[4] | 1 | /*-----------------------------------------------------------------------------
|
---|
| 2 | * Code that turns a Cypress FX2 USB Controller into an USB JTAG adapter
|
---|
| 3 | *-----------------------------------------------------------------------------
|
---|
| 4 | * Copyright (C) 2005..2007 Kolja Waschk, ixo.de
|
---|
| 5 | *-----------------------------------------------------------------------------
|
---|
| 6 | * Check hardware.h/.c if it matches your hardware configuration (e.g. pinout).
|
---|
| 7 | * Changes regarding USB identification should be made in product.inc!
|
---|
| 8 | *-----------------------------------------------------------------------------
|
---|
| 9 | * This code is part of usbjtag. usbjtag is free software; you can redistribute
|
---|
| 10 | * it and/or modify it under the terms of the GNU General Public License as
|
---|
| 11 | * published by the Free Software Foundation; either version 2 of the License,
|
---|
| 12 | * or (at your option) any later version. usbjtag is distributed in the hope
|
---|
| 13 | * that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
---|
| 14 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details. You should have received a
|
---|
| 16 | * copy of the GNU General Public License along with this program in the file
|
---|
| 17 | * COPYING; if not, write to the Free Software Foundation, Inc., 51 Franklin
|
---|
| 18 | * St, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
| 19 | *-----------------------------------------------------------------------------
|
---|
| 20 | */
|
---|
| 21 |
|
---|
| 22 | #include "isr.h"
|
---|
| 23 | #include "timer.h"
|
---|
| 24 | #include "delay.h"
|
---|
| 25 | #include "fx2regs.h"
|
---|
| 26 | #include "fx2utils.h"
|
---|
| 27 | #include "usb_common.h"
|
---|
| 28 | #include "usb_descriptors.h"
|
---|
| 29 | #include "usb_requests.h"
|
---|
| 30 |
|
---|
| 31 | #include "syncdelay.h"
|
---|
| 32 |
|
---|
| 33 | #include "eeprom.h"
|
---|
| 34 | #include "hardware.h"
|
---|
| 35 |
|
---|
| 36 | //-----------------------------------------------------------------------------
|
---|
| 37 | // Define USE_MOD256_OUTBUFFER:
|
---|
| 38 | // Saves about 256 bytes in code size, improves speed a little.
|
---|
| 39 | // A further optimization could be not to use an extra output buffer at
|
---|
| 40 | // all, but to write directly into EP1INBUF. Not implemented yet. When
|
---|
| 41 | // downloading large amounts of data _to_ the target, there is no output
|
---|
| 42 | // and thus the output buffer isn't used at all and doesn't slow down things.
|
---|
| 43 |
|
---|
| 44 | #define USE_MOD256_OUTBUFFER 1
|
---|
| 45 |
|
---|
| 46 | //-----------------------------------------------------------------------------
|
---|
| 47 | // Global data
|
---|
| 48 |
|
---|
| 49 | typedef bit BOOL;
|
---|
| 50 | #define FALSE 0
|
---|
| 51 | #define TRUE 1
|
---|
| 52 | static BOOL Running;
|
---|
| 53 | static BOOL WriteOnly;
|
---|
| 54 |
|
---|
| 55 | static BYTE ClockBytes;
|
---|
| 56 | static WORD Pending;
|
---|
| 57 |
|
---|
| 58 | #ifdef USE_MOD256_OUTBUFFER
|
---|
| 59 | static BYTE FirstDataInOutBuffer;
|
---|
| 60 | static BYTE FirstFreeInOutBuffer;
|
---|
| 61 | #else
|
---|
| 62 | static WORD FirstDataInOutBuffer;
|
---|
| 63 | static WORD FirstFreeInOutBuffer;
|
---|
| 64 | #endif
|
---|
| 65 |
|
---|
| 66 | #ifdef USE_MOD256_OUTBUFFER
|
---|
| 67 | /* Size of output buffer must be exactly 256 */
|
---|
| 68 | #define OUTBUFFER_LEN 0x100
|
---|
| 69 | /* Output buffer must begin at some address with lower 8 bits all zero */
|
---|
| 70 | xdata at 0xE000 BYTE OutBuffer[OUTBUFFER_LEN];
|
---|
| 71 | #else
|
---|
| 72 | #define OUTBUFFER_LEN 0x200
|
---|
| 73 | static xdata BYTE OutBuffer[OUTBUFFER_LEN];
|
---|
| 74 | #endif
|
---|
| 75 |
|
---|
| 76 | //-----------------------------------------------------------------------------
|
---|
| 77 |
|
---|
| 78 | void usb_jtag_init(void) // Called once at startup
|
---|
| 79 | {
|
---|
| 80 | WORD tmp;
|
---|
| 81 |
|
---|
| 82 | Running = FALSE;
|
---|
| 83 | ClockBytes = 0;
|
---|
| 84 | Pending = 0;
|
---|
| 85 | WriteOnly = TRUE;
|
---|
| 86 | FirstDataInOutBuffer = 0;
|
---|
| 87 | FirstFreeInOutBuffer = 0;
|
---|
| 88 |
|
---|
| 89 | ProgIO_Init();
|
---|
| 90 |
|
---|
| 91 | ProgIO_Enable();
|
---|
| 92 |
|
---|
| 93 | // Make Timer2 reload at 100 Hz to trigger Keepalive packets
|
---|
[21] | 94 |
|
---|
[4] | 95 | tmp = 65536 - ( 48000000 / 12 / 100 );
|
---|
| 96 | RCAP2H = tmp >> 8;
|
---|
| 97 | RCAP2L = tmp & 0xFF;
|
---|
| 98 | CKCON = 0; // Default Clock
|
---|
| 99 | T2CON = 0x04; // Auto-reload mode using internal clock, no baud clock.
|
---|
| 100 |
|
---|
| 101 | // Enable Autopointer
|
---|
| 102 |
|
---|
[137] | 103 | EXTACC = 1; // Enable
|
---|
| 104 | APTR1FZ = 1; // Don't freeze
|
---|
| 105 | APTR2FZ = 1; // Don't freeze
|
---|
[21] | 106 |
|
---|
[4] | 107 | // define endpoint configuration
|
---|
| 108 |
|
---|
[137] | 109 | REVCTL = 0x03; SYNCDELAY; // Allow FW access to FIFO buffer
|
---|
[40] | 110 |
|
---|
[137] | 111 | EP1OUTCFG = 0xA0; SYNCDELAY; // Endpoint 1 Type Bulk
|
---|
| 112 | EP1INCFG = 0xA0; SYNCDELAY; // Endpoint 1 Type Bulk
|
---|
[40] | 113 |
|
---|
[137] | 114 | EP2CFG = 0xA2; SYNCDELAY; // Endpoint 2 ON, OUT, BULK, 512, Buffer 2x
|
---|
| 115 | EP6CFG = 0xE3; SYNCDELAY; // Endpoint 6 ON, IN, BULK, 512, Buffer 3x
|
---|
| 116 | EP8CFG = 0xA0; SYNCDELAY; // Endpoint 8 ON, OUT, BULK, 512, Buffer 2x
|
---|
[4] | 117 |
|
---|
[137] | 118 | EP4CFG = 0x20; SYNCDELAY; // Endpoint 4 OFF, OUT, BULK, 512, Buffer 2x
|
---|
[136] | 119 |
|
---|
[137] | 120 | FIFORESET = 0x80; SYNCDELAY; // From now on, NAK all
|
---|
| 121 | FIFORESET = 0x82; SYNCDELAY; // Reset Endpoint 2 FIFO
|
---|
| 122 | FIFORESET = 0x84; SYNCDELAY; // Reset Endpoint 4 FIFO
|
---|
| 123 | FIFORESET = 0x86; SYNCDELAY; // Reset Endpoint 6 FIFO
|
---|
| 124 | FIFORESET = 0x88; SYNCDELAY; // Reset Endpoint 8 FIFO
|
---|
| 125 | FIFORESET = 0x00; SYNCDELAY; // Restore normal behaviour
|
---|
[4] | 126 |
|
---|
[137] | 127 | OUTPKTEND = 0x82; SYNCDELAY; // Arm Endpoint 2 buffers to "prime the pump"
|
---|
[136] | 128 | OUTPKTEND = 0x82; SYNCDELAY;
|
---|
[137] | 129 | OUTPKTEND = 0x88; SYNCDELAY; // Arm Endpoint 8 buffers to "prime the pump"
|
---|
[136] | 130 | OUTPKTEND = 0x88; SYNCDELAY;
|
---|
[4] | 131 |
|
---|
[137] | 132 | REVCTL = 0x00; SYNCDELAY; // Reset FW access to FIFO buffer, enable auto-arming when AUTOOUT is switched to 1
|
---|
[21] | 133 |
|
---|
[136] | 134 | EP2FIFOCFG = 0x00; SYNCDELAY;
|
---|
| 135 | EP4FIFOCFG = 0x00; SYNCDELAY;
|
---|
| 136 | EP6FIFOCFG = bmAUTOIN; SYNCDELAY;
|
---|
| 137 | EP8FIFOCFG = bmAUTOOUT; SYNCDELAY;
|
---|
| 138 |
|
---|
[137] | 139 | EP8AUTOINLENH = 0x02; SYNCDELAY; // Auto-commit 512-byte packets
|
---|
[136] | 140 | EP8AUTOINLENL = 0x00; SYNCDELAY;
|
---|
[26] | 141 |
|
---|
[137] | 142 | PINFLAGSAB = 0xEB; SYNCDELAY; // 1111_1010 => FLAGA = EMPTY flag for EP6; FLAGB = FULL flag for EP8
|
---|
| 143 | IOD |= (1 << 4); SYNCDELAY; // LED turned off by default
|
---|
[4] | 144 | }
|
---|
| 145 |
|
---|
| 146 | void OutputByte(BYTE d)
|
---|
| 147 | {
|
---|
| 148 | #ifdef USE_MOD256_OUTBUFFER
|
---|
| 149 | OutBuffer[FirstFreeInOutBuffer] = d;
|
---|
| 150 | FirstFreeInOutBuffer = ( FirstFreeInOutBuffer + 1 ) & 0xFF;
|
---|
| 151 | #else
|
---|
| 152 | OutBuffer[FirstFreeInOutBuffer++] = d;
|
---|
| 153 | if(FirstFreeInOutBuffer >= OUTBUFFER_LEN) FirstFreeInOutBuffer = 0;
|
---|
| 154 | #endif
|
---|
| 155 | Pending++;
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | //-----------------------------------------------------------------------------
|
---|
| 159 | // usb_jtag_activity does most of the work. It now happens to behave just like
|
---|
| 160 | // the combination of FT245BM and Altera-programmed EPM7064 CPLD in Altera's
|
---|
| 161 | // USB-Blaster. The CPLD knows two major modes: Bit banging mode and Byte
|
---|
| 162 | // shift mode. It starts in Bit banging mode. While bytes are received
|
---|
| 163 | // from the host on EP2OUT, each byte B of them is processed as follows:
|
---|
| 164 | //
|
---|
| 165 | // Please note: nCE, nCS, LED pins and DATAOUT actually aren't supported here.
|
---|
| 166 | // Support for these would be required for AS/PS mode and isn't too complicated,
|
---|
| 167 | // but I haven't had the time yet.
|
---|
| 168 | //
|
---|
| 169 | // Bit banging mode:
|
---|
| 170 | //
|
---|
| 171 | // 1. Remember bit 6 (0x40) in B as the "Read bit".
|
---|
| 172 | //
|
---|
| 173 | // 2. If bit 7 (0x40) is set, switch to Byte shift mode for the coming
|
---|
| 174 | // X bytes ( X := B & 0x3F ), and don't do anything else now.
|
---|
| 175 | //
|
---|
| 176 | // 3. Otherwise, set the JTAG signals as follows:
|
---|
| 177 | // TCK/DCLK high if bit 0 was set (0x01), otherwise low
|
---|
| 178 | // TMS/nCONFIG high if bit 1 was set (0x02), otherwise low
|
---|
| 179 | // nCE high if bit 2 was set (0x04), otherwise low
|
---|
| 180 | // nCS high if bit 3 was set (0x08), otherwise low
|
---|
| 181 | // TDI/ASDI/DATA0 high if bit 4 was set (0x10), otherwise low
|
---|
| 182 | // Output Enable/LED active if bit 5 was set (0x20), otherwise low
|
---|
| 183 | //
|
---|
| 184 | // 4. If "Read bit" (0x40) was set, record the state of TDO(CONF_DONE) and
|
---|
| 185 | // DATAOUT(nSTATUS) pins and put it as a byte ((DATAOUT<<1)|TDO) in the
|
---|
| 186 | // output FIFO _to_ the host (the code here reads TDO only and assumes
|
---|
| 187 | // DATAOUT=1)
|
---|
| 188 | //
|
---|
| 189 | // Byte shift mode:
|
---|
| 190 | //
|
---|
| 191 | // 1. Load shift register with byte from host
|
---|
| 192 | //
|
---|
| 193 | // 2. Do 8 times (i.e. for each bit of the byte; implemented in shift.a51)
|
---|
| 194 | // 2a) if nCS=1, set carry bit from TDO, else set carry bit from DATAOUT
|
---|
| 195 | // 2b) Rotate shift register through carry bit
|
---|
| 196 | // 2c) TDI := Carry bit
|
---|
| 197 | // 2d) Raise TCK, then lower TCK.
|
---|
| 198 | //
|
---|
| 199 | // 3. If "Read bit" was set when switching into byte shift mode,
|
---|
| 200 | // record the shift register content and put it into the FIFO
|
---|
| 201 | // _to_ the host.
|
---|
| 202 | //
|
---|
| 203 | // Some more (minor) things to consider to emulate the FT245BM:
|
---|
| 204 | //
|
---|
| 205 | // a) The FT245BM seems to transmit just packets of no more than 64 bytes
|
---|
| 206 | // (which perfectly matches the USB spec). Each packet starts with
|
---|
| 207 | // two non-data bytes (I use 0x31,0x60 here). A USB sniffer on Windows
|
---|
| 208 | // might show a number of packets to you as if it was a large transfer
|
---|
| 209 | // because of the way that Windows understands it: it _is_ a large
|
---|
| 210 | // transfer until terminated with an USB packet smaller than 64 byte.
|
---|
| 211 | //
|
---|
| 212 | // b) The Windows driver expects to get some data packets (with at least
|
---|
| 213 | // the two leading bytes 0x31,0x60) immediately after "resetting" the
|
---|
| 214 | // FT chip and then in regular intervals. Otherwise a blue screen may
|
---|
| 215 | // appear... In the code below, I make sure that every 10ms there is
|
---|
| 216 | // some packet.
|
---|
| 217 | //
|
---|
| 218 | // c) Vendor specific commands to configure the FT245 are mostly ignored
|
---|
| 219 | // in my code. Only those for reading the EEPROM are processed. See
|
---|
| 220 | // DR_GetStatus and DR_VendorCmd below for my implementation.
|
---|
| 221 | //
|
---|
| 222 | // All other TD_ and DR_ functions remain as provided with CY3681.
|
---|
| 223 | //
|
---|
| 224 | //-----------------------------------------------------------------------------
|
---|
| 225 |
|
---|
| 226 | void usb_jtag_activity(void) // Called repeatedly while the device is idle
|
---|
| 227 | {
|
---|
| 228 | if(!Running) return;
|
---|
| 229 |
|
---|
| 230 | ProgIO_Poll();
|
---|
| 231 |
|
---|
| 232 | if(!(EP1INCS & bmEPBUSY))
|
---|
| 233 | {
|
---|
| 234 | if(Pending > 0)
|
---|
| 235 | {
|
---|
| 236 | BYTE o, n;
|
---|
| 237 |
|
---|
| 238 | AUTOPTRH2 = MSB( EP1INBUF );
|
---|
| 239 | AUTOPTRL2 = LSB( EP1INBUF );
|
---|
| 240 |
|
---|
| 241 | XAUTODAT2 = 0x31;
|
---|
| 242 | XAUTODAT2 = 0x60;
|
---|
| 243 |
|
---|
| 244 | if(Pending > 0x3E) { n = 0x3E; Pending -= n; }
|
---|
| 245 | else { n = Pending; Pending = 0; };
|
---|
| 246 |
|
---|
| 247 | o = n;
|
---|
| 248 |
|
---|
| 249 | #ifdef USE_MOD256_OUTBUFFER
|
---|
| 250 | APTR1H = MSB( OutBuffer );
|
---|
| 251 | APTR1L = FirstDataInOutBuffer;
|
---|
| 252 | while(n--)
|
---|
| 253 | {
|
---|
| 254 | XAUTODAT2 = XAUTODAT1;
|
---|
| 255 | APTR1H = MSB( OutBuffer ); // Stay within 256-Byte-Buffer
|
---|
| 256 | };
|
---|
| 257 | FirstDataInOutBuffer = APTR1L;
|
---|
| 258 | #else
|
---|
| 259 | APTR1H = MSB( &(OutBuffer[FirstDataInOutBuffer]) );
|
---|
| 260 | APTR1L = LSB( &(OutBuffer[FirstDataInOutBuffer]) );
|
---|
| 261 | while(n--)
|
---|
| 262 | {
|
---|
| 263 | XAUTODAT2 = XAUTODAT1;
|
---|
| 264 |
|
---|
| 265 | if(++FirstDataInOutBuffer >= OUTBUFFER_LEN)
|
---|
| 266 | {
|
---|
| 267 | FirstDataInOutBuffer = 0;
|
---|
| 268 | APTR1H = MSB( OutBuffer );
|
---|
| 269 | APTR1L = LSB( OutBuffer );
|
---|
| 270 | };
|
---|
| 271 | };
|
---|
| 272 | #endif
|
---|
| 273 | SYNCDELAY;
|
---|
| 274 | EP1INBC = 2 + o;
|
---|
| 275 | TF2 = 1; // Make sure there will be a short transfer soon
|
---|
| 276 | }
|
---|
| 277 | else if(TF2)
|
---|
| 278 | {
|
---|
| 279 | EP1INBUF[0] = 0x31;
|
---|
| 280 | EP1INBUF[1] = 0x60;
|
---|
| 281 | SYNCDELAY;
|
---|
| 282 | EP1INBC = 2;
|
---|
| 283 | TF2 = 0;
|
---|
| 284 | };
|
---|
| 285 | };
|
---|
| 286 |
|
---|
| 287 | if(!(EP2468STAT & bmEP2EMPTY) && (Pending < OUTBUFFER_LEN-0x3F))
|
---|
| 288 | {
|
---|
| 289 | WORD i, n = EP2BCL|EP2BCH<<8;
|
---|
| 290 |
|
---|
| 291 | APTR1H = MSB( EP2FIFOBUF );
|
---|
| 292 | APTR1L = LSB( EP2FIFOBUF );
|
---|
| 293 |
|
---|
| 294 | for(i=0;i<n;)
|
---|
| 295 | {
|
---|
| 296 | if(ClockBytes > 0)
|
---|
| 297 | {
|
---|
| 298 | WORD m;
|
---|
| 299 |
|
---|
| 300 | m = n-i;
|
---|
| 301 | if(ClockBytes < m) m = ClockBytes;
|
---|
| 302 | ClockBytes -= m;
|
---|
| 303 | i += m;
|
---|
| 304 |
|
---|
| 305 | /* Shift out 8 bits from d */
|
---|
| 306 |
|
---|
| 307 | if(WriteOnly) /* Shift out 8 bits from d */
|
---|
| 308 | {
|
---|
| 309 | while(m--) ProgIO_ShiftOut(XAUTODAT1);
|
---|
| 310 | }
|
---|
| 311 | else /* Shift in 8 bits at the other end */
|
---|
| 312 | {
|
---|
| 313 | while(m--) OutputByte(ProgIO_ShiftInOut(XAUTODAT1));
|
---|
| 314 | }
|
---|
| 315 | }
|
---|
| 316 | else
|
---|
| 317 | {
|
---|
| 318 | BYTE d = XAUTODAT1;
|
---|
| 319 | WriteOnly = (d & bmBIT6) ? FALSE : TRUE;
|
---|
| 320 |
|
---|
| 321 | if(d & bmBIT7)
|
---|
| 322 | {
|
---|
| 323 | /* Prepare byte transfer, do nothing else yet */
|
---|
| 324 |
|
---|
| 325 | ClockBytes = d & 0x3F;
|
---|
| 326 | }
|
---|
| 327 | else
|
---|
| 328 | {
|
---|
| 329 | if(WriteOnly)
|
---|
| 330 | ProgIO_Set_State(d);
|
---|
| 331 | else
|
---|
| 332 | OutputByte(ProgIO_Set_Get_State(d));
|
---|
| 333 | };
|
---|
| 334 | i++;
|
---|
| 335 | };
|
---|
| 336 | };
|
---|
| 337 |
|
---|
| 338 | SYNCDELAY;
|
---|
| 339 | EP2BCL = 0x80; // Re-arm endpoint 2
|
---|
| 340 | };
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 | //-----------------------------------------------------------------------------
|
---|
| 344 | // Handler for Vendor Requests (
|
---|
| 345 | //-----------------------------------------------------------------------------
|
---|
| 346 |
|
---|
| 347 | unsigned char app_vendor_cmd(void)
|
---|
| 348 | {
|
---|
| 349 | // because of fx2/usb_common.c, this code returns nonzero on success
|
---|
| 350 | // OUT requests. Pretend we handle them all...
|
---|
| 351 |
|
---|
| 352 | if ((bRequestType & bmRT_DIR_MASK) == bmRT_DIR_OUT)
|
---|
| 353 | {
|
---|
| 354 | if(bRequest == RQ_GET_STATUS)
|
---|
| 355 | {
|
---|
| 356 | Running = 1;
|
---|
| 357 | }
|
---|
| 358 |
|
---|
| 359 | return 1;
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | // IN requests.
|
---|
| 363 |
|
---|
| 364 | if(bRequest == 0x90)
|
---|
| 365 | {
|
---|
| 366 | BYTE addr = (wIndexL<<1) & 0x7F;
|
---|
| 367 | EP0BUF[0] = eeprom[addr];
|
---|
| 368 | EP0BUF[1] = eeprom[addr+1];
|
---|
| 369 | }
|
---|
| 370 | else
|
---|
| 371 | {
|
---|
| 372 | // dummy data
|
---|
| 373 | EP0BUF[0] = 0x36;
|
---|
| 374 | EP0BUF[1] = 0x83;
|
---|
| 375 | }
|
---|
| 376 |
|
---|
| 377 | EP0BCH = 0;
|
---|
| 378 | EP0BCL = (wLengthL<2) ? wLengthL : 2; // Arm endpoint with # bytes to transfer
|
---|
| 379 |
|
---|
| 380 | return 1;
|
---|
| 381 | }
|
---|
| 382 |
|
---|
| 383 | //-----------------------------------------------------------------------------
|
---|
| 384 |
|
---|
| 385 | static void main_loop(void)
|
---|
| 386 | {
|
---|
| 387 | while(1)
|
---|
| 388 | {
|
---|
| 389 | if(usb_setup_packet_avail()) usb_handle_setup_packet();
|
---|
| 390 | usb_jtag_activity();
|
---|
| 391 | }
|
---|
| 392 | }
|
---|
| 393 |
|
---|
| 394 | //-----------------------------------------------------------------------------
|
---|
| 395 |
|
---|
| 396 | void main(void)
|
---|
| 397 | {
|
---|
| 398 | EA = 0; // disable all interrupts
|
---|
| 399 |
|
---|
| 400 | usb_jtag_init();
|
---|
| 401 | eeprom_init();
|
---|
[21] | 402 | setup_autovectors();
|
---|
| 403 | usb_install_handlers();
|
---|
[4] | 404 |
|
---|
| 405 |
|
---|
| 406 | EA = 1; // enable interrupts
|
---|
| 407 |
|
---|
| 408 | fx2_renumerate(); // simulates disconnect / reconnect
|
---|
| 409 |
|
---|
| 410 | main_loop();
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 |
|
---|
| 414 |
|
---|
| 415 |
|
---|