections, the top row in Figure 7 shows the Pearson correlation
coefficients within a set of variables consisting of both the variables seen by the network and
the hidden observables for fullsim (left), fastsim (center), and refined fastsim (right). The
bottom row shows for each cell the absolute difference to the respective fullsim value. The
refinement again leads to a consistent improvement in the fastsim modeling. Notably, cor-
relations between the visible and hidden variables improve, although they are not known to
the network. Quantifying the accuracy in terms of several metrics, Table 2 shows the MMD
and omniscient MMD before and after refinement, as well as the MSE and a χ2 measure. The
χ2/ndof is derived from a binned ratio of the N-subjettiness in fullsim and refined fastsim;
statistically independent validation data sets are used for this purpose and the mean χ2 is
taken from among the three dimensions. The relatively small change in omniscient MMD can
be explained by the fact that most of the dimensions (g and hidden) remain unchanged by the
refinement.

Also shown in Table 2 are the accuracy measures based on a single-stage MMD training.
The performance of the two prescriptions is similar, first of all suggesting overall robustness of
the method. Additionally, the single-stage prescription is sufficient for the variables considered
in this application, and in general when the modes of the unrefined FastSim and target dis-

10

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

Table 2: Results of the refinement applied to the collider physics example. The de-
gree of refinement is quantified by the lowering of the (omniscient) MMD, MSE and
χ2/ndof compared to the original fastsim. The MMD values and errors are calculated
as the respective means and standard deviations of all batches from the validation
data set.

Fullsim vs. Fastsim Refined (MMD-only) Refined (2-stage)

Omniscient MMDb × 103 0.5386± 0.0077 0.5147± 0.0068 0.5149± 0.0066
MMDb × 103 1.114± 0.087 0.305± 0.022 0.303± 0.024

MSE× 103 10.99± 0.23 8.25± 0.02 8.24± 0.02
χ2/ndof 33.34 1.97 2.52

0

10

20

30

40

50

E
nt

ri
es

1e3

fullsim
fastsim
refined

0.0 0.2 0.4 0.6 0.8 1.0 1.2
2/ 1

0.5

1.0

1.5

R
at

io
 to

 fu
lls

im 0

10

20

30

40

50

60

70

80

E
nt

ri
es

1e3

fullsim
fastsim
refined

0.0 0.2 0.4 0.6 0.8 1.0 1.2
3/ 2

0.5

1.0

1.5

R
at

io
 to

 fu
lls

im 0

20

40

60

80

100

120

E
nt

ri
es

1e3

fullsim
fastsim
refined

0.0 0.2 0.4 0.6 0.8 1.0 1.2
4/ 3

0.5

1.0

1.5

R
at

io
 to

 fu
lls

im

Figure 6: Distributions of the N-subjettiness ratios for fullsim, original fastsim, and
refined fastsim. The improvement resulting from the refinement becomes apparent
in the ratio to fullsim (lower panels).

p T | |
Mas

s
N(ch

)
N(ne

) dR 4/
3

3/
2

2/ 1

3/ 2

4/ 3

-0.23

-0.31

-0.02

0.1

0.05

-0.04

-0.36

-0.52

-0.04

-0.01

-0.21

0.11

-0.03

-0.24

0.08

-0.13

-0.08

-0.12

0.09

-0.05

fullsim

p T | |
Mas

s
N(ch

)
N(ne

) dR 4/
3

3/
2

-0.2

-0.27

-0.06

0.1

0.05

-0.02

-0.33

-0.46

-0.07

0.02

-0.14

0.13

0.02

-0.15

0.07

-0.11

-0.07

-0.01

-0.08

0.15

-0.02

fastsim

p T | |
Mas

s
N(ch

)
N(ne

) dR 4/
3

3/
2

-0.23

-0.3

-0.04

0.11

0.06

-0.02

-0.37

-0.52

-0.06

-0.02

-0.22

0.1

-0.02

-0.21

0.06

-0.12

-0.08

-0.12

0.09

-0.04

refined

p T | |
Mas

s
N(ch

)
N(ne

) dR 4/
3

3/
2

2/ 1

3/ 2

4/ 3

|fullsim - fullsim|

p T | |
Mas

s
N(ch

)
N(ne

) dR 4/
3

3/
2

0.03

0.04

0.04 0.02

0.03

0.06

0.03

0.03

0.07

0.02

0.05

0.09

0.01

0.02

0.01

0.01

0.04

0.06

0.03

|fullsim - fastsim|

p T | |
Mas

s
N(ch

)
N(ne

) dR 4/
3

3/
2

0.01

0.02

0.01

0.01

0.02

0.01

0.02

0.01

0.01

0.01

0.01

0.03

0.02

0.01 0.01

|fullsim - refined|

Figure 7: Pearson correlation coefficients rounded to two digits (top row) within
the set of visible and hidden variables for fullsim (left), original fastsim (center),
and refined fastsim (right). The bottom row shows the absolute differences of these
correlation coefficients to fullsim.

tributions already coincide well. A single-stage training where simulation is refined to match
real data may therefore be highly optimal, particularly if the simulation is reasonably accurate.
If applicable, however, the 2-stage training is more robust in that the scope of hidden features
is a priori unknown, and because it leads to a more constrained network.

11

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

5 Conclusions

We have introduced a regression-based procedure for refining the final analysis variables pro-
duced by a fast simulation application (fastsim) to render them highly accurate with respect
to cost-intensive full simulation (fullsim). The refinement model, which is based on a resid-
ual neural network, is trained by minimizing an ensemble loss (MMD), which evaluates the
similarity between two unbinned multi-dimensional distributions. As an additional option,
a secondary pair-based loss (MSE) is used in a 2-stage training prescription: one stage that
combines the MMD and MSE losses, and a second stage which uses only the MMD.

Two examples have been explored for refinement, each considering the accuracy of fea-
tures that are available to the network as well as hidden features which are not. An abstract
example refines fastsim and fullsim proxy data sets defined analytically and synchronized at
the level of the ground truth. We find that the single-stage MMD-only procedure performs
well when evaluating the accuracy of the available feature; however, it falls short in describ-
ing the multidimensional target space which includes the hidden dimension. Introducing a
2-stage prescription that makes use of the MSE loss improves the accuracy, improving the de-
scription in the multidimensional domain. A second example based on a realistic model of
collider physics at the CERN LHC examines the performance of the two prescriptions with a
larger number of available and hidden features. Here, the 2-stage prescription leads to similar
quality of refinement as the single-stage prescription.

Fast Perfekt makes comprehensive use of existing domain knowledge present in fastsim pro-
grams, minimizing the need for the network to learn most of the salient features and correla-
tions present in the target data. The refinement acts on final variables or summary statistics of
the simulation (e.g., jet properties) rather than intermediate representations (e.g., calorimeter
shower hits). The utility of the MMD as a loss function for regression has been demonstrated,
and the MMD is deemed suitable for refinement problems that target real-world rather than
simulated data. In cases where the input and target samples can be synchronized at the level
of the ground truth, the 2-stage Fast Perfekt prescription is preferred, and is considered ideal
for tuning fastsim to match fullsim.

Acknowledgments

Funding information M.W. is funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – EXC 2121 „Quantum Uni-
verse“ – 390833306. L.S. acknowledges financial support from grant HIDSS-0002 DASHH
(Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter). P.L.S.C.’s
work was supported by University of Hamburg, HamburgX grant LFF-HHX-03 to the Center
for Data and Computing in Natural Sciences (CDCS) from the Hamburg Ministry of Science,
Research, Equalities and Districts, and by the BMBF under contracts U4606BMB1901 and
U4606BMB2101.

12

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

A Appendix

Table 3: Network hyperparameters and training setup for the trainings on the ana-
lytical data set and the application to collider physics.

Analytical data Collider physics application

Input dimensions 2 6
Output dimensions 1 3

Residual blocks 2 5
Nodes per layer 64 512

Activation function LeakyReLU (α= 0.01)
Optimizer ADAM

Loss function MSE / MMD / MDMM
MMD kernel bandwidth(s) 1.3658 (0.0351, 0.0183, 0.0058,

0.0415, 0.0207, 0.0043)
Learning rate network 1× 10−4 5× 10−6

Learning rate λMDMM 1× 10−3 1× 10−4

Initial |λMDMM| 1 1
Epochs 100 (per stage) 1000 (total)

Early stopping 10(3) Epochs (MDMM) No
Batch size 2048 4096

Data Set size 250000 983040

Table 4: Parameters defining the analytical data set and their corresponding values.
The bias terms b are added only to the small populations.

Parameter Value
Total Number of Samples N = 250000

µL

�

0.5
1

�

ΣL

�

0.2 0.05
0.05 0.02

�

µs

�

1
2.5

�

Σs

�

0.001 0
0 0.02

�

Σfast

�

0.5 0.04
0.04 0.01

�

Σfull

�

0.02 0
0 0.02

�

bfast

�

−2.2
0

�

bfull

�

1.5
0

�

13

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021

SciPost Phys. Core 8, 021 (2025)

References

[1] B. Hudson, F. Nijweide and I. Sebenius, Computationally-efficient climate predictions using
multi-fidelity surrogate modelling, (arXiv preprint) doi:10.48550/arXiv.2109.07468.

[2] S. Agostinelli et al., Geant4 – A simulation toolkit, Nucl. Instrum. Methods Phys.
Res. A: Accel. Spectrom. Detect. Assoc. Equip. 506, 250 (2003), doi:10.1016/S0168-
9002(03)01368-8.

[3] G. Aad et al., AtlFast3: The next generation of fast simulation in ATLAS, Comput. Softw.
Big Sci. 6, 7 (2022), doi:10.1007/s41781-021-00079-7.

[4] S. Abdullin, P. Azzi, F. Beaudette, P. Janot and A. Perrotta, The fast simulation of the
CMS detector at LHC, J. Phys.: Conf. Ser. 331, 032049 (2011), doi:10.1088/1742-
6596/331/3/032049.

[5] A. Giammanco, The fast simulation of the CMS experiment, J. Phys.: Conf. Ser. 513,
022012 (2014), doi:10.1088/1742-6596/513/2/022012.

[6] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens and M.
Selvaggi, DELPHES 3: A modular framework for fast simulation of a generic collider exper-
iment, J. High Energy Phys. 02, 057 (2014), doi:10.1007/JHEP02(2014)057.

[7] V. Khachatryan et al., Phenomenological MSSM interpretation of CMS searches
in pp collisions at

p
s= 7 and 8 TeV, J. High Energy Phys. 10, 129 (2016),

doi:10.1007/JHEP10(2016)129.

[8] G. Aad et al., Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC
Run 1 – Interpreted in the phenomenological MSSM, J. High Energy Phys. 10, 134 (2015),
doi:10.1007/JHEP10(2015)134.

[9] A. Andreassen and B. Nachman, Neural networks for full phase-space reweighting and pa-
rameter tuning, Phys. Rev. D 101, 091901 (2020), doi:10.1103/PhysRevD.101.091901.

[10] M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt, Generating and refining particle
detector simulations using the Wasserstein distance in adversarial networks, Comput. Softw.
Big Sci. 2, 4 (2018), doi:10.1007/s41781-018-0008-x.

[11] S. Diefenbacher, V. Mikuni and B. Nachman, Refining fast calorimeter simulations with a
Schrödinger bridge, (arXiv preprint) doi:10.48550/arXiv.2308.12339.

[12] S. Bright-Thonney, P. Harris, P. McCormack and S. Rothman, Chained quantile morphing
with normalizing flows, (arXiv preprint) doi:10.48550/arXiv.2309.15912.

[13] L. de Oliveira, M. Paganini and B. Nachman, Learning particle physics by example:
Location-aware generative adversarial networks for physics synthesis, Comput. Softw. Big
Sci. 1, 4 (2017), doi:10.1007/s41781-017-0004-6.

[14] C. Krause et al., CaloChallenge 2022: A community challenge for fast calorimeter simula-
tion, (arXiv preprint) doi:10.48550/arXiv.2410.21611.

[15] F. Vaselli, A. Rizzi, F. Cattafesta and G. Cicconofri, FlashSim: Accelerating HEP simula-
tion with an end-to-end machine learning framework, Europhys. J. Web Conf. 295, 09020
(2024), doi:10.1051/epjconf/202429509020.

14

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021
https://doi.org/10.48550/arXiv.2109.07468
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1007/s41781-021-00079-7
https://doi.org/10.1088/1742-6596/331/3/032049
https://doi.org/10.1088/1742-6596/331/3/032049
https://doi.org/10.1088/1742-6596/513/2/022012
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP10(2016)129
https://doi.org/10.1007/JHEP10(2015)134
https://doi.org/10.1103/PhysRevD.101.091901
https://doi.org/10.1007/s41781-018-0008-x
https://doi.org/10.48550/arXiv.2308.12339
https://doi.org/10.48550/arXiv.2309.15912
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.48550/arXiv.2410.21611
https://doi.org/10.1051/epjconf/202429509020

SciPost Phys. Core 8, 021 (2025)

[16] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf and A. Smola, A kernel two-sample
test, J. Mach. Learn. Res. 13, 723 (2012).

[17] S. Bein, P. Connor, K. Pedro, P. Schleper and M. Wolf, Refining fast sim-
ulation using machine learning, Europhys. J. Web Conf. 295, 09032 (2024),
doi:10.1051/epjconf/202429509032.

[18] K. He, X. Zhang, S. Ren and J. Sun, Identity mappings in deep residual networks, in Com-
puter vision – ECCV 2016, Springer, Cham, Switzerland, ISBN 9783319464923 (2016),
doi:10.1007/978-3-319-46493-0_38.

[19] H. Zhang, Y. N. Dauphin and T. Ma, Residual learning without normalization via better
initialization, in International conference on learning representations, Curran Associates,
Red Hook, USA, ISBN 9781713872733 (2019).

[20] K. He, X. Zhang, S. Ren and J. Sun, Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification, in IEEE international conference on computer vi-
sion, Santiago, Chile (2015), doi:10.1109/ICCV.2015.123.

[21] J. Platt and A. Barr, Constrained differential optimization, in Neural information processing
systems, American Institute of Physics, College Park, USA (1987), ISBN 9780883185698
(1987).

[22] N. Huetsch et al., The landscape of unfolding with machine learning, (arXiv preprint)
doi:10.48550/arXiv.2404.18807.

[23] S. Schmitt, Data unfolding methods in high energy physics, Europhys. J. Web Conf. 137,
11008 (2017), doi:10.1051/epjconf/201713711008.

[24] G. Aad et al., Combination and summary of ATLAS dark matter searches interpreted in a
2HDM with a pseudo-scalar mediator using 139 fb−1 of

p
s= 13 TeV pp collision data, Sci.

Bull. 69, 3005 (2024), doi:10.1016/j.scib.2024.06.003.

[25] CMS collaboration, Phenomenological MSSM interpretation of CMS searches in pp colli-
sions at 13 TeV, Tech. Rep. CMS-PAS-SUS-24-004, CERN, Geneva, Switzerland (2024),
https://cds.cern.ch/record/2906621.

[26] J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new
Higgs-search channel at the Large Hadron Collider, Phys. Rev. Lett. 100, 242001 (2008),
doi:10.1103/PhysRevLett.100.242001.

[27] J. Allison et al., Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res. A: Ac-
cel. Spectrom. Detect. Assoc. Equip. 835, 186 (2016), doi:10.1016/j.nima.2016.06.125.

[28] J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270
(2006), doi:10.1109/TNS.2006.869826.

[29] S. Agostinelli et al., Geant4 – A simulation toolkit, Nucl. Instrum. Methods Phys.
Res. A: Accel. Spectrom. Detect. Assoc. Equip. 506, 250 (2003), doi:10.1016/S0168-
9002(03)01368-8.

[30] J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, J. High Energy
Phys. 03, 015 (2011), doi:10.1007/JHEP03(2011)015.

[31] T. Sjöstrand, S. Mrenna and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys.
Commun. 178, 852 (2008), doi:10.1016/j.cpc.2008.01.036.

15

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021
https://doi.org/10.1051/epjconf/202429509032
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.48550/arXiv.2404.18807
https://doi.org/10.1051/epjconf/201713711008
https://doi.org/10.1016/j.scib.2024.06.003
https://cds.cern.ch/record/2906621
https://doi.org/10.1103/PhysRevLett.100.242001
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.1016/j.cpc.2008.01.036

SciPost Phys. Core 8, 021 (2025)

[32] S. Chatrchyan et al., Energy calibration and resolution of the CMS electromagnetic calorime-
ter in pp collisions at

p
s= 7 TeV, J. Instrum. 8, P09009 (2013), doi:10.1088/1748-

0221/8/09/P09009.

[33] V. Khachatryan et al., Performance of electron reconstruction and selection with the CMS
detector in proton-proton collisions at

p
s= 8 TeV, J. Instrum. 10, P06005 (2015),

doi:10.1088/1748-0221/10/06/P06005.

16

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.021
https://doi.org/10.1088/1748-0221/8/09/P09009
https://doi.org/10.1088/1748-0221/8/09/P09009
https://doi.org/10.1088/1748-0221/10/06/P06005

	Introduction
	Method
	Network architecture
	Loss functions
	Training

	Analytical example
	Data set
	Training

	Application to collider physics
	Data set
	Training
	Results

	Conclusions
	Appendix
	References

