
Preprint typeset in JHEP style - HYPER VERSION

MC4BSM2014:

FeynRules/MadGraph aMC@NLO/MadAnalysis5

tutorial

Benj, Claude, Kentarou, Fabio, Marco, Olivier

Abstract: We present a simple example of how to make a simulation of LHC events

for BSM signals and the corresponding backgrounds using a fully integrated chain of

tools, including FeynRules, MadGraph5 aMC@NLO and MadAnalysis 5. A sim-

plified model that features new heavy fermionic (triplet and singlet in color) and two

neutral scalar states is first implemented in FeynRules. The output is passed to Mad-

Graph5 aMC@NLO for process simulations, determination of the cross section and signa-

ture identification at the parton level and/or including parton shower (Pythia orHerwig).

A few representative parameter benchmark points for the most promising signatures are

identified. MadAnalysis 5 is used as a flexible framework to analyse events at different

steps of the simulations. A search strategy is formulated based on the characteristics of

the main backgrounds that are automatically simulated at LO and also at NLO through

the most advanced techniques. Observables that are sensitive to the signal are identified

and finally compared to two sets of pseudo LHC8 data.

Keywords: Monte Carlo simulations, LHC, Standard Model, Beyond the standard

model.

http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch

1. Installation

1.1 Installation of FeynRules

FeynRules is a Mathematica package, and therefore requires a working Mathematica

installation on the machine (version 7 or higher). The most recent version of the code

(version 2) can be downloaded from http://feynrules.irmp.ucl.ac.be/. Note that

while FeynRules itself is platform independent and can be run on any platform on which

Mathematica is available, (some of) the interfaces require a Unix-based environment in

order to run properly.

In order to compute NLO counterterms, FeynRules relies on the FeynArts package,

a Mathematica-based Feynman diagram generator which can be freely downloaded from

http://www.feynarts.de/.

Note that the model file containing the template solution for the model to be imple-

mented during the tutorials can be downloaded from

http://feynrules.irmp.ucl.ac.be/attachment/wiki/WikiStart/MC4BSM14_FeynRules.tgz.

1.2 Installation of MadGraph5 aMC@NLO

1.2.1 Installation on Windows

MadGraph5 and the associated programs are designed and tested on Linux and MacOs

operating systems. The windows compatibility via cygwin is currently not supported. For

Windows user, we advise they install Linux in dual boot. Virtual machines are another

possibility. Note that some virtualbox packages do not include the library readline. This

library is not mandatory but enables the auto-completion (See the paragraph associated to

python installation to learn how to solve this). For this tutorial session, we have a virtual

box ready to use on usb stick please ask If you need it.

1.2.2 Installation on Linux / MacOs

MadGraph5 aMC@NLO The last version of MadGraph5 aMC@NLOcan be found

at the following page: https://launchpad.net/madgraph5. This website is also the place,

where you can ask question, make suggestions or report a bug. The installation is straight-

forward since you have only to untar it

tar -xzpvf MG5_aMC_v2.X.Y.tgz

No compilation are required for MadGraph5 aMC@NLO, you can just launch it.

./MG5_aMC_v2.X.Y/bin/mg5_aMC

If you don’t have a valid python version, MadGraph5 aMC@NLOwill crash directly with

an explicit message. In this case, you will need to install Python2.7.

If you have admin rights on your system, you can run the following command:

– 1 –

sudo ln -s MG5_aMC_v2.X.Y/bin/mg5_aMC /usr/local/bin

such that MadGraph5 aMC@NLOcan be launched from any directory.

Python The only requirement forMadGraph5 is to have a current version ofPython (ver-

sion 2.6 or 2.7). In most cases, it can be installed via your favorite repository manager.

However, some of the linux repository distributes python 2.5. In that case, you will need

to download python at the following link: http://www.python.org/download/ and follows

the associate instructions.

Note that for some linux versions (especially in virtual machine), the library readline

is not present on the system. This will disable the auto-completion. If you care about that

point, you will should first install that library (via your repository) and then to recompile

python from the source code.

GCC The program requires gcc4.6 or newer. Which is available via your favorite repos-

itory manager. Previous version of gcc will not be able to compile any of the NLO code,

but will work for LO processes.

Optional package Various optional packages can be linked toMadGraph5 aMC@NLOin

order to customize the output, create plots, ... The installation of those packages is easy

since you can install them by launching mg5 and typing

mg5> install NAME

Where NAME is one of the following package name:

• MadAnalysis: A package to draw automatically various histogram linked to the event

generation.

• ExRootAnalysis : A package to convert the various output in a ROOT format.

• pythia-pgs: A package containing Pythia6 and PGS. Pythia6 is able to shower and

to hadronize your events and is able to perform the matching for multi-jet production.

PGS is a fast detector simultation package.

• Delphes: A package allowing to have a fast detector simulation, in replacement of

PGS.

• SysCalc: A package to compute the systematic uncertainty.

Note that some of those programs might have some extra-dependencies (especially in Root).

– 2 –

Additional instructions for MacOs Compared to Linux the installation on MacOS

might be more complex since MacOS doesn’t provide various set of default programs present

on Linux. Two important programs which are not present by default are gmake and

gfortran4.x. We advise you to first check if those program are install via the commands.

$> make --version

$> gfortran --version

In order to install gmake it is easiest to install xcode (free but requiring an apple developer

account)

• MacOs 10.5: https://connect.apple.com/cgi-bin/WebObjects/

MemberSite.woa/wa/getSoftware?bundleID=20414

• MacOs 10.6: http://connect.apple.com/cgi-bin/WebObjects/

MemberSite.woa/wa/getSoftware?bundleID=20792

• MacOs 10.7: http://itunes.apple.com/us/app/xcode/id448457090?mt=12

• MacOs 10.8 and newer: use the app store.

Note that you need to enable the command line tools (in the download section of the

preference of Xcode)

Concerning gfortran you can download it (with gcc) either via ”port”

sudo port install gcc47

or download a pre-compile version at one of the following address:

• MacOs 10.5: http://sourceforge.net/projects/hpc/files/hpc/gcc/

gcc-leopard-intel-bin.tar.gz/download

• MacOs 10.6: http://prdownloads.sourceforge.net/hpc/

gcc-snwleo-intel-bin.tar.gz?download

• MacOs 10.7: http://prdownloads.sourceforge.net/hpc/

gcc-lion.tar.gz?download

• MacOs 10.8: http://prdownloads.sourceforge.net/hpc/gcc-mlion.tar.gz?download

• MacOs 10.9: http://prdownloads.sourceforge.net/hpc/gcc-4.8-bin.tar.gz?download

• MacOs 10.10: http://prdownloads.sourceforge.net/hpc/gfortran-4.9-bin.tar.gz?download

More information can be found here: http://hpc.sourceforge.net/

– 3 –

1.3 Testing the installation and Learning the syntax

MadGraph5 aMC@NLOincludes a build-in tutorial.

$> ./bin/mg5

mg5> tutorial

or

$> ./bin/mg5

mg5> tutorial aMCatNLO

if you want to discover the NLO functionalities.

Then just follow the instructions on the screen and you will learn the basic com-

mand/usage of MadGraph5 aMC@NLO. This takes around 15-20 minutes.

1.4 Installation of MadAnalysis 5

In order to install the latest stable version of the MadAnalysis 5 package, a tarball can

be downloaded from the website

https://launchpad.net/madanalysis5

and be subsequently unpacked by issuing in a shell

mkdir MadAnalysis5

cd MadAnalysis 5

/tar -xvf ma5_xxxx.tgz

where xxxx stands for a version number. MadAnalysis 5 requires several external depen-

dencies in order to properly run:

• Python 2.6 or a more recent version (but not the 3.X series) that can be downloaded

from the website

http://www.python.org/

This requirement is common with those needed by the MadGraph 5 package.

• The numpy package must be properly installed to. It can be downloaded from

http://www.numpy.org/

• The GNU GCC compiler. Note that MadAnalysis 5 has been validated with the

versions 4.3.X and 4.4.X. The GCC compiler can be downloaded from

http://gcc.gnu.org/

• ROOT v5.27 or a more recent version that can be downloaded from

http://root.cern.ch/

We remind that checking the version of ROOT installed on a system, it is sufficient

to type in a shell

root-config --version

Moreover, the Python libraries generated by ROOT must be present. To install

– 4 –

them, it is necessary to first install the Linux package python-devel on the system.

Next, before generating the ROOT makefile, the ROOT configuration script has to

be run as

./configure --enable-python

Let us note that the Python version employed when starting MadAnalysis 5 has

to be the same as the one used for the compilation of ROOT.

To benefit from all options coming with the MadAnalysis 5 program, we also recommend

to install Zlib headers and libraries. The latter can be downloaded from

http://zlib.net/

Once properly installed, MadAnalysis 5 can be launched by issuing

bin/ma5

When started, MadAnalysis 5 first checks that all the dependencies (gcc, Python,

ROOT, Zlib) are present on the system and that compatibility is ensured with the installed

versions. In the case of any problem, a message is printed to the screen and the code

exists in the case it cannot properly run. On the first session of MadAnalysis 5, the

SampleAnalyzer core is compiled behind the scene as a static library stored in the

directory tools/SampleAnalyzer/Lib. For the next sessions, the kernel is only recompiled

if the configuration of the system changes (new version of the dependencies or of the main

program).

2. The model

We add two real scalar fields, ϕ1 and ϕ2. They are singlets under all SM gauge groups.

Their mass terms are1:

Lkin,scalar =
1

2
∂µϕ1∂

µϕ1 +
1

2
∂µϕ2∂

µϕ2 −
m2

1

2
ϕ2
1 −

m2
2

2
ϕ2
2 −m2

12ϕ1ϕ2 . (2.1)

We will call mass eigenstates Φ1 and Φ2, and their masses M1 and M2, respectively, and

we will assume M1 < M2.

We add two Dirac fermion fields, U and E. Their SM quantum numbers are those of

the SM uR and eR, respectively. These fields have mass terms

Ldirac,mass = MUUU +MEEE (2.2)

They interact with scalars via

LFFS = λ1,i ϕ1 UPRui + λ2,i ϕ2 UPRui + λ′
1,i ϕ1EPRli + λ′

2 ϕ2EPRli + h.c. , (2.3)

where ui and li are the SM up-type quark and charged lepton fields. Note that there is

a Z2 symmetry under which all fields we added (ϕ1,2, U,E) flip sign, while all SM fields

do not, so the new particles must be pair-produced and the lightest new particle (LNP)

is stable. This same Z2 also forbids U − ui and E − li mixing via Yukawas with the SM

Higgs.

1All Lagrangian parameters, here and below, are assumed to be real

– 5 –

3. The FeynRules implementation

3.1 Preparation of the model file

As the model we are going to implement is a simple extension of the SM, it is not necessary

to start from scratch, but we can use the implementation of the SM included in the folder

/Models/SM. We therefore start by making a copy of this folder, in order to keep a clean

version of the SM. To do so, change directory to the Models subdirectory and make a copy

of the SM folder, before going into the new directory

cd Models

cp -r SM Tutorial

cd Tutorial

Even though the implementation is based on the model file SM.fr for the Standard Model,

the SM sector of the model will be implemented into a separate file that will simply be

loaded on top of SM.fr. We therefore start by opening a blank text file called Tutorial.fr.

You can start by personalizing the model file by including a name for you model, the name

of the author, etc.,

M$ModelName = "Tutorial";

M$Information = {Authors -> {"C. Duhr"},

Version -> "1.0",

Date -> "27. 02. 2012",

Institutions -> {"ETH Zurich"},

Emails -> {"duhrc@itp.phys.ethz.ch"}

};

Note that his information is purely optional and could be omitted.

3.2 Implementation of the new parameters

We start by implementing the new parameters. The model we are considering depends on

9 new parameters, which we assume to be real in the following. FeynRules distinguishes

between two types of parameters, the so-called external parameters given as numerical

inputs and the internal parameters, related to other external and/or internal parameters

via algebraic expressions. All the parameters of the model, both external and internal, are

given in the FeynRules model file as a list named M$Parameters. Note that if an internal

parameter x depends on some other parameter y, then y should appear in M$Parameters

before the internal parameter x.

The new external parameters of the model are

• 5 mass parameters: m1, m2, m12, MU , ME .

• 4 vectors of coupling constants: λ1,i, λ2,i, λ
′
1,i, λ

′
2,i.

– 6 –

Note however that there is a difference between the mass parameters in the scalar and

fermionic sectors: while the masses in fermionic sector are physical masses, the mass matrix

in the scalar sector is not diagonal. For this reason, we will not discuss in the following

the fermion masses MU and ME , as they will be defined together with the particles rather

than as parameters of the model.

Let us now turn to the definition of the mass parameters in the scalar sector. The

masses m1, m2 and m12 will be denoted in the FeynRules model file by MM1, MM2 and MM12.

In the following we only show how to implement MM1, all other cases being similar. MM1

corresponds to the following entry in the list M$Parameters,

M$Parameters = {

...

MM1 == {

ParameterType -> External,

Value -> 200

},

...

}

The first option tags MM1 as an external parameter, while the second option assign a value

of 200GeV to m1. We stress that this numerical value can be changed later on in the

matrix element generators.

The masses in the scalar sector are not the physical masses, because the mass matrix

is not diagonal. In order to obtain the physical masses, we need to diagonalize the mass

matrix (
m2

1 m2
12

m2
12 m2

2

)
. (3.1)

In the following, we denote the eigenvalues by MPe1 and MPe2. In addition, we need to

introduce a mixing angle θ (th) relating the fields ϕi to the mass eigenstates Φi by,(
ϕ1

ϕ2

)
=

(
− sin θ cos θ

cos θ sin θ

) (
Φ1

Φ2

)
. (3.2)

As in this case the mass matrix is only two-dimensional, we can compute the eigenvalues and

the mixing angle analytically, and simply implement the analytical formulas into FeynRules.

The implementation follows exactly the same lines as for the masses m1, m2, m12, with

the only differences that

1. the ParameterType is Internal (as these parameters are dependent on the external

mass parameters,

2. the Value is given by an analytical expression (in Mathematica syntax).

Next we turn to the implementation of the (vectors of) new coupling constants, which

we will call lam1, lam2, lam1p, lam2p. They are all external parameters, and thus the im-

plementation follows exactly the same lines as the implementation of the mass parameters,

– 7 –

with two modifications: First, we have to deal with vectors in flavor space, i.e., objects

carrying a single flavor index. The fermion fields implemented in SM.fr carry an index

called Generation which labels the flavor of a given field. We can in the same way assign

an index of this type to parameters via

Indices -> { Index[Generation] }

Second, some matrix element generators, like for example MadGraph, keep track of the

types of couplings that enter a process. This allows for example to generate a process by

only taking into account QCD-type vertices, and to neglect all QED-type vertices. For

this reason, it is mandatory to tell the matrix element generator how the new coupling

constants should be counted. As in this case we are dealing with new classes of couplings

which are a priori independent of QCD or QED interactions, we simply assign a new tag,

called interaction order, to the coupling via the option

InteractionOrder -> {NP, 1}

The name of the tag (NP for “new physics” in this case) can be chosen freely. The above

option instructs the matrix element generator to count one unit of “NP” for each new

coupling.

3.3 Implementation of the fields

In this section we discuss the implementation of the new fields. The implementation is

similar to the implementation of the parameters, i.e., all the fields are entries of a list

called M$ClassesDescription. In Tab. ?? we show the names of the fields used in the

implementation2.

U E ϕ1 ϕ2 Φ1 Φ2

uv ev pi1 pi2 p1 p2

Table 1: Symbols used for the fields in the FeynRules implementation.

We illustrate the implementation of a new field on the example of the particle U (uv).

The definition of the particle corresponds to an entry in M$ClassesDescription of the

following form

M$ClassesDescription = {

...

F[100] == {

ClassName -> uv,

SelfConjugate -> False,

Indices -> {Index[Colour]},

QuantumNumbers -> {Y -> 2/3, Q -> 2/3},

2Note that the symbol u, e and phi are already in use in the SM implementation. We also avoid using

simply uppercase letters, as some matrix element generators are case insensitive.

– 8 –

Mass -> {Muv, 500},

Width -> {Wuv,1}

},

...

}

The meaning of this definition is as follows: each particle class has a name of the form

X[i], where X is related to the spin of the field (See Tab. ??), and i is an integer that

labels the classes. Note that i can be chosen freely, as long as there is no name clash with

an already existing class (in this case, there could be a name clash with the SM particles

already defined in SM.fr). Each class has a series of options

1. ClassName: the symbol by which the particle will be represented in the Lagrangian.

2. SelfConjugate: a boolean variable, indicating whether the particle has an antiparti-

cle (False) or not (True). If the field is not selfconjugate, a symbol for the antiparticle

is automatically defined by appending “bar” to the name of the particle. In the above

example the antiparticle associated to uv will be denoted by uvbar. Note that in the

case of fermions the symbol for the antiparticle refers to the quantity Ū rather than

U †.

3. Indices: All indices carried by the field. The available types of indices from the SM

implementation are

• Generation: fermion flavor index ranging from 1 to 3,

• Colour: fundamental color index ranging from 1 to 3,

• Gluon: adjoint color index ranging from 1 to 8,

• SU2W: adjoint SU(2)L index ranging from 1 to 3.

4. QuantumNumbers: a list of all U(1) charges carried by the field. In the SM implemen-

tation the following U(1) charges are already defined

• Y: weak hypercharge,

• Q: electric charge.

5. Mass: the mass of the particle. It is a list of two elements, the first being the symbol

used to represent the mass, and the second its value (in GeV). If the value of the

mass is obtained from some analytic expression defined as an internal parameter with

the same symbol (as is the case for example in the scalar sector of the model), the

value is set to Internal.

6. Width: the width of the particle. The definition is similar to Mass. Note that as we

do not yet know the widths of the new particles, we simply set it for now to 1GeV,

and will determine its exact value later on.

– 9 –

Spin 0 1/2 1 2 ghost

Symbol S F V T U

Table 2: Available particle classes in FeynRules.

The implementation of the other mass eigenstates (ev, p1, p2) is similar, so we do not

discuss it here.

Let us comment on the implementation of the interaction eigenstates ϕi. Indeed, while

the matrix element generators work exclusively at the level of the mass eigenstates, the

interaction eigenstates are in general useful to write the Lagrangian in a compact form. It

is therefore useful to define also the fields for the interaction eigenstates ϕi. The definition

of these fields is similar to the mass eigenstates, e.g.,

S[100] == {

ClassName -> pi1,

SelfConjugate -> True,

Indices -> {},

Unphysical -> True,

Definitions -> {pi1 -> - Sin[th] p1 + Cos[th] p2}

},

First, note that the Mass and Width options are omitted3, as these fields are not mass

eigenstates. This last fact is made explicit by the option

Unphysical -> True,

which instruct FeynRules not to output this field to a matrix element generator. Finally,

the relation of the field pi1 to the mass eigenstates is simply given as a Mathematica

replacement rule in the Definitions option.

3.4 Implementation of the Lagrangian

The definitions in the model file being complete, we now turn to the implementation of

the Lagrangian. This can be done either in the model file, or directly in a Mathematica

notebook. Here we use the latter approach, and we start by opening a new notebook and

load the FeynRules package (see the preinstallation instructions). Next we have to load

the model files, both for the SM and for the new sector,

LoadModel["SM.fr", "Tutorial.fr"]

Note that the new model file should be loaded after SM.fr. Furthermore, we also load

two additional files, which restrict the first two fermion generations to be massless and the

CKM matrix to be diagonal,

3The QuantumNumbers option is also omitted, but for the simple reason that the fields ϕi do not carry

any U(1) charges.

– 10 –

LoadRestriction["DiagonalCKM.rst", "Massless.rst"]

The new Lagrangian consists of three parts,

L = Lscalar,kin + Lfermion,kin + LY uk . (3.3)

The kinetic terms for the new scalars can easily be implemented by using the symbols for

the gauge eigenstates and the mass parameters defined in the model file, as well as the

symbol for the space-time derivative ∂µ in FeynRules, del[..., mu]. As an example, we

have

1

2
∂µϕ1 + ∂µϕ1 −

1

2
m2

1ϕ
2
1

1/2 del[p1, mu] del[p1, mu] - 1/2 MM1^2 p1^2

The kinetic terms for the fermions can be implemented in a similar way. However, as the

fermions are charged under the SM gauge group, we have to use the covariant derivative

DC rather than the space-time derivative del. Furthermore, we have to use a “.” instead

of an ordinary multiplication in order to take the non-commuting nature of the fermions

into account. As an example, we have

i ŪγµDµU −MU ŪU

I uvbar.Ga[mu].DC[uv, mu] - Muv uvbar.uv

where Ga[mu] is the FeynRules symbol for the Dirac matrix γµ. Finally, the Yukawa

interactions can be implemented in the same way as the kinetic terms for the fermions,

e.g.,

λ1,i ϕ1 ŪP+ui
lam1[f] pi1 ProjP[s1,s2] uvbar[s1,i].uq[s2, f, i]

where u denotes the u quark field defined in SM.fr and ProjP denotes the right chiral

projector (the left projector is denoted by ProjM). Note that FeynRules contains a function

HC[] which allows to obtain the hermitian conjugate of an expression in an automated

way.

3.5 Computing the Feynman rules and decay rates and running the interfaces

Our model implementation is now complete, and so we can compute the Feynman rules.

The Feynman rules of the new sector can be obtained by issuing the command

vertices = FeynmanRules[LNew];

where LNew is the name of the variable that contains the new Lagrangian, and the vertices

are stored in the variable vertices.

After the vertices have been computed, it is possible to use FeynRules to compute

the two-body decay widths of the new particles. In our case, the scalar particles cannot

decay via two-body channels. The heavy fermion U and E, however, can have two-body

decays via the Yukawa couplings in LFFS . The partial decay rates can be computed via

– 11 –

decays = ComputeWidths[vertices];

The variable decays now contains all the two-body partial widths that can be computed

from the three-point vertices contained in vertices. Note that all possible decays for

all possible initial states have been computed, independently whether a given channel is

kinematically allowed. The reason is that, while a certain channel might be forbidden for

some choices of the numerical values for the external parameters, the same channel might

be allowed for other choices. The analytical formulas for the partial widths can be accessed

through the function ParticalWidth[], e.g., the (analytic) partial width for the decay

U → tΦ1 can be accessed via

PartialWidth[{uv, t, p1}]

The function TotWidth[] works in a similar way. We can evaluate the total width nu-

merically (Note that Φ1 is stable),

NWuv = NumericalValue[TotWidth[uv]];

NWev = NumericalValue[TotWidth[uv]];

NWpe1 = NumericalValue[TotWidth[p1]];

The numerical values used for the evaluation correspond to the numerical values for the

external parameters entered into the model file. Next, we can update the numerical values

of the widths in the model:

UpdateParameters[{Wuv -> NWuv, Wev -> NWev}]

Note that these values for the widths only take two-body decays into account. In some cases

many-body decays can also be important. The contributions from these decays cannot be

computed by FeynRules. We will see later how to use the matrix element generators

to compute a more accurate value of the widths in cases where the contributions from

many-body decays are important.

The Feynman rules can be written to file in a format suitable to various matrix element

generators by using the FeynRules interfaces. In this tutorial, we will use the interfaces to

the UFO, and thus to MadGraph 5, which can be called via

WriteUFO[LSM + LNew];

where LSM is the SM Lagrangian implemented in SM.fr. Note that the SM implementation

is available in both Feynman gauge and unitary gauge. A boolean variable FeynmanGauge

allows to switch between both gauges.

3.6 Exporting the model into MadGraph 5

After successfully running the UFO interface, a directory Tutorial_UFO has been created

in the /Models/Tutorial/ directory. This directory contains all the UFO files needed to

run the model in MadGraph 5. To import the model into MadGraph it is enough to copy

the UFO directory into the /models/ subdirectory of MadGraph 5,

– 12 –

cp -r Tutorial_UFO <your MadGraph directory>/models/

The MadGraph 5 shell the new model can now be called in the same way as any other

built in model,

mg5> import model Tutorial_UFO

More information on MadGraph 5 will be presented in the next section

3.7 Advanced: NLO precision for BSM phenomenology with FeynRules

In this section we describe how to use FeynRules to generate events at NLO accuracy with

MadGraph5 aMC@NLO. Note that this feature only applies to renormalisable models.

In order to promote a model to NLO, we need to supplement the UFO produced by

the UFO interface by twofold information

1. One-loop UV counterterms for all the parameters and fields that appear inside the

Lagrangian.

2. A special class of tree-level vertices, called R2, required to construct the correct

rational terms in the one-loop amplitude.

A new FeynRules module, called NloCT, can be used to perform this task.

First, we need to renormalise the Lagrangian. This is achieved by the replacements

ϕB = (1 +
1

2
δZϕ)ϕR ,

gB = gR + δg ,
(3.4)

where ϕ and g represent a generic field and parameter, and the subscript B (R) refers

to the bare (renormalised) quantities. These shifts can be automatically performed by

FeynRules at the level of the Lagrangian via the command

Lren = OnShellRenormalization[LSM + LNew, QCDOnly -> True];

The second argument is optional and instructs FeynRules that only parameters and

field related to the strong interaction should be renormalised (which is sufficient as long

as we only compute QCD corrections). Moreover, the previous command also takes of

defining correctly all the counterterms for internal parameters in terms of the counterterms

for external parameters. For example, the strong coupling constant αs and the coupling

gs =
√
4παs are not independent, and the counterterms are related by

δgs =
∂gs
∂αs

δZαs =

√
π

αs
δαs . (3.5)

The counterterms for the external parameters on the other hand require the compu-

tation of loop diagrams, a task which cannot be directly performed by FeynRules. It is

however possible to use the FeynArts package to automate this task. In particular, we

can use the FeynArts interface to obtain an implementation of our model into FeynArts

– 13 –

WriteFeynArtsOutput[Lren, Output -> "Tutorial", GenericFile -> False,

FlavorExpand -> True]

For details on the options set in the interface we refer to the FeynRules manual. The

interface will produce a set of files that can be use by FeynArts to generate (loop)

diagrams for this model.

In order to compute the counterterms, we need to use FeynArts. Note that Feyn-

Rules and FeynArts cannot be loaded simultaneously into the same Mathematica

kernel, and it is mandatory to quit the Mathematica kernel before proceeding. Next, we

need to copy the output of the interface into the model directory of FeynArts. This can

be done using the command

cp -r Tutorial <your FeynArts directory>/Models/

Next we need to load FeynArts into Mathematica,

<<FeynArts‘

In addition, we need to load the NloCT package, which is shipped together with Feyn-

Rules,

SetDirectory["<your FeynRules Directory>"];

<<NLOCT‘

Next, we can simply compute all the counterterms via the following simple call to NloCT,

WriteCT["Tutorial", "Lorentz", "Tutorial",

ZeroMom -> {{aS, {F[7], V[4], -F[7]}}},

QCDOnly -> True,

Assumptions -> {MB >= 0, MT != 0, Muv != 0}]

The three arguments in the first line refer to the name of the input file (the output of the

WriteFAOutput[] function in the previous step), the generic model file to be used within

FeynArts (we refer to the FeynRules and FeynArts manuals for this technical point)

and the name of the output file. Just like before, the option QCDOnly -> True instructs

the code that only QCD corrections should be computed. The option Assumptions ->

... instructs the code that certain constraints on certain variables should be taken into

account when simplifying expression (e.g., when simplifying expressions involving loga-

rithms). Finally, the renormalisation is by default done in the on-shell scheme. For the

strong coupling constant it is however customary to choose the the zero-momentum scheme,

which imposes that the renormalized strong interaction with light quarks is equal to its

tree-level value when the gluon momentum goes to zero. Running this command produced

a file Tutorial.nlo which contains all the UV counterterms (and also the R2 needed to

compute NLO QCD corrections in this model.

– 14 –

The results obtained in the previous steps can be included into the UFO for the model

by using the UFO interface of FeynRules. In order to do so, quit the kernel, and reload

FeynRules and the model file. In addition, you need to load the .nlo file produced in

the previous step,

Get["Tutorial.nlo"];

Calling the UFO with the options

WriteUFO[LNew + LSM, UVCounterterms -> UV$vertlist, R2Vertices -> R2$vertlist,

Output -> "Tutorial"]

produces all the files required by MadGraph5 aMC@NLO to produce events at NLO

accuracy.

4. LO cross-section computation and event generation with MadGraph5 aMC@NLO

MadGraph5 aMC@NLOcan be run on a local computer or via the web at one of the

following website:

• http://madgraph.hep.uiuc.edu

• http://madgraph.phys.ucl.ac.be

The registration is straightforward, and you can instantly creates optimized code for

the computation of the cross-section of any processes. That code can be run directly on the

web or downloaded and run locally. However, for security reason, generating events on the

web is allowed only after that you have sent an email to one of the authors of MadGraph5.

Since most of the functions are available on the internet, most users will not need to install

MadGraph5.

The MadGraph5 collaboration plans to continue to improve this code both by adding

new functionalities and by making the code easier to use. New tutorials and updates on

this tutorial can be found at the following link:

https://server06.fynu.ucl.ac.be/projects/madgraph/wiki/MGTutorial

In this part of the tutorial, we will study a full example on how to generate events for

BSM theories. We will assume that you have your own UFO model create accordingly to

the previous section. If you don’t, you can download the associated model at the following

address:

http://feynrules.irmp.ucl.ac.be/attachment/wiki/WikiStart/TASI 2013 UFO.tgz

We will split this into three sections. First we will explain in detail how to install the

code, Then we will show how you can test the validity of the model. And finally we will

present how you can generate BSM events, both with and without the associated decays.

– 15 –

4.1 Importing and checking the model

The simplest way to have access to a model in MG5 is to put it in the directory: MG5 DIR/models

after that you can simply import it by typing

mg5> import model MC4BSM_2012_UFO

or

mg5> import model MC4BSM_2012_UFO --modelname

The option –modelname tells MG5 to use the name of the particles defines in the UFO

model, and not the usual MG5 conventions for the particles of the SM/MSSM. For this

particular model, this changes only the name associated to τ lepton (ta- and tt- respec-

tively).

If you have developed your own model following the FeynRules tutorial, this will

be the first time that you are going to use this model. It is therefore crucial to start by

checking the model. MadGraph5 performs some sanity checks the first time that you load

the model, but those test are quite weak. We therefore suggest to test, three properties for

on a series of processes.

• The gauge invariance, by testing the Ward identities.

• The Lorentz invariance.

• The Aloha consistency, by evaluating the same square matrix element by different

set of Helicity amplitudes.

For instance, we present how to check those properties for all the 2 → 2 BSM particles

productions:

mg5> import model MC4BSM_2012_UFO

mg5> define new = uv uv~ ev ev~ p1 p2

mg5> check p p > new new

which results in the following output:

Gauge results:

Process matrix BRS ratio Result

g g > uv uv~ 7.4113020914e-01 1.0055761722e-31 1.3568144434e-31 Passed

g u > uv p1 3.8373877873e-02 6.1629758220e-33 1.6060341471e-31 Passed

g u > uv p2 2.5726129500e-02 4.4176419953e-33 1.7171809678e-31 Passed

g u~ > uv~ p1 2.0117011717e-01 8.3456964257e-34 4.1485766093e-33 Passed

g u~ > uv~ p2 1.9705216573e-01 1.8809915790e-32 9.5456529090e-32 Passed

Summary: 5/5 passed, 0/5 failed

Lorentz invariance results:

Process Min element Max element Relative diff. Result

g g > uv uv~ 4.8743514998e-01 4.8743514998e-01 1.1388417769e-16 Passed

– 16 –

g u > uv p1 1.3897148577e-01 1.3897148577e-01 1.1983282238e-15 Passed

g u > uv p2 5.7988729593e-02 5.7988729593e-02 5.9829676840e-16 Passed

g u~ > uv~ p1 8.8655875905e-03 8.8655875905e-03 1.7610238605e-15 Passed

g u~ > uv~ p2 1.0373598029e-01 1.0373598029e-01 8.0267932700e-16 Passed

u u > uv uv 2.1536620557e+00 2.1536620557e+00 1.8558171084e-15 Passed

u u~ > uv uv~ 8.4033626775e-01 8.4033626775e-01 2.1138643036e-15 Passed

u u~ > p1 p1 7.6001259005e-03 7.6001259005e-03 2.9672410014e-15 Passed

u u~ > p1 p2 9.5102790993e-05 9.5102790993e-05 2.7645774018e-14 Passed

u u~ > p2 p2 4.6427735529e-04 4.6427735529e-04 8.6404128750e-15 Passed

u u~ > ev ev~ 2.3919237366e-03 2.3919237366e-03 2.7196573767e-15 Passed

c c~ > uv uv~ 8.5752329113e-01 8.5752329113e-01 2.3304340127e-15 Passed

d d~ > uv uv~ 8.9275046680e-01 8.9275046680e-01 3.2333557600e-15 Passed

d d~ > ev ev~ 4.8145327614e-04 4.8145327614e-04 5.6298410782e-16 Passed

s s~ > uv uv~ 8.8941849408e-01 8.8941849408e-01 3.6199458330e-15 Passed

u~ u~ > uv~ uv~ 2.3800428911e+00 2.3800428911e+00 1.8658874237e-15 Passed

Summary: 16/16 passed, 0/16 failed

Not checked processes: c c~ > ev ev~, s s~ > ev ev~

Process permutation results:

Process Min element Max element Relative diff. Result

g g > uv uv~ 4.9184278197e-01 4.9184278197e-01 2.2572721717e-16 Passed

g u > uv p1 4.1859552985e-02 4.1859552985e-02 3.3153215498e-16 Passed

g u > uv p2 2.0129184319e-01 2.0129184319e-01 1.1030978772e-15 Passed

g u~ > uv~ p1 9.5566536137e-02 9.5566536137e-02 5.8086390357e-16 Passed

g u~ > uv~ p2 3.6165811126e-03 3.6165811126e-03 3.8372671248e-15 Passed

u u > uv uv 2.1101603787e+00 2.1101603787e+00 2.1045282356e-15 Passed

u u~ > uv uv~ 1.3549964258e+00 1.3549964258e+00 1.1470969258e-15 Passed

u u~ > p1 p1 4.9555140623e-03 4.9555140623e-03 1.4002369515e-15 Passed

u u~ > p1 p2 2.0863569608e-02 2.0863569608e-02 6.6516842845e-16 Passed

u u~ > p2 p2 1.2914424155e-03 1.2914424155e-03 4.7013572521e-15 Passed

u u~ > ev ev~ 1.7823584674e-03 1.7823584674e-03 0.0000000000e+00 Passed

c c~ > uv uv~ 9.2608997797e-01 9.2608997797e-01 1.0789456164e-15 Passed

d d~ > uv uv~ 8.3532448258e-01 8.3532448258e-01 1.3290919251e-16 Passed

d d~ > ev ev~ 5.8126525280e-04 5.8126525280e-04 9.3262255680e-16 Passed

u~ u~ > uv~ uv~ 2.1759606129e+00 2.1759606129e+00 2.0408880897e-16 Passed

Summary: 15/15 passed, 0/15 failed

More informations about these checks (like the values of the random phase-space

points) can be obtained via the commands:

mg5> display checks

The display commands is very useful in order to obtained information on the particles,

couplings, interactions, ... For example4

4Note that the spin is written in the 2S + 1 convention.

– 17 –

mg5>display particles

Current model contains 21 particles:

ve/ve~ vm/vm~ vt/vt~ e-/e+ m-/m+ tt-/tt+ u/u~ c/c~ t/t~ d/d~ s/s~ b/b~ w+/w- uv/uv~ ev/ev~

a z g h p1 p2

mg5>display particles p1

Particle p1 has the following properties:

{

’name’: ’p1’,

’antiname’: ’p1’,

’spin’: 1,

’color’: 1,

’charge’: 0.00,

’mass’: ’MPe1’,

’width’: ’Wpe1’,

’pdg_code’: 9000006,

’texname’: ’p1’,

’antitexname’: ’p1’,

’line’: ’dashed’,

’propagating’: True,

’is_part’: True,

’self_antipart’: True

}

mg5>

4.2 Generation of events

4.2.1 Generation of events with no decay

In this section, we start the computation of the cross-sections and the generation of events

for the proposed process of interest:

pp → UŪ

First we will generate this exact process, Pythia being in charge of the decays. Note that

in this way, you lose the full spin-correlations.

import model MODELNAME

generate p p > uv uv~

output

launch

More examples, possibilities to generate the set of diagrams of interest are describe in

Appendix (7).

What is prompted afterwards opens an interactive talk-to (which, again, can be scripted)

which allows the user to choose among various options. Some options requires that the

– 18 –

related package to be install via the ”install” command in order to be used. This looks as

follows:

The following switches determine which programs are run:

1 Run the pythia shower/hadronization: pythia=OFF

2 Run PGS as detector simulator: pgs=OFF

3 Run Delphes as detector simulator: delphes=OFF

4 Decay particles with the MadSpinmodule: madspin=OFF

5 Add weight to events based on coupling parameters: reweight=OFF

Either type the switch number (1 to 5) to change its default setting,

or set any switch explicitly (e.g. type ’madspin=ON’ at the prompt)

Type ’0’, ’auto’, ’done’ or just press enter when you are done.

[0, 4, 5, auto, done, madspin=ON, madspin=OFF, madspin, reweight=ON, ...]
By entering 1, 2, 3, or 4 at the prompt one toggles between the two values of the

corresponding feature (which are ON or OFF). For example, by entering 4 one is prompted

again what is displayed above, except for the fact that madspin=OFF has now become

madspin=ON. The various module correspond to the possibility to chain multiple type of

simulation tools. 5 More exactly:

pythia=ON −→ Allows to run the Pythia6 programs for the shower and the

hadronization. This program can be installed via the command install pythia-pgs in

the MadGraph5 aMC@NLO shell command interface.

pgs=ON −→ Allows to run the Pretty Good Simulator (PGS) programs for

a basic/fast detector simulation. This program can be installed via the command install

pythia-pgs in the MadGraph5 aMC@NLO shell command interface. Note that when

pgs=ON then the pythia flag is set on ON automatically.

delphes=ON −→ Allows to run the Delphes 3 programs [?] for a fast

detector simulation. This program can be installed via the command install Delphes in

the MadGraph5 aMC@NLOshell command interface. Note that when pgs=ON then the

pythia flag is set on ON automatically, therefore in order to run Delphes, you also need

to run the command install pythia-pgs. It is also possible to run Delphes 2 [?], the

command to install that version of the code is via the command install Delphes2

madspin=ON −→ Allows to include decay production with full spin correla-

tions by means of MadSpin. Note that the decay-chain formalism is actually faster and

produce a cross-section which is more accurate (not based on the narrow-width approxima-

tion). So in most of the case, using the decay-chain formalism is advised rather than using

MadSpinfor LO production. In order for MadSpinto run coherently, the generation of

events needs to have unstable particles in the final state, in the opposite case, MadSpinwill

crash.

reweight=ON −→ Allows to associate to each events additional weights ac-

cording to a different theoretical hypothesis. At current stage the only difference between

the two theoretical hypothesis is those that correspond to a difference in the input param-

5For scripting we strongly discourage to use the number in the script file, and encourage to use the full

flag identifier (madspin=OFF)

– 19 –

eter file (i.e. in the param card.dat file). Additional reweighing for scale/pdf uncertainty

are available via the SysCalc module .

By entering 0, or done or by simply hitting return, that talk-to phase ends and a second

one starts for the edition of the parameter/external tools, the exact question depends of

the requested modeled that are allowed to run. For example for a run with pythia module

activated, the question will be:

Do you want to edit a card (press enter to bypass editing)?

1 / param : param card.dat

2 / run : run card.dat

3 / pythia : pythia card.dat

9 / plot : plot card.dat

you can also

- enter the path to a valid card or banner.

- use the ’set’ command to modify a parameter directly.

The set option works only for param card and run card.

Type ’help set’ for more information on this command.

- call an external program (ASperGE/MadWidth/...).

Type ’help’ for the list of available command

[0, done, 1, param, 2, run, 3, pythia, 4, enter path, ...][60s to answer]

By typing one of the number and/or the associate name, you will open a text editor. 6

which allows to edit the file directly, the format of the file are most of the time self-

explanatory and are quickly introduce below 7 In addition to the manual edition of the

file, some special function are available to edit those cards automatically. Currently three

commands are defined: set, compute widths, asperge.

• set (syntax: set NAME VALUE) allows to edit the param card and run card with-

out to have to open the file, this command allows easy scripting of the edition of the

cards and allows easy scan over parameter.

• compute widths (syntax: compute widths PARTICLE(S) [OPTIONS]) compute the

width (2 body decay and more if the code detects that two body is not the dominant

contribution) at Tree-level and in the Narrow-width approximation via the madwidth

module. If some of the width definition present in the param card are set to the

value Auto those widths will be computed in top of the list define in this command.

If some width are left to Auto when the edition of the cards is completed then

MadEvent will automatically called madwidth before starting the computation of

the cross-section.

• Asperge (syntax AsperGe [BLOCK NAME]) allows to perform mass-matrix diago-

nalization for the currently define parameter sets. This is only valid for a restricted
6By default, we use the one define in the sh variable $EDITOR, if not define when then use vi this

setting can be modify via the configuration file of MadGraph5 aMC@NLO.
7Details on the meaning of the various parameter of the run card are available at the following FAQ:

https://answers.launchpad.net/mg5amcnlo/+faq/2014 .

– 20 –

class of UFO models which include the asperge [?] module, this commands doesn’t

do anything if the module is not available.

Let’s discuss here what those card are.

param card The param card contains all the external parameter of your model. If you

enter ”1” or ”param” to the last question you will open that card in a text editor (vi or

emacs by default) This one should looks like this (Note that I put only a part of the Card):

###################################

INFORMATION FOR FRBLOCK

###################################

Block frblock

1 2.000000e+02 # MM1

2 3.000000e+02 # MM2

3 5.000000e+01 # MM12

4 1.000000e+00 # lam1

5 1.000000e+00 # lam2

6 1.000000e+00 # lam1p

7 1.000000e+00 # lam2p

Block mass

5 4.700000e+00 # MB

6 1.720000e+02 # MT

15 1.777000e+00 # MTA

23 9.118760e+01 # MZ

25 1.200000e+02 # MH

9000008 5.000000e+02 # Muv

9000009 2.500000e+02 # Mev

Not dependent paramater.

Those values should be edited following the

analytical expression. MG5 ignore those values

but they are important for interfacing the output of MG5

to external program such as Pythia.

12 0.000000 # ve : 0.0

14 0.000000 # vm : 0.0

16 0.000000 # vt : 0.0

As it is clearly stated, some of the value of the param card are not used By MG since

those are in fact fixed by the UFO model. Those information are nonetheless important

for shower program (like Pythia).

Note that in general the entry for the param card are not independent one of each

other. One example is the fact that some matrix need to be unitary. A more annoying

case is the the width of the particles which are correlated to the mass spectrum in a non

trivial way.

– 21 –

A FeynRules/MadGraph collaboration solves this problem by, first, including in the

UFO model a module able to compute all the two body decay partial and secondly use a

dedicated tool to compute the three (and higher) body decay if it is necessary (the code

determines automatically if it is the case or not). In the context of this model, the two

body decay formula provided by FeynRules are actually enough. In order to use those

module, you just have to replace the width value by ”Auto”.

###################################

INFORMATION FOR DECAY

###################################

DECAY 6 1.508336e+00 # WT

DECAY 23 2.495200e+00 # WZ

DECAY 24 2.085000e+00 # WW

DECAY 25 5.753088e-03 # WH

DECAY 9000006 Auto # Wpe1

DECAY 9000007 Auto # Wpe2

DECAY 9000008 Auto # Wuv

DECAY 9000009 Auto # Wev

At the time of the running of your code, you will see that your param card would have

been automatically updated and should contain the following information:

PDG Width

DECAY 9000006 0.000000e+00

#

PDG Width

DECAY 9000007 1.233920e+00

BR NDA ID1 ID2 ...

5.000000e-01 2 9000009 -11 # 0.61696

5.000000e-01 2 -9000009 11 # 0.61696

#

PDG Width

DECAY 9000008 5.400300e+00

BR NDA ID1 ID2 ...

5.858749e-01 2 2 9000006 # 3.1639

4.141251e-01 2 2 9000007 # 2.2364

#

PDG Width

DECAY 9000009 2.934500e-01

BR NDA ID1 ID2 ...

1.000000e+00 2 11 9000006 # 0.29345

run card The run card contains all the parameter which are not model dependent. This

include

– 22 –

• The parameter of the beam (energy, type, pdf, polarization)

• How to treat the scale.

• If and how to run matching (see the associate lectures)

• All the cuts that you want to perform at the parton level

Most of those are self-explanatory but few of them needs some explanation. Informa-

tion about those parameter can be found here: https://answers.launchpad.net/madgraph5/+faq/2014

4.2.2 Generation of events with decay

In this case, the number of decay channels is quite limited, it’s therefore possible to pre-

scribe all the steps of the decay chain. The syntax for the decay chains is the following:

the production first, then the decays of the final states separate by a comma. To avoid

ambiguity parenthesis should be present in the case of sub-decay.

import model MC4BSM_2012_UFO

generate p p > uv uv~ , uv > u p1, uv~ > u~ p1

define l = e+ e-

define lv = ev ev~

add process p p > uv uv~, uv > u p1, \

(uv~ > u~ p2, (p2 > l lv, lv > l p2))

add process p p > uv uv~, uv~ > u~ p1,\

(uv > u p2, (p2 > l lv, lv > l p2))

add process p p > uv uv~, (uv > u p2, (p2 > l lv, lv > l p2)), \

(uv~ > u~ p2, (p2 > l lv, lv > l p2))

output

launch

The validity of this calculation must be considered, since specifying the decay sequence

means the contribution of non-resonance Feynman diagram have been neglected. This is

however valid since the interferences with those diagrams are negligible if the intermediate

particles are on-shell. In order to ensure such a condition, we have associate to each of the

decaying particles an additional cuts called BW cut :

|mvirt −m0| < BWcut ∗ Γ

This cut can be specified in the run card.dat.

If you have installed the MadAnalysis package, you should have automatically dis-

tributions created at parton level, after Pythia and at the reconstructed level –if runned–.

Those one can be used to check the sanity of the productions but also to search the potential

observables of this production.

– 23 –

5. NLO cross-section computation and event generation with MadGraph5 aMC@NLO

In this section we will familiarise with the NLO output of MadGraph5 aMC@NLO, in

particular with the different operations that can be performed with it.

We first need to generate our process at NLO, wchich can be done using the syntax

import model MODELNAME

generate PROCESS [QCD]

output myproc_folder

where PROCESS is the process one is interested in, using the usual syntax (no decay chains

are allowed at NLO), and [QCD] means “do NLO in QCD”. After these commands one

should have a folder called myproc folder with the relevant code inside. For the scope of

this tutorial, we need to generate two processes: The first is the same as in Sec. ??

import model Tutorial

generate p p > uv uv~ [QCD]

for which we will compute the NLO K-factor in Sec. ??. The second process is top pair pro-

duction, which will be used to explore the NLO capabilities of MadGraph5 aMC@NLO

import model sm

generate p p > t t~ [QCD]

5.1 Fixed order runs

In this part of the tutorial we will compute the (LO and) NLO cross-section for p p > uv

uv~.

After having exported the process inside myproc folder with the commands

import model Tutorial

generate p p > uv uv~ [QCD]

output myproc_folder

we can start a computation by typing

> cd myproc_folder

>./bin/aMCatNLO

myproc_folder> launch

This will start the talk-to phase, where we can choose the run mode and edit the relevant

cards.

If we are just interested in the computation of the total cross-section, we can avoid the

generation of events, and stick to a simpler, fixed-order run. In order to do this, one can

just type

fixed_order=ON

In order to compute the K-factor, we will need two subsequent runs, one with

– 24 –

order=NLO

(default choice), and one with

order=LO

Once we have set the run mode, we can move on to the card editing phase simply by hitting

return. Once we are done, we can start the run simply by hitting return again. The run will

now start: the code is compiled, then some sainity checks (poles of virtual matrix-elements,

soft and collinear behaviour of the counterterms) are run, finally the cross-section is com-

puted.

If scales and/or PDF uncertainties are asked for in the run card.dat (the default setting

is to compute only scale uncertainties, as for the PDF ones one needs to link LHAPDF),

they are printed at the end of the run.

Using the results of the two runs, compute the K-factors and comment on the uncer-

tainties. Results and run summary can be found inside the Events/run * directories.

5.2 Event generation

After having familiarised with the fixed-order runs, we will learn how to generate a set of

unweighted (up to a sign) events, to be passed to a parton shower. Please note that NLO

event samples are not physical unless they are showered with the parton-shower they have

been generated for which means that one cannot use these events to obtain parton-level

results (unlike at LO), and has to generate a different sample for each parton-shower one

wants to interface to. Because of some limitations in the interface to parton-showers, we

have to stick to a SM process (p p > t t~). It can be generated with

generate p p > t t~ [QCD]

output myproc_folder_2

Again, to start the computation, we type

>./bin/aMCatNLO

myproc_folder> launch

but as this time we are not interested in fixed-order runs, we will set

fixed_order=OFF

We can either choose to run the shower right after the event file is created, or in another

moment. This can be done setting

shower=ON / shower=OFF

In this case, for the sake of simplicity we will let the parton shower decay the top quarks,

so we will keep

madspin=OFF

– 25 –

In the default running mode, the shower will produce a .hep (if the shower is Pythia6

or Herwig6) or .hepmc file (if Pythia8 or Herwig++ are used). In both cases Mad-

Analysis 5can be used to analyse these files. The desired shower can be set in the

run card.dat. Please note that in order to have Pythia8 or Herwig++ working, one

need to have them installed on his machine, and to set some relevant paths inside the

Cards/amcatnlo configuration.txt file. If the selected shower is Pythia6 or Herwig6,

nothing has to be done, as the source files are shipped with MadGraph5 aMC@NLO.

Again, the talk-to phase (run mode choice and card editing) can be concluded by hitting

return.

Each parton-level .lhe file can be found in a different Events/run * directory, together

with all the HEP(MC) files obtained by showering it. A .lhe file can be reshowered as

many times as one wants, simply with the command (assuming one wants to shower the

event file in the run XX directory)

./bin/shower run_XX

From the showered files, obtain the LO and NLO distributions for the pT of the top

quark, and for the (cosine of the) azimuthal separation between the leptons coming from

the top quark decay:

cosϕll′ =
p⃗T (l) · p⃗T (l′)
|p⃗T (l)||p⃗T (l′)|

(5.1)

5.3 Spin correlated decay

The last step of this section allows us to improve the predictions obtained at the end of

the previous section by including consistently the effects of spin-correlations in the decay

of heavy particles (top quarks in our case). We remind the definition of spin correlations:

consider the process

x+ y → u1 + . . . up + s1 + . . . sq +X , (5.2)

i.e. the inclusive production of p unstable particles ui and q stable particles sj . Suppose

we are interested in some decay mode of the unstable particles

ui → d1,1 + . . . d1,n1 . (5.3)

The process is said to have decay spin-correlations if its amplitude depends in a non trivial

manner on any dk,i · dk,j scalar product. It is said to have production spin-correlations if

the amplitude depends on any dk,i · dk′,j , dk,i · sl, dk,i · x or dk,i · y scalar product.

When the decay of heavy particles is performed by the parton shower, all produc-

tion spin-correlation are lost, because the squared matrix-element is factorised into the

product of the squared production matrix element times the squared matrix elements

for the decay of unstable particles, missing all quantum interferences. Within Mad-

Graph5 aMC@NLO, a package for the consistent inclusion of all spin correlations is

included. This package is MadSpin(details can be found in arXiv:1212.3460).

– 26 –

As for the shower phase, MadSpincan be run together with the event-generation or

on a pre-generated event file (as many times as one wants). In the first case one has to set

madspin=ON

in the talk-to phase at the beginning of the run; in the second case one can decay an

existing event file (say, the one in run XX) with the command

./bin/aMCatNLO

> decay_events run_XX

In both cases, the decay channel one wants has to be specified inside the madspin card.dat.

For example, the dileptonic decay of the tt̄ pair can be specified by writing

decay t > w+ b, w+ > e+ ve

decay t~ > w- b~, w- > mu- vm~

in the card. Multiparticle labels can be also used in the decay chains.

Note that currently MadSpinis limited to only handle decay chains which can be written

in term of sequence of 1 → 2 decays.

The .lhe file with the decay can be found inside the run XX decayed YY folder, where

XX is the same name as the undecayed file, and YY is a progressive integer.

From the showered decayed file, obtain the distributions for the pT of the top quark,

and for the (cosine of the) azimuthal separation between the leptons coming from the top

quark decay, and compare them with those obtained at the end of sec. ??.

6. Phenomenological analyses with MadGraph5 aMC@NLO andMadAnal-

ysis 5

In this section, we present in details how to use MadGraph5 aMC@NLO and Mad-

Analysis 5 to investigate the properties of a Z+jets event sample. For the setup of the

collisions, we choose the LHC collider running at a center-of-mass energy of 8 TeV. We

focus on events where the Z-boson decays leptonically but we neglect, for the sake of the

example, the τ+τ− channel. We also include virtual photon exchange diagrams as the

related effects cannot be neglected.

6.1 Event generation with MadGraph5 aMC@NLO

Matrix-element generator based event samples are accurate enough for describing hard and

widely separated parton emissions. In contrast, it is known that this method breaks down

in the soft and collinear limit. In this case, parton showering algorithms must be used for

a proper description of the properties of the process under consideration. In the sequel, we

therefore employ the MLM merging procedure, based on event rejection, to combine the

strengths of matrix elements and the ones of parton showering in a consistent way.

– 27 –

As stated above, we focus on the generation of events related to a final state containing

a pair of charged leptons, together with possible additional jets. In order to appropriately

describe the kinematical properties of these jets, we merge matrix elements containing up

to two additional hard jets to parton showering by employing the MLM merging scheme

as implemented in MadGraph5 aMC@NLO.

Z+jets events can be efficiently generated in MadGraph5 aMC@NLO by means of

multiparticles. Employing the two predefined symbols l+ and l- that represent electrons

and muons, the computation of the relevant matrix element is performed by typing in the

command line interface of MadGraph5 aMC@NLO

generate p p > l+ l-

add process p p > l+ l- j

add process p p > l+ l- j j

output FR_MG5aMC_MA5

launch -m

Let us note that writing the process in such a way allows to consistently include virtual

photon contributions, in contrast to generate p p > Z, Z > l+ l- where the Z-boson is

produced on-shell, the invariant mass of the lepton pair being always equal to the Z-mass.

MadGraph5 aMC@NLO then asks to configure the cards with the setup for event

generation. The file param card.dat containing the model parameters does not have to

be modified, since we are using the default settings for the Standard Model. The latter

can be inspected by browsing the built-in model library of MadGraph5 aMC@NLO. In

a second step, the run card.dat file must be edited so that the following information are

provided to MadGraph5 aMC@NLO:

• For the sake of the example, we ask to generate 25000 events. The nevents parameter

of the run card must be updated accordingly.

• The beam energy has to be fixed to 4000 GeV (for each beam). The parameters

ebeam1 and ebeam2 have to be updated.

• The MLM merging procedure must be switched on (1 = ickkw).

• Since the cuts on the jets are automatically handled by MadGraph5 aMC@NLO,

the parameter auto pt mjj being set to true, all pT -cuts can be safely removed.

• For the same reasons, cuts on the angular distance ∆R between jets can also be

removed from the run card.

• The Drell-Yan cross section explodes at low lepton-pair invariant mass. Therefore, a

cut on the corresponding parameter must be added. We choose 50 = mmll.

• The merging control parameter xqcut must be set. We choose to fix it to 10 GeV.

The consistency of such a choice will have to be verified after event generation (by

investigating the smoothness of the differential jet rate distributions). This will be

performed below.

– 28 –

Finally, the file controlling Pythia, pythia card.dat, contains default values (see the

directory Cards and the file pythia card default.dat).

The event generation process leads to the creation of a collection of event files. We

focus in the analysis on two of them all stored in the directory

<path-to-MGaMC>/FR MG5aMC MA5/Events/run 01:

• The hadron-level event file, including parton showering, hadronization and merging,

fermi pythia events.hep.gz,

• The reconstructed-level event file, including parton showering, hadronization and

merging, fermi pythia events.lhe.gz. In contrast to the hep file above, jet clus-

tering has been performed by means of the program FastJet called by the Hep2Lhe

routine. It consequently produces a simplified lhe file, with reconstructed objects,

such as electrons, muons, photons, jets or missing energy, instead of tons of hadrons.

6.2 Analyzing reconstructed events with MadAnalysis 5

In this section, we show how to investigate the properties of the event file fermi pythia

events.lhe.gz. This file contains events where jets have been, internally toMadGraph5 aMC@NLO,

clustered by means of a kT -clustering algorithm.

6.2.1 Getting started

First, MadAnalysis 5 has to be launched by issuing in a shell

bin/ma5

from the directory where MadAnalysis 5 has been installed (see above). On start-up,

two lists of labels corresponding to standard definitions of particles and multiparticles are

loaded into the memory of the current session of the program. Among these, one finds labels

for the charged leptons l+ and l-, for the jets j, for the invisible particles invisible and

for the particles taking part to the hadronic activity of the event hadronic.

Next, the generated event sample has to be loaded inside the current session of Mad-

Analysis. This is achieved by typing in the command line interpreter

import <path-to-the-event-file>/fermi_pythia_events.lhe.gz as zjets

where zjets is a user-defined label for the dataset containing the sample. MadGraph5 aMC@NLO

being used as a leading-order Monte Carlo generator, the returned value for the cross sec-

tion is given at the leading-order accuracy. However, the cross section for the Drell-Yan

process is known at the next-to-next-to-leading order. Employing the Fewz program, one

obtains σDY = 2263 pb. This information can be passed to MadAnalysis 5 for a more

precise normalization of the distributions,

set zjets.xsection = 2263

We are now ready to investigate the properties of our event sample.

As a first example, we would like to get an idea of the particle content of the events.

To this aim, it is sufficient to type in the command line interpreter of MadAnalysis 5

– 29 –

|NPID|
e+/e- ve~/ve mu+/mu- g

)
-1

 =
 1

0
fb

in
t

N
. o

f p
ar

tic
le

s
(

L

0

2

4

6

8

10

12

14

16

18

20

22

610×

Figure 1: Particle content of the Z+jets event sample.

plot NAPID

submit zjets

where we map particles and antiparticles (otherwise, the corresponding command would

be plot NPID). The initial and intermediate particles present in the event file are auto-

matically ignored by MadAnalysis 5, even if this default behavior can be modified by

the user if necessary (we refer to the manual for more information). The result can be

displayed by typing open. The corresponding histogram is presented on Figure ??. One

observes the presence of 4 types of particles:

• electrons,

• muons,

• missing energy (which is assigned the PDG code of the electronic neutrino according

to the simplified lhe format used by MadGraph5 aMC@NLO). Let us note that

the computation of the missing energy is always based on the visible particles of the

event and that care must be taken to the employed definition. The latter can indeed

differ among the different available Monte Carlo and analysis tools.

• jets (which are assigned the PDG code of the gluon according to the simplified lhe

format used by MadGraph5 aMC@NLO).

One can also note that MadAnalysis 5 indicates on the webpage that the event weight is

too large (∼ 1800) and that additional events should be generated. This weight has been

computed according to the entered value for the cross section and the integrated luminosity

(that can be change via set main.lumi = ...). By default, MadAnalysis 5 assumes an

integrated luminosity of 10 fb−1.

– 30 –

N [e]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

0

2000

4000

6000

8000

10000

310×

N [mu]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

0

2000

4000

6000

8000

10000

310×

N [l]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

0

2

4

6

8

10

12

14

16

18

20

22

610×

Figure 2: Lepton multiplicity of the Z+jets event sample.

6.2.2 Lepton properties - a few examples

From Figure ??, we know that our event sample contains (among others) electrons and

muons and we now study their kinematical properties. The set of commands

define e = e+ e-

define mu = mu+ mu-

define l = l+ l-

plot N(l) 5 0 5

plot N(e) 5 0 5

plot N(mu) 5 0 5

resubmit

allows, in a first stage, to define three multiparticle labels. While e and mu refer to electrons

and muons, respectively, l refers to any type of charged leptons of the first two generations.

Each of the next three commands ask for the production of one histogram. The layout

of those histograms is such that they contain 5 bins on the x-axis ranging from 0 to 5.

One observes the results on Figure ??. As expected, each event contains thus either two

electrons or two muons, both issued from the decay of the Z-boson. This can be also

illustrated by computing the dilepton invariant-mass distribution,

plot M(l+ l-) 50 0 200 [logY]

resubmit

where we ask for 50 bins ranging from 0 to 200 GeV and a logarithmic scale for the y-axis.

We obtain the results of Figure ??. We have several entries in the bins related to the

region mll < 50 GeV. Those are pure effects of the parton showering, hadronization and

object reconstruction since we remind our parton-level cut enforcing mll > 50 GeV. To

achieve our investigation of the lepton properties, let us generate a selection of additional

histograms illustrating some of the possibilities of MadAnalysis 5

plot PT(l[1]) 30 0 250 [logY]

plot ETA(l[2]) 30 -5.5 5.5 [logY]

plot DELTAR(l[1],l[2]) 30 0 6 [logY]

resubmit

The first command addresses the transverse-momentum distribution of the leading lepton,

the second one the pseudo-rapidity distribution of the next-to-leading lepton and the third

– 31 –

) 2M [l+ l-] (GeV/c
0 20 40 60 80 100 120 140 160 180 200

)
-1

 =
 1

0
fb

in
t

N
. o

f l
+

 l-
 p

ai
rs

 (
 L

410

510

610

710

Figure 3: Dilepton invariant mass for a Z+jets event sample.

N [j]
0 1 2 3 4 5 6 7 8 9 10

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

410

510

610

710

Figure 4: Jet multiplicity in a Z+jets event sample.

one the angular distance in the η − φ plane between the two leptons. The number of bin

and the values for the lowest and highest bins are indicated for each case, and we employ

a logarithmic scale for the y-axis. We leave this exercise to the reader and do not show the

results in the present manuscript.

6.2.3 Jet properties - a few examples

The same exercise as in the previous section can be performed with the jets. Issuing

plot N(j) 10 0 10 [logY]

resubmit

– 32 –

] (GeV/c)
1

 [j
T

p
0 20 40 60 80 100 120 140 160 180 200

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

410

510

610

] (GeV/c)
2

 [j
T

p
0 20 40 60 80 100 120 140 160 180 200

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

310

410

510

610

] (GeV/c)
3

 [j
T

p
0 20 40 60 80 100 120 140 160 180 200

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

310

410

510

610

] (GeV/c)
4

 [j
T

p
0 20 40 60 80 100 120 140 160 180 200

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

310

410

510

Figure 5: Transverse-momentum distributions of the four leading jets for a Z+jets event sample.

leads to the results of Figure ?? which shows that after parton showering, one has much

more than two jets in the events. For some rare events, one even has up to eight jets.

At the matrix-element level, we have accounted for up to two extra hard jets. As shown

in Figure ??, parton showering yields much more (soft) jets in the final state. Jet hardness

(and softness) can be checked by investigating the transverse-momentum distributions of,

e.g., the four leading jets. This is achieved by issuing in the interpreter the commands

plot PT(j[1]) 30 0 200 [logY]

plot PT(j[2]) 30 0 200 [logY]

plot PT(j[3]) 30 0 200 [logY]

plot PT(j[4]) 30 0 200 [logY]

resubmit

One gets the results of Figure ??. As expected, the two leading jets are indeed much harder

than the others, since these two jets can be described already by the matrix-elements, in

contrast to all the other jets. Inspecting the left part of the four figures, one observes a

cut on jet transverse-momentum which has been automatically assigned by the merging

algorithm implemented in MadGraph5 aMC@NLO.

The merging procedure also impose a cut on the angular distance among the jets. To

illustrate this effect, we choose to represent by an histogram this observable,

plot DELTAR(j[1],j[2]) 30 0 10

plot DELTAR(j,j) 30 0 10 [logY]

– 33 –

]
2

, j
1

R [j∆
0 1 2 3 4 5 6 7 8 9 10

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

0

100

200

300

400

500

600

700

310×

R [j, j] ∆
0 1 2 3 4 5 6 7 8 9 10

)
-1

 =
 1

0
fb

in
t

N
. o

f (
j,

j)
pa

irs
 (

 L

310

410

510

610

Figure 6: Distribution of the angular distance among the jets for a Z+jets event sample.

N [j]
0 1 2 3 4 5 6 7 8 9 10

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

410

510

610

710

R [j, j] ∆
0 1 2 3 4 5 6 7 8 9 10

)
-1

 =
 1

0
fb

in
t

N
. o

f (
j,

j)
pa

irs
 (

 L

210

310

410

Figure 7: Distribution of the jet multiplicity and of the angular distance among the jets for a

Z+jets event sample, after only considering jets with a transverse momentum harder than 70 GeV.

resubmit

With the first command, we focus on the ∆R between the two leading jets, whilst while

with the second command, we add one entry in the histogram for each different dijet

combination that can be formed from the event particle content. The results are shown on

Figure ??. The effect of the merging corresponds to the drop between zero and one, since

a cut on the angular distance between jets is internally applied. Moreover, the shape of

the distributions in the right panel comes mainly from the softer jets.

It could be useful (as it is the case for most phenomenological analyses), to consider

as jets only jet candidates whose the transverse momentum is harder than some threshold.

From Figure ??, one observes that setting this threshold to 70 GeV allows to get rid of

most of the soft jets. Only the leading and possibly the next-to-leading jets remain. In

some rare cases, we also have a three-jet configuration.

Such a cut and its effects can be studied by issuing

select (j) PT>70

plot N(j) 10 0 10 [logY]

plot DELTAR(j,j) 30 0 10 [logY]

resubmit

– 34 –

 (GeV) TE
0 5 10 15 20 25 30 35 40 45 50

)
-1

 =
 1

0
fb

in
t

E
ve

nt
s

 (
 L

410

510

610

Figure 8: Missing transverse energy distribution for a Z+jets event sample.

The selection cut imposed by means of the command select does not reject any event

at all. It only removes one or several objects from the analysis. In this case, jets with a

transverse momentum smaller than 70 GeV are ignored. In order to reject or select entire

events according to some criterion, we refer to the next section. The results are shown on

Figure ??. One observes that the maximum jet multiplicity reaches the value of 3, whilst

the considered (harder) jets are rather well separated.

As an exercise, it is left to the reader to probe various angular distances or invariant-

mass distributions among jet and lepton combinations. Transverse-momentum distribu-

tions associated to the combination of different particle can also be probed.

6.2.4 The missing energy

To achieve our illustration of the properties of our event sample, we know tackle the missing

energy distribution. The latter is hard-coded in MadAnalysis 5, and it is enough to type

plot MET 30 0 50 [logY]

resubmit

The results are presented in Figure ??. In the case one is only interested in events with a

missing energy smaller than a given value, the selection cut

select MET<25

resubmit

allows to reject any event that the missing energy is larger than 25 GeV. MadAnalysis 5

automatically compute the cut-flow chart for the user. In the case there are several samples

and in particular background and signal samples, the signal over background ratio and the

related uncertainty are automatically calculated.

6.3 Controlling the merging procedure with MadAnalysis 5

In order to control that the merging procedure and in particular our choice for the merging

parameters (in other words, the xqcut parameter of the run card), the best way is to

check differential jet rate distributions. These observables allow to measure how smooth

– 35 –

log10(DJR1)
0 0.5 1 1.5 2 2.5 3

C
ro

ss
 s

ec
tio

n
(p

b/
bi

n)

-110

1

10

Sum
0-jet sample
1-jet sample
2-jet sample
3-jet sample
4-jet sample

log10(DJR2)
0 0.5 1 1.5 2 2.5 3

C
ro

ss
 s

ec
tio

n
(p

b/
bi

n)

-110

1

10

Sum
0-jet sample
1-jet sample
2-jet sample
3-jet sample
4-jet sample

log10(DJR3)
0 0.5 1 1.5 2 2.5 3

C
ro

ss
 s

ec
tio

n
(p

b/
bi

n)

-110

1

10

210 Sum
0-jet sample
1-jet sample
2-jet sample
3-jet sample
4-jet sample

log10(DJR4)
0 0.5 1 1.5 2 2.5 3

C
ro

ss
 s

ec
tio

n
(p

b/
bi

n)

-110

1

10

210 Sum
0-jet sample
1-jet sample
2-jet sample
3-jet sample
4-jet sample

Figure 9: Differential jet rate distributions allowing to control the merging procedure.

the transition from a N -jet configuration to a N + 1-jet configuration can be and are thus

directly sensitive to the merging procedure. In the case of the transition N → N + 1, the

differential jet rate variable is defined as the scale at which an event passes from a N -jet

to a N + 1-jet configuration, after clustering the showered partons into jets (but before

hadronization).

MadAnalysis 5 allows to generate histograms representing differential jet rate dis-

tributions related to a given event sample. In order to test if the merging procedure has

been correctly performed, it is necessary to start from an event file containing showered

events that have not passed through an hadronization algorithm. Unfortunately, we do not

have such a file. However, the StdHep sample that has been generated at the time of the

Monte Carlo simulation contains the necessary information. MadAnalysis 5 is capable

of automatically distinguishing the parton showering phase from the hadronization stage

and can thus generate the relevant histograms allowing to check the merging procedure.

Jet clustering is performed with the help of FastJet, a kT jet-algorithm being em-

ployed with a radius parameter set to R = 1.0. Since the merging procedure performed at

the time of event generation is based on an earlier version of FastJet with respect to the

one included in MadAnalysis 5, some minor issues can be expected, as it will be shown

below. However, the latter are statistically negligible and do not alter the smoothness of

the curves which prove the goodness of the merging.

First, as hadron-level events are about to be imported, MadAnalysis 5 must be run

in the hadron-level mode,

– 36 –

bin/ma5 -H

Next, FastJet must be installed and linked to MadAnalysis 5. This procedure is auto-

mated and it is sufficient to type in the command line interface

install fastjet

Events can then be loaded as illustrated in the previous subsection and the cross section

set according to next-to-next-to-leading order results

import <path-to-the-event-file>/fermi_pythia_events.hep.gz as zjets

set zjets.xsection = 2263

We are now ready to ask MadAnalysis 5 to generate the histograms allowing to check

that the merged event sample behaves correctly. To this aim, it is enough to type in the

interpreter,

set main.merging.check = true

submit

open

The histograms created by MadAnalysis 5 are presented on the four panels of Figure

??. They illustrate a transition from 0 to 1 jet (top, left), 1 to 2 jets (top, right), 2 to 3

jets (bottom, left) and 3 to 4 jets (bottom, right). One observes that a choice of xqcut

equal to 10 GeV is a good choice, all the four summed curves being smooth enough. One

also notes that the merging scale cannot be perfectly read from the figures (Qmatch ≈
20 GeV), in contrast to the merging plots generated by the MatchChecker package

of MadGraph5 aMC@NLO. This is related to the version issues of FastJet above-

mentioned. One can however check that only a statistically small number of events are

concerned and are irrelevant with respect to the smoothness of the summed curves.

Let us note that by default, MadAnalysis 5 generates four histograms, but histograms

representing differential jet rate distributions associated to higher jet multiplicities can be

created by typing in the interpreter

set main.merging.njets = <N>

where <N> is an integer number to be chosen by the user.

6.4 Jet clustering and hadron-level analysis with MadAnalysis 5

To achieve this section on the possibilities of MadAnalysis 5, we now focus on the analysis

of the StdHep file generated by Pythia, after parton showering and hadronization. For

comparison purposes, the same analysis as in Section ?? will be performed. However,

before moving on, let us comment briefly on the expected differences between the analysis

of the Lhe file and the one of the Hep file.

First of all, the Hep file contains tons of hadrons that must be clustered into jets. Since

the jet clustering algorithm that we will adopt is different as the one internally employed in

the Hep2Lhe routine of MadGraph5 aMC@NLO, differences in jet-related distributions

– 37 –

can be expected. For the sake of the example, we choose to use an anti-kT algorithm with

a radius parameter set to R = 1.0 and a minimum transverse-momentum of 5 GeV. This

is achieved by first starting MadAnalysis 5 in the reconstructed-level mode,

bin/ma5 -R

and then typing the commands

set main.fastsim.package = fastjet

set main.fastsim.algorithm = antikt

set main.fastsim.ptmin = 5

set main.fastsim.radius = 1

import <path-to-the-event-file>/frmg.hep.gz as zjets

set zjets.xsection = 2263

set main.normalize = lumi

where the two last command lines ensure a correct normalization of the histograms to be

generated. We recall that by default, in the reconstructed-level mode, the histograms are

not normalized at all and each event has a weight of one. In order to remove the very soft

jets issued from parton showering and hadronization, we decide to only keep in the analysis

jets with a transverse-momentum higher than 10 GeV,

reject (j) PT < 10

Moreover, the Hep2Lhe routine also contains a rough detector simulation, in contrast

to MadAnalysis 5 which does not alter the reconstructed objects as this task is left for

a fast detector simulation program possibly employed by the user. On the same lines,

non-isolated leptons generated by the hadronization procedure are kept in MadAnalysis

5 while they are removed by the Hep2Lhe routine. Since those leptons are usually soft,

they can be rejected from the analysis by employing a cut on their transverse momentum

that can be implemented as

reject (l) PT < 5

We are now ready to perform the same study as in Section ?? and try to understand

the differences between the results. This task is left as an exercise. In particular, attention

should be paid to the missing energy distributions and the particle content of the clustered

events.

Fast detector simulation by means of Delphes 3 could also be achieved. To this aim,

it is sufficient to type

install delphes

to install the Delphes 3 software within MadAnalysis 5. Then, it could be used on a

hadron-level event file as follows,

– 38 –

set main.fastsim.package = delphes

set main.fastsim.detector = cms

import <path-to-the-event-file>/frmg.hep.gz as zjets

submit

The root outputted by Delphes can then be subsequently analyzed or reused (it is located

in the working directory, in the Output subdirectory).

7. The simulation session

Once the model has been exported to MadGraph a first elementary phenomenological study

can be performed. Schematically this session proceeds as follows:

• Benchmark parameter setting

• Signal identification, simulation, and study

• Background identification, simulation and study

• Signal vs Background study

• Comparison with pseudo-experimental data.

To begin with let us assume that

MU > M2 > ME > M1 , (7.1)

provides a reasonable mass hierarchy and therefore Φ1 is the LNP. For U we consider three

scenarios, mU = 200, 400, 800 GeV, while we always take M2 = 100 GeV and ME = 50GeV

and M1 = 1 GeV.

Given that U is the only strongly interacting NP particle, this will be the one most

copiously produced at the LHC, via the same subprocesses as top-anti-top are produced:

p p → U U . (7.2)

Exercise 1: Generate the process at LO with MadGraph 5, and determine the cross section

at the LHC 8 TeV for the three benchmark values of the U mass. Optional: generate the

procecess at NLO with MadGraph 5 and find the K-factor for each of the three masses

above. To this aim, use the Tutorial NLO UFO model as provided in the Wiki page.

Next we consider the possible decay chains given the hierarchy of Eq. (??):

U →{u, c, t}Φ1 ,

U →{u, c, t}Φ2 , Φ2 → ℓE , E → ℓΦ1 ⇒ U → {u, c, t} ℓ+ℓ−Φ1 .
(7.3)

ℓ being a label that includes all flavor, ℓ = e, µ, τ . Obviously having the U decaying to a

light quark or a top gives very different final state signatures.

– 39 –

Exercise 2: First classify all possible final states in terms of the number of tops, jets

(j = u, c) and charged leptons. Then consider the two possible decay modes for the W in

the top decays, i.e. hadronically or leptonically.

For the sake of simplicity, in the following we will focus on the following simple signa-

tures:

I. pp → (U → jΦ1)(Ū → jΦ1) , i.e., pp → 2 jets + missing ET .

II. pp → (U → tΦ1)(Ū → t̄Φ1) , i.e., pp → tt̄ + missing ET .

III. pp → (U → jΦ1)(Ū → j ℓ+ℓ′−Φ1)+h.c , i.e., pp → ℓ+ℓ−+ 2 jets + missing ET .

IV. pp → (U → j ℓ+ℓ′−Φ1)(Ū → j ℓ+ℓ−Φ1) + h.c , i.e., pp → ℓ+ℓ−ℓ+ℓ−+ 2 jets +

missing ET .

Exercise 3: Pick one of the processes/signatures above, allowing yourself to select a

specific flavor assignment for the final state leptons. Calculate the corresponding rates

with MadGraph at LO. (You can proceed in various ways). Possibly, identify the cross

section corresponding to a simplified detector acceptance.

Exercise 4: Identify the dominant reducible and irreducible SM backgrounds to the signa-

tures above. Generate them with MadGraph, calculate the corresponding rates and order

them in importance. Justify the following choices for the dominant backgrounds:

I. pp → (Z → νν̄)+2 jets.

II. pp → tt̄

III. pp → tt̄ → ℓ+ℓ−+ 2 b-jets + missing ET

IV. pp → tt̄Z

Exercise 5: Depending on the chosen final state signature create the codes and do event

generation for the most relevant backgrounds:

I. pp → (Z → νν̄)+2 jets with the ME/PS merging of Z + 0, 1, 2 partons.

II. pp → tt̄ with aMC@NLO and the decays with the DecayPackage.

III. pp → tt̄ → ℓ+ℓ−+ 2 b-jets + missing ET with MC@NLO and the decays with the

DecayPackage.

IV. pp → tt̄Z → ℓ+ℓ−ℓ+ℓ− + 2 b-jets + missing ET with MadGraph 5 and the decays

with the DecayPackage.

Exercise 6: Study the distributions of the signal and the background in the acceptance

region and identify simple cuts to enhance S/
√
B keeping S/B as large as possible. Do

this via MadAnalysis 5.

Exercise 7: Compare your predictions with two sets (A and B) of pseudo LHC data. Set

limits or establish evidence of new physics in the data.

– 40 –

syntax example meaning

x, x> p p > z j, z > b b~ s.1

$ x p p > e+ e- $ z s.2

/ x p p > e+ e- / z s.3

> x > p p > z > e+ e- s.4

$$ x p p > e+ e- $$ z s.5

Table 3: Process-generation syntax refinements, also exemplified in the case of various processes

that involve a Z boson. See the text for the explanation of the keywords s.1–s.5.

8. Appendix: Generation Syntax

In the context of a LO-type generation, however, one can further refine the syntax above in

order to include in the computation only some of the contributions that one would normally

obtain. Such refinements are reported in table ??, and have the following meaning:

s.1 A production process is generated that features x in the final state, with x subse-

quently decaying into the list of particles that follow the “x >” string; more in gen-

eral, there may be p primary particles that play the same role as x. Only p-resonant

diagrams (see sect.undefinedare included in the computation. In the example of

table ??, one has the associated production of a Z and a jet, with the Z further

decayed into a bb̄ pair. Spin correlations and x off-shell effects are taken into account

exactly, but the virtuality m⋆
x of x is forced to be in the following range:

|m⋆
x −mx| ≤ bwcutoffΓx , (8.1)

where mx is the pole mass of x, Γx its width, and bwcutoff is a parameter controlled

by the user (through run card.dat). Syntax s.1 thus loosely imposes an on-shell

condition; it is called decay-chain syntax, and can be iterated: any decay product

can be decayed itself by using this syntax (e.g. x > y z, y > w s).

s.2 If x appears as an intermediate particle in the generated process, its virtuality is

forced to be in the range:

|m⋆
x −mx| > bwcutoffΓx , (8.2)

which is the region complementary to that of eq. (??), and thus loosely imposes

an off-shell condition. All diagrams are kept. In the example of table ??, one has

Drell-Yan production with the invariant mass of the e+e− pair larger than or smaller

than the Z mass by at least bwcutoffΓZ . A consequence of the complementarity

mentioned above is that, while cross sections generated with either s.1 or s.2 are

bwcutoff-dependent, their sum is not (up to interference terms, which are neglected

by the process of discarding non-resonant diagrams in s.1), and corresponds to the

process generated with the simplest syntax. For example:

dσ

dO
(p p > z) ≃ dσ

dO
(p p > z, z > e+ e−) +

dσ

dO
(p p > e+ e− $ z) , (8.3)

– 41 –

for any observable O.

s.3 All diagrams that feature (anywhere) the particle x are discarded.

s.4 The process is generated by demanding that at least one particle of type x be in an

s-channel.

s.5 All diagrams that feature the particle x in an s-channel are discarded.

We stress that all syntaxes but s.2 produce in general results which are non physical,

because gauge invariance might be violated (although there are exceptions: see e.g. ref. [?]),

and have therefore to be used with extreme caution.

– 42 –

