1 | module deconv
|
---|
2 | #(
|
---|
3 | parameter size = 1, // number of channels
|
---|
4 | parameter shift = 24, // right shift of the result
|
---|
5 | parameter width = 27, // bit width of the input data
|
---|
6 | parameter widthr = 13 // bit width of the output data
|
---|
7 | )
|
---|
8 | (
|
---|
9 | input wire clock, frame, reset,
|
---|
10 | input wire [3*size*6-1:0] del_data,
|
---|
11 | input wire [3*size*8-1:0] amp_data,
|
---|
12 | input wire [3*size*16-1:0] tau_data,
|
---|
13 | input wire [3*size*width-1:0] inp_data,
|
---|
14 | output wire [3*size*widthr-1:0] out_data
|
---|
15 | );
|
---|
16 |
|
---|
17 | localparam width1 = width + 1;
|
---|
18 | localparam width2 = width + 6 + 1;
|
---|
19 | localparam width3 = width + 16 + 3;
|
---|
20 |
|
---|
21 | reg int_wren_reg, int_wren_next;
|
---|
22 | reg [1:0] int_chan_reg, int_chan_next;
|
---|
23 | reg [2:0] int_case_reg, int_case_next;
|
---|
24 | reg [7:0] int_addr_reg, int_addr_next;
|
---|
25 |
|
---|
26 | reg [5:0] del_addr_reg, del_addr_next;
|
---|
27 | wire [5:0] del_addr_wire;
|
---|
28 | wire [7:0] int_addr_wire;
|
---|
29 |
|
---|
30 | reg [size*widthr-1:0] out_data_reg [2:0], out_data_next [2:0];
|
---|
31 | wire [size*widthr-1:0] out_data_wire;
|
---|
32 |
|
---|
33 | wire [size*width3-1:0] add_data_wire;
|
---|
34 |
|
---|
35 | wire [size*width3-1:0] mul_data_wire [1:0];
|
---|
36 |
|
---|
37 | reg [size*width2-1:0] acc_data_reg [3:0], acc_data_next [3:0];
|
---|
38 | wire [size*width2-1:0] acc_data_wire;
|
---|
39 |
|
---|
40 | wire [size*width1-1:0] sub_data_wire;
|
---|
41 |
|
---|
42 | reg [size*width-1:0] inp_data_reg [2:0], inp_data_next [2:0];
|
---|
43 | wire [size*width-1:0] inp_data_wire [3:0];
|
---|
44 |
|
---|
45 | reg [size*8-1:0] amp_data_reg, amp_data_next;
|
---|
46 | wire [size*8-1:0] amp_data_wire [2:0];
|
---|
47 |
|
---|
48 | reg [size*16-1:0] tau_data_reg, tau_data_next;
|
---|
49 | wire [size*16-1:0] tau_data_wire [2:0];
|
---|
50 |
|
---|
51 | integer i;
|
---|
52 | genvar j;
|
---|
53 |
|
---|
54 | generate
|
---|
55 | for (j = 0; j < size; j = j + 1)
|
---|
56 | begin : INT_DATA
|
---|
57 | assign inp_data_wire[0][j*width+width-1:j*width] = inp_data[(3*j+0)*width+width-1:(3*j+0)*width];
|
---|
58 | assign inp_data_wire[1][j*width+width-1:j*width] = inp_data[(3*j+1)*width+width-1:(3*j+1)*width];
|
---|
59 | assign inp_data_wire[2][j*width+width-1:j*width] = inp_data[(3*j+2)*width+width-1:(3*j+2)*width];
|
---|
60 | assign amp_data_wire[0][j*8+8-1:j*8] = amp_data[(3*j+0)*8+8-1:(3*j+0)*8];
|
---|
61 | assign amp_data_wire[1][j*8+8-1:j*8] = amp_data[(3*j+1)*8+8-1:(3*j+1)*8];
|
---|
62 | assign amp_data_wire[2][j*8+8-1:j*8] = amp_data[(3*j+2)*8+8-1:(3*j+2)*8];
|
---|
63 | assign tau_data_wire[0][j*16+16-1:j*16] = tau_data[(3*j+0)*16+16-1:(3*j+0)*16];
|
---|
64 | assign tau_data_wire[1][j*16+16-1:j*16] = tau_data[(3*j+1)*16+16-1:(3*j+1)*16];
|
---|
65 | assign tau_data_wire[2][j*16+16-1:j*16] = tau_data[(3*j+2)*16+16-1:(3*j+2)*16];
|
---|
66 |
|
---|
67 | lpm_mux #(
|
---|
68 | .lpm_size(3),
|
---|
69 | .lpm_type("LPM_MUX"),
|
---|
70 | .lpm_width(8),
|
---|
71 | .lpm_widths(2)) mux_unit_1 (
|
---|
72 | .sel(int_chan_next),
|
---|
73 | .data({
|
---|
74 | 2'd2, del_data[(3*j+2)*6+6-1:(3*j+2)*6],
|
---|
75 | 2'd1, del_data[(3*j+1)*6+6-1:(3*j+1)*6],
|
---|
76 | 2'd0, del_data[(3*j+0)*6+6-1:(3*j+0)*6]}),
|
---|
77 | .result(int_addr_wire));
|
---|
78 |
|
---|
79 | lpm_add_sub #(
|
---|
80 | .lpm_direction("SUB"),
|
---|
81 | .lpm_hint("ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO"),
|
---|
82 | .lpm_representation("UNSIGNED"),
|
---|
83 | .lpm_type("LPM_ADD_SUB"),
|
---|
84 | .lpm_width(6)) add_unit_1 (
|
---|
85 | .dataa(del_addr_reg),
|
---|
86 | .datab(int_addr_wire[5:0]),
|
---|
87 | .result(del_addr_wire));
|
---|
88 |
|
---|
89 | lpm_add_sub #(
|
---|
90 | .lpm_direction("SUB"),
|
---|
91 | .lpm_hint("ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO"),
|
---|
92 | .lpm_representation("SIGNED"),
|
---|
93 | .lpm_type("LPM_ADD_SUB"),
|
---|
94 | .lpm_width(width1)) sub_unit_1 (
|
---|
95 | .dataa({{(width1-width){1'b0}}, inp_data_reg[0][j*width+width-1:j*width]}),
|
---|
96 | .datab({{(width1-width){1'b0}}, inp_data_wire[3][j*width+width-1:j*width]}),
|
---|
97 | .result(sub_data_wire[j*width1+width1-1:j*width1]));
|
---|
98 |
|
---|
99 | lpm_add_sub #(
|
---|
100 | .lpm_direction("ADD"),
|
---|
101 | .lpm_hint("ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO"),
|
---|
102 | .lpm_representation("SIGNED"),
|
---|
103 | .lpm_type("LPM_ADD_SUB"),
|
---|
104 | .lpm_width(width2)) acc_unit_1 (
|
---|
105 | .dataa({{(width2-width1+1){sub_data_wire[j*width1+width1-1]}}, sub_data_wire[j*width1+width1-2:j*width1]}),
|
---|
106 | .datab(acc_data_reg[0][j*width2+width2-1:j*width2]),
|
---|
107 | .result(acc_data_wire[j*width2+width2-1:j*width2]));
|
---|
108 |
|
---|
109 | lpm_mult #(
|
---|
110 | .lpm_hint("MAXIMIZE_SPEED=9"),
|
---|
111 | .lpm_representation("SIGNED"),
|
---|
112 | .lpm_type("LPM_MULT"),
|
---|
113 | .lpm_pipeline(3),
|
---|
114 | .lpm_widtha(width1),
|
---|
115 | .lpm_widthb(17),
|
---|
116 | .lpm_widthp(width3)) mult_unit_1 (
|
---|
117 | .clock(clock),
|
---|
118 | .clken(int_wren_reg),
|
---|
119 | .dataa(sub_data_wire[j*width1+width1-1:j*width1]),
|
---|
120 | .datab({1'b0, tau_data_reg[j*16+16-1:j*16]}),
|
---|
121 | .result(mul_data_wire[0][j*width3+width3-1:j*width3]));
|
---|
122 |
|
---|
123 | lpm_mult #(
|
---|
124 | .lpm_hint("MAXIMIZE_SPEED=9"),
|
---|
125 | .lpm_representation("UNSIGNED"),
|
---|
126 | .lpm_type("LPM_MULT"),
|
---|
127 | .lpm_pipeline(3),
|
---|
128 | .lpm_widtha(width2),
|
---|
129 | .lpm_widthb(8),
|
---|
130 | .lpm_widthp(width3)) mult_unit_2 (
|
---|
131 | .clock(clock),
|
---|
132 | .clken(int_wren_reg),
|
---|
133 | .dataa(acc_data_reg[0][j*width2+width2-1:j*width2]),
|
---|
134 | .datab(amp_data_reg[j*8+8-1:j*8]),
|
---|
135 | .result(mul_data_wire[1][j*width3+width3-1:j*width3]));
|
---|
136 |
|
---|
137 | lpm_add_sub #(
|
---|
138 | .lpm_direction("ADD"),
|
---|
139 | .lpm_hint("ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO"),
|
---|
140 | .lpm_representation("SIGNED"),
|
---|
141 | .lpm_type("LPM_ADD_SUB"),
|
---|
142 | .lpm_width(width3)) add_unit_2 (
|
---|
143 | .dataa(mul_data_wire[0][j*width3+width3-1:j*width3]),
|
---|
144 | .datab(mul_data_wire[1][j*width3+width3-1:j*width3]),
|
---|
145 | .result(add_data_wire[j*width3+width3-1:j*width3]));
|
---|
146 |
|
---|
147 |
|
---|
148 | lpm_add_sub #(
|
---|
149 | .lpm_direction("ADD"),
|
---|
150 | .lpm_hint("ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO"),
|
---|
151 | .lpm_representation("UNSIGNED"),
|
---|
152 | .lpm_type("LPM_ADD_SUB"),
|
---|
153 | .lpm_width(widthr)) add_unit_3 (
|
---|
154 | .dataa(add_data_wire[j*width3+shift+widthr-1:j*width3+shift]),
|
---|
155 | .datab({{(widthr-1){1'b0}}, add_data_wire[j*width3+shift-1]}),
|
---|
156 | .result(out_data_wire[j*widthr+widthr-1:j*widthr]));
|
---|
157 |
|
---|
158 | end
|
---|
159 | endgenerate
|
---|
160 |
|
---|
161 |
|
---|
162 | altsyncram #(
|
---|
163 | .address_aclr_b("NONE"),
|
---|
164 | .address_reg_b("CLOCK0"),
|
---|
165 | .clock_enable_input_a("BYPASS"),
|
---|
166 | .clock_enable_input_b("BYPASS"),
|
---|
167 | .clock_enable_output_b("BYPASS"),
|
---|
168 | .intended_device_family("Cyclone III"),
|
---|
169 | .lpm_type("altsyncram"),
|
---|
170 | .numwords_a(256),
|
---|
171 | .numwords_b(256),
|
---|
172 | .operation_mode("DUAL_PORT"),
|
---|
173 | .outdata_aclr_b("NONE"),
|
---|
174 | .outdata_reg_b("CLOCK0"),
|
---|
175 | .power_up_uninitialized("FALSE"),
|
---|
176 | .read_during_write_mode_mixed_ports("DONT_CARE"),
|
---|
177 | .widthad_a(8),
|
---|
178 | .widthad_b(8),
|
---|
179 | .width_a(size*width),
|
---|
180 | .width_b(size*width),
|
---|
181 | .width_byteena_a(1)) ram_unit_1 (
|
---|
182 | .wren_a(int_wren_reg),
|
---|
183 | .clock0(clock),
|
---|
184 | .address_a(int_addr_reg),
|
---|
185 | .address_b({int_addr_wire[7:6], del_addr_wire}),
|
---|
186 | .data_a(inp_data_reg[0]),
|
---|
187 | .q_b(inp_data_wire[3]),
|
---|
188 | .aclr0(1'b0),
|
---|
189 | .aclr1(1'b0),
|
---|
190 | .addressstall_a(1'b0),
|
---|
191 | .addressstall_b(1'b0),
|
---|
192 | .byteena_a(1'b1),
|
---|
193 | .byteena_b(1'b1),
|
---|
194 | .clock1(1'b1),
|
---|
195 | .clocken0(1'b1),
|
---|
196 | .clocken1(1'b1),
|
---|
197 | .clocken2(1'b1),
|
---|
198 | .clocken3(1'b1),
|
---|
199 | .data_b({(size*width){1'b1}}),
|
---|
200 | .eccstatus(),
|
---|
201 | .q_a(),
|
---|
202 | .rden_a(1'b1),
|
---|
203 | .rden_b(1'b1),
|
---|
204 | .wren_b(1'b0));
|
---|
205 |
|
---|
206 | always @(posedge clock)
|
---|
207 | begin
|
---|
208 | if (reset)
|
---|
209 | begin
|
---|
210 | int_wren_reg <= 1'b1;
|
---|
211 | int_chan_reg <= 2'd0;
|
---|
212 | int_case_reg <= 3'd0;
|
---|
213 | del_addr_reg <= 6'd0;
|
---|
214 | int_addr_reg <= 8'd0;
|
---|
215 | amp_data_reg <= 8'd0;
|
---|
216 | tau_data_reg <= 16'd0;
|
---|
217 | for(i = 0; i <= 2; i = i + 1)
|
---|
218 | begin
|
---|
219 | inp_data_reg[i] <= {(size*width){1'b0}};
|
---|
220 | out_data_reg[i] <= {(size*widthr){1'b0}};
|
---|
221 | end
|
---|
222 | for(i = 0; i <= 3; i = i + 1)
|
---|
223 | begin
|
---|
224 | acc_data_reg[i] <= {(size*width2){1'b0}};
|
---|
225 | end
|
---|
226 | end
|
---|
227 | else
|
---|
228 | begin
|
---|
229 | int_wren_reg <= int_wren_next;
|
---|
230 | int_chan_reg <= int_chan_next;
|
---|
231 | int_case_reg <= int_case_next;
|
---|
232 | del_addr_reg <= del_addr_next;
|
---|
233 | int_addr_reg <= int_addr_next;
|
---|
234 | amp_data_reg <= amp_data_next;
|
---|
235 | tau_data_reg <= tau_data_next;
|
---|
236 | for(i = 0; i <= 2; i = i + 1)
|
---|
237 | begin
|
---|
238 | inp_data_reg[i] <= inp_data_next[i];
|
---|
239 | out_data_reg[i] <= out_data_next[i];
|
---|
240 | end
|
---|
241 | for(i = 0; i <= 3; i = i + 1)
|
---|
242 | begin
|
---|
243 | acc_data_reg[i] <= acc_data_next[i];
|
---|
244 | end
|
---|
245 | end
|
---|
246 | end
|
---|
247 |
|
---|
248 | always @*
|
---|
249 | begin
|
---|
250 | int_wren_next = int_wren_reg;
|
---|
251 | int_chan_next = int_chan_reg;
|
---|
252 | int_case_next = int_case_reg;
|
---|
253 | del_addr_next = del_addr_reg;
|
---|
254 | int_addr_next = int_addr_reg;
|
---|
255 | amp_data_next = amp_data_reg;
|
---|
256 | tau_data_next = tau_data_reg;
|
---|
257 | for(i = 0; i <= 2; i = i + 1)
|
---|
258 | begin
|
---|
259 | inp_data_next[i] = inp_data_reg[i];
|
---|
260 | out_data_next[i] = out_data_reg[i];
|
---|
261 | end
|
---|
262 | for(i = 0; i <= 3; i = i + 1)
|
---|
263 | begin
|
---|
264 | acc_data_next[i] = acc_data_reg[i];
|
---|
265 | end
|
---|
266 |
|
---|
267 | case (int_case_reg)
|
---|
268 | 0:
|
---|
269 | begin
|
---|
270 | // write zeros
|
---|
271 | int_wren_next = 1'b1;
|
---|
272 | del_addr_next = 6'd0;
|
---|
273 | int_addr_next = 8'd0;
|
---|
274 | amp_data_next = 8'd0;
|
---|
275 | tau_data_next = 16'd0;
|
---|
276 | for(i = 0; i <= 2; i = i + 1)
|
---|
277 | begin
|
---|
278 | inp_data_next[i] = {(size*width){1'b0}};
|
---|
279 | out_data_next[i] = {(size*widthr){1'b0}};
|
---|
280 | end
|
---|
281 | for(i = 0; i <= 3; i = i + 1)
|
---|
282 | begin
|
---|
283 | acc_data_next[i] = {(size*width2){1'b0}};
|
---|
284 | end
|
---|
285 |
|
---|
286 | int_case_next = 3'd1;
|
---|
287 | end
|
---|
288 | 1:
|
---|
289 | begin
|
---|
290 | // write zeros
|
---|
291 | int_addr_next = int_addr_reg + 8'd1;
|
---|
292 | if (&int_addr_reg)
|
---|
293 | begin
|
---|
294 | int_wren_next = 1'b0;
|
---|
295 | int_chan_next = 2'd0;
|
---|
296 | int_case_next = 3'd2;
|
---|
297 | end
|
---|
298 | end
|
---|
299 | 2: // frame
|
---|
300 | begin
|
---|
301 | if (frame)
|
---|
302 | begin
|
---|
303 | int_wren_next = 1'b1;
|
---|
304 |
|
---|
305 | int_addr_next[7:6] = 2'd0;
|
---|
306 |
|
---|
307 | // set read addr for 2nd pipeline
|
---|
308 | int_chan_next = 2'd1;
|
---|
309 |
|
---|
310 | // register input data for 2nd and 3rd sums
|
---|
311 | inp_data_next[1] = inp_data_wire[1];
|
---|
312 | inp_data_next[2] = inp_data_wire[2];
|
---|
313 |
|
---|
314 | // prepare registers for 1st sum
|
---|
315 | inp_data_next[0] = inp_data_wire[0];
|
---|
316 | acc_data_next[0] = acc_data_reg[1];
|
---|
317 |
|
---|
318 | tau_data_next = tau_data_wire[0];
|
---|
319 | amp_data_next = amp_data_wire[0];
|
---|
320 |
|
---|
321 | int_case_next = 3'd3;
|
---|
322 | end
|
---|
323 |
|
---|
324 | end
|
---|
325 | 3: // 1st sum
|
---|
326 | begin
|
---|
327 | int_addr_next[7:6] = 2'd1;
|
---|
328 |
|
---|
329 | // set read addr for 3rd pipeline
|
---|
330 | int_chan_next = 2'd2;
|
---|
331 |
|
---|
332 | // prepare registers for 2nd sum
|
---|
333 | inp_data_next[0] = inp_data_reg[1];
|
---|
334 | acc_data_next[0] = acc_data_reg[2];
|
---|
335 |
|
---|
336 | tau_data_next = tau_data_wire[1];
|
---|
337 | amp_data_next = amp_data_wire[1];
|
---|
338 |
|
---|
339 | // register 1st sum
|
---|
340 | acc_data_next[1] = acc_data_wire;
|
---|
341 | out_data_next[0] = out_data_wire;
|
---|
342 |
|
---|
343 | int_case_next = 3'd4;
|
---|
344 | end
|
---|
345 | 4: // 2nd sum
|
---|
346 | begin
|
---|
347 | int_addr_next[7:6] = 2'd2;
|
---|
348 |
|
---|
349 | // prepare registers for 3rd sum
|
---|
350 | inp_data_next[0] = inp_data_reg[2];
|
---|
351 | acc_data_next[0] = acc_data_reg[3];
|
---|
352 |
|
---|
353 | tau_data_next = tau_data_wire[2];
|
---|
354 | amp_data_next = amp_data_wire[2];
|
---|
355 |
|
---|
356 | // register 2nd sum
|
---|
357 | acc_data_next[2] = acc_data_wire;
|
---|
358 | out_data_next[1] = out_data_wire;
|
---|
359 |
|
---|
360 | del_addr_next = del_addr_reg + 6'd1;
|
---|
361 |
|
---|
362 | int_case_next = 3'd5;
|
---|
363 | end
|
---|
364 | 5: // 3rd sum
|
---|
365 | begin
|
---|
366 | int_wren_next = 1'b0;
|
---|
367 |
|
---|
368 | // set read addr for 1st pipeline
|
---|
369 | int_chan_next = 2'd0;
|
---|
370 |
|
---|
371 | // register 3rd sum
|
---|
372 | acc_data_next[3] = acc_data_wire;
|
---|
373 | out_data_next[2] = out_data_wire;
|
---|
374 |
|
---|
375 | int_addr_next[5:0] = del_addr_reg;
|
---|
376 |
|
---|
377 | int_case_next = 3'd2;
|
---|
378 | end
|
---|
379 | default:
|
---|
380 | begin
|
---|
381 | int_case_next = 3'd0;
|
---|
382 | end
|
---|
383 | endcase
|
---|
384 | end
|
---|
385 |
|
---|
386 | assign out_data = {out_data_reg[2], out_data_reg[1], out_data_reg[0]};
|
---|
387 |
|
---|
388 | endmodule
|
---|