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Chapter 1Introdu
tionThe aim of these le
tures is a des
ription of the 
onstru
tion and the main phenomenologi
alimpli
ations of the Glashow-Weinberg-Salam uni�ed theory of weak and ele
tromagneti
 in-tera
tions (universally referred to as the standard model.) Basi
 knowledge in quantum �eldtheory [1℄,[2℄ and elementary group theory [3℄ is assumed, as well as familiarity with the funda-mental phenomenology of weak intera
tions [4℄.No attempt will be made to give a full list of referen
es. Su
h a list 
an be found in anystandard text book of parti
le physi
s; see for example refs. [4℄-[8℄.
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Chapter 2Constru
tion of the standard model
2.1 A gauge theory of weak intera
tionsOur starting point is the e�e
tive lagrangian that des
ribes weak intera
tion pro
esses at lowenergies. This lagrangian (often 
alled the Fermi lagrangian) has the form of a sum of produ
tsof ve
tor and axial ve
tor 
urrents. For example, the terms responsible for nu
leon � de
ay andfor muon de
ay are1L = �G(�)p2 p
�(1� a
5)n e
�(1� 
5)�e � G(�)p2 ��
�(1� 
5)� e
�(1� 
5)�e: (2.1.1)From the experimental values of the muon and neutron lifetimes,�(N) = 885:7� 0:8 s �(�) = 2:19703� 0:00004 s; (2.1.2)one obtains G(�) ' 1:16639� 10�5 GeV�2; G(�) ' G(�) � GF ; (2.1.3)while the value a = 1:239� 0:09 (2.1.4)
an be extra
ted from the measurement of hyperon de
ay rates.The �eld theory de�ned by the intera
tion in eq. (2.1.1) is manifestly not renormalizable,sin
e it 
ontains operators with mass dimension 6 (a ne
essary 
ondition for perturbative renor-malizability is that the lagrangian density 
ontains operators with mass dimension less than orequal to 4, see Appendix 4.1), and it gives rise to a non-unitary S matrix (see Appendix 4.2).However, it 
ontains all the physi
al information needed to build a renormalizable and unitarytheory of weak intera
tions.The idea is that of building a theory with lo
al invarian
e under the a
tion of some groupof �eld transformations, a gauge theory, in analogy with quantum ele
trodynami
s (see Ap-pendix 4.3). We will then require that the new theory redu
e to eq. (2.1.1) in the low-energy1Throughout these le
tures, parti
le �elds will be denoted by the symbol usually adopted for the 
orrespondingparti
le: e for the ele
tron, �e for the ele
tron neutrino, and so on.3



limit, in the sense that the lo
al four-fermion intera
tion of the Fermi lagrangian will be inter-preted as the intera
tion vertex that arises from the ex
hange of a massive ve
tor boson withmomentum mu
h smaller than its mass. In this way, both problems of renormalizability andunitarity will be solved, sin
e gauge theories are known to be renormalizable, and the mass ofthe intermediate ve
tor boson will a
t as a 
ut-o� that stops the growth of 
ross se
tions withenergy, thus ensuring unitarity of the s
attering matrix.In order to 
omplete this program, we must 
hoose the group of lo
al invarian
e, and thenassign parti
le �elds to representations of this group. Both these steps 
an be performed withthe help of the information 
ontained in the Fermi lagrangian. Let us �rst 
onsider the ele
tronand the ele
tron neutrino. They parti
ipate in the weak intera
tion via the 
urrentJ� = �e
�12(1� 
5)e: (2.1.5)We would like to rewrite J� in the form of a Noether 
urrent, i 
� TAij  j; (2.1.6)where  i are the 
omponents of some multiplet of the (as yet unknown) gauge group, and TAijare the 
orresponding generators. In the 
ase of J�, this 
an be done in the following way. Weobserve that the 
urrent J� 
an be written asJ� = L
��+L; (2.1.7)where L = 12(1� 
5) �ee ! �  �eLeL ! ; (2.1.8)�+ = 12(�1 + i�2) = " 0 10 0 # ; (2.1.9)and �i are the usual Pauli matri
es. The hermitian 
onjugate 
urrentJy� = L
���L; �� = 12(�1 � i�2) (2.1.10)will also parti
ipate in the intera
tion. The 
urrents are in one-to-one 
orresponden
e withthe generators of the symmetry group, whi
h, in turn, form a 
losed set with respe
t to the
ommutation operation: the 
ommutator of two generators is also a generator. Therefore, the
urrent J�3 = L
�[�+; ��℄L = L
��3L (2.1.11)will also be present. No other 
urrent must be introdu
ed, sin
e[�3; ��℄ = 2��: (2.1.12)We have thus interpreted the 
urrent J� as one of the three 
onserved 
urrents of a theory withSU(2) gauge invarian
e, the Pauli matri
es being the generators of SU(2) in the fundamental4



representation, and we have assigned the left-handed neutrino and ele
tron �elds to an SU(2)doublet. The right-handed neutrino and ele
tron 
omponents, �eR and eR, do not take part inthe weak-intera
tion phenomena des
ribed by the Fermi lagrangian, so they must be assignedto the singlet (or s
alar) representation. Of 
ourse, this is not the only possible 
hoi
e, but itis the simplest possibility (and also the 
orre
t one, as we will see) sin
e it does not require theintrodu
tion of fermion �elds other than the observed ones.The 
urrent J�3 is a neutral 
urrent: it 
ontains 
reation and annihilation operators of parti
leswith the same 
harge (a
tually, of the same parti
le). Neutral 
urrents do not appear in theFermi lagrangian; no neutral 
urrent phenomenon is observed in low-energy weak intera
tions.As we will see, the experimental observation of phenomena indu
ed by weak neutral 
urrents is a
ru
ial test of the validity of the standard model. Noti
e also that the neutral 
urrent J�3 
annotbe identi�ed with the only other neutral 
urrent we know of, the ele
tromagneti
 
urrent. Thisis for two reasons: �rst, the ele
tromagneti
 
urrent involves both left-handed and right-handedfermion �elds with the same weight; and se
ond, the ele
tromagneti
 
urrent does not 
ontain aneutrino term, the neutrino being 
hargeless. We will 
ome ba
k later to the problem of neutral
urrents, that will end up with the in
lusion of the ele
tromagneti
 
urrent in the theory. For themoment, we go on with the 
onstru
tion of our SU(2) gauge theory. We must introdu
e ve
tormeson �elds W �i , one for ea
h of the three SU(2) generators, and build a 
ovariant derivativeD� = �� � igW �i Ti; (2.1.13)where we have introdu
ed, as is 
ustomary in gauge theories, a 
oupling 
onstant g. The matri
esTi are generators of SU(2) in the representation of the multiplet the 
ovariant derivative is a
tingon. For example, when D� a
ts on the doublet L, we have Ti � �i=2, and when it a
ts on thegauge singlet eR we have Ti � 0. We are now ready to write the gauge-invariant lagrangian forthe fermion �elds (whi
h we assume massless for the time being):L = iLD=L+ i�eRD= �eR + ieRD= eR= Lkin + L
 + Ln (2.1.14)where D= = 
�D�. The lagrangian L 
ontains the usual kineti
 term for massless fermions,Lkin = iL �=L + i�eR �= �eR + ieR �= eR; (2.1.15)plus an intera
tion term L
 + Ln, whereL
 = gW �1 L
� �12 L + gW �2 L
� �22 L (2.1.16)
orresponds to 
harged-
urrent intera
tions, andLn = gW �3 L
� �32 L = g2W �3 (�eL
��eL � eL
�eL) (2.1.17)to neutral 
urrent intera
tions. The 
harged-
urrent term L
 is usually expressed in terms ofthe �elds W�� = 1p2(W 1� � iW 2�): (2.1.18)5



We �nd L
 = gp2L
��+LW+� + gp2L
���LW�� : (2.1.19)We have already observed that the neutral 
urrent J�3 = L
��3L 
annot be identi�ed withthe ele
tromagneti
 
urrent, and 
orrespondingly that the gauge ve
tor boson W �3 
annot beinterpreted as the photon. The 
onstru
tion of the model 
an therefore pro
eed in two di�erentdire
tions: either we modify the multiplet stru
ture of the theory, in order to make J�3 equal tothe ele
tromagneti
 
urrent; or we admit the possibility of the existen
e of weak neutral 
urrents,and we extend the gauge group in order to a

ommodate also the ele
tromagneti
 
urrent inaddition to J�3 . We pro
eed to des
ribe the se
ond possibility, whi
h is the one that turns outto be 
orre
t, after the dis
overy of weak pro
esses indu
ed by neutral 
urrents. Nevertheless,it should be kept in mind that this was not at all obvious to physi
ists before the observation ofweak neutral-
urrent e�e
ts.The simplest way of extending the gauge group SU(2) to in
lude a se
ond neutral generatoris to in
lude an abelian fa
tor U(1):SU(2)! SU(2)
 U(1): (2.1.20)We will require our lagrangian to be invariant also under the U(1) gauge transformations !  0 = exp "ig0�Y ( )2 # ; (2.1.21)where  is a generi
 �eld of the theory, g0 is the 
oupling 
onstant asso
iated with the U(1)fa
tor of the gauge group, and Y ( ) is a quantum number, usually 
alled the weak hyper
harge,to be spe
i�ed for ea
h �eld  . Sin
e the SU(2) fa
tor of the gauge group a
ts in a di�erentway on left-handed and right-handed fermions (it is a 
hiral group), it is natural to allow for thepossibility of assigning di�erent hyper
harge quantum numbers to the left and right 
omponentsof the same fermion �eld. A new gauge ve
tor �eld B� must be introdu
ed, and the 
ovariantderivative be
omes D� = �� � igW �i Ti � ig0Y2 B�; (2.1.22)where Y is a diagonal matrix with the hyper
harge values in its diagonal entries. Y beingdiagonal, only the term Ln is modi�ed. We have nowLn = g2W �3 (�eL
��eL � eL
�eL)+ g02B� [Y (L) (�eL
��eL + eL
�eL) + Y (�eR)�eR
��eR + Y (eR)eR
�eR℄ : (2.1.23)This 
an be written as Ln = g	
�T3	W �3 + g0	
�Y2 	B�; (2.1.24)where 	 is a 
olumn ve
tor formed with all left-handed and right-handed fermioni
 �elds in thetheory, and T3 = �1=2 for �eL and eL respe
tively, and T3 = 0 for �eR and eR. We 
an now6



assign the quantum numbers Y in su
h a way that the ele
tromagneti
 intera
tion term appearin eq. (2.1.23). To do this, we �rst perform a rotation by an angle �W in the spa
e of the twoneutral gauge �elds W �3 ; B�: B� = A� 
os �W � Z� sin �W (2.1.25)W �3 = A� sin �W + Z� 
os �W : (2.1.26)In terms of the new ve
tor �elds A�, Z�, eq. (2.1.24) takes the formLn = 	
� �g sin �WT3 + Y2 g0 
os �W�	A� +	
� �g 
os �WT3 � Y2 g0 sin �W�	Z�: (2.1.27)In order to identify one of the two neutral ve
tor �elds, say A�, with the photon �eld, we must
hoose Y (L), Y (�eR) and Y (eR) so that A� 
ouples to the ele
tromagneti
 
urrentJ�em = �e (eR
�eR + eL
�eL) � e	
�Q	; (2.1.28)where Q is the ele
tromagneti
 
harge matrix in units of the positron 
harge e. In other words,it must be T3 g sin �W + Y2 g0 
os �W = eQ : (2.1.29)The weak hyper
harges Y appear in eq. (2.1.29) only through the 
ombination Y g0: thus, wehave the freedom of res
aling the hyper
harges by a 
ommon fa
tor K, provided we res
ale g0by 1=K. This freedom 
an be used to �x arbitrarily the value of one of the three hyper
hargesY (L); Y (�eR); Y (eR). The 
onventionally adopted 
hoi
e isY (L) = �1: (2.1.30)With this 
hoi
e, eq. (2.1.29) restri
ted to the doublet of left-handed leptons is+12g sin �W � 12g0 
os �W = 0 (2.1.31)�12g sin �W � 12g0 
os �W = �e; (2.1.32)whi
h gives g sin �W = g0 
os �W = e: (2.1.33)(For a generi
 doublet of fermions with 
harges Q1 and Q2 the r.h.s. of eq. (2.1.33) be
omese(Q1�Q2), but gauge invarian
e of the 
harged 
oupling requires Q1�Q2 = 1.) Equation (2.1.29)then redu
es to T3 + Y2 = Q; (2.1.34)whi
h is valid for any fermion. For example, we �ndY (�eR) = 0; Y (eR) = �2: (2.1.35)7



This 
ompletes the assignments of weak hyper
harge values to all fermion �elds. Noti
e that theright-handed neutrino has zero 
harge and zero hyper
harge, and it is an SU(2) singlet: it doesnot take part in ele
troweak intera
tions.The se
ond term in eq. (2.1.27) de�nes the weak neutral 
urrent 
oupled to the other neutralve
tor boson Z�. It 
an be written as e	
�QZ	Z� ; (2.1.36)where QZ = 1
os �W sin �W �T3 �Q sin2 �W� : (2.1.37)The extension of the theory to more lepton doublets is straightforward.We must now in
lude hadrons in the theory. We will do this in terms of quark �elds, takingas a starting point the hadroni
 
urrent responsible for � de
ay and strange parti
le de
ays:J�had = 
os �
 u
� 12(1� 
5)d+ sin �
 u
� 12(1� 
5)s; (2.1.38)where �
 is the Cabibbo angle (�
 � 13Æ) and u, d, s are the up, down and strange quark �eldsrespe
tively. We are tempted to pro
eed as in the 
ase of leptons: de�neQ = 12(1� 
5) 264 uds 375 � 264 uLdLsL 375 (2.1.39)and T+ = 264 0 
os �
 sin �
0 0 00 0 0 375 ; (2.1.40)so that J�had = Q
�T+Q: (2.1.41)This leads to a system of 
urrents whi
h is in 
ontrast with experimental observations. Indeed,we �nd that T3 = [T+; T�℄ = 264 1 0 00 � 
os2 �
 � 
os �
 sin �
0 � 
os �
 sin �
 � sin2 �
 375 : (2.1.42)The 
orresponding neutral 
urrent 
ontains 
avour-
hanging terms, su
h as e.g. dL
�sL, with aweight of the same order of magnitude of 
avour-
onserving ones. These terms indu
e pro
essesat a rate whi
h is not 
ompatible with experimental observation. For example, the ratio of thede
ay rates for the pro
esses K+ ! �0e+�e (2.1.43)K+ ! �+e+e� (2.1.44)8



is approximately r = " sin �
sin �
 
os �
 #2 = 1
os2 �
 ' 1:1; (2.1.45)while observations give rexp ' 1:3� 105; (2.1.46)that is, the 
harged-
urrent pro
ess (s! u) is enhan
ed by �ve orders of magnitude with respe
tto the neutral-
urrent (s ! d) one. Our theory should therefore be modi�ed in order to avoidthe introdu
tion of 
avour-
hanging neutral 
urrents. The solution to this puzzle was foundby S. Glashow, J. Iliopoulos and L. Maiani. They suggested to introdu
e a fourth quark 
 (for
harm) with 
harge 2=3 like the up quark, and to assume that its 
ouplings to down and strangequarks are given by J�had = 
os �
 u
�12(1� 
5)d+ sin �
 u
� 12(1� 
5)s� sin �
 

� 12(1� 
5)d+ 
os �
 

�12(1� 
5)s: (2.1.47)The 
 quark being not observed at the time, they had to assume that its mass was mu
h largerthan those of u, d and s quarks, and therefore outside the energy range of available experimentaldevi
es. The 
urrent J�had 
an still be put in the form (2.1.41), where nowQ = 26664 uL
LdLsL 37775 (2.1.48)and T+ = 26664 0 0 
os �
 sin �
0 0 � sin �
 
os �
0 0 0 00 0 0 0 37775 : (2.1.49)No 
avour-
hanging neutral 
urrent is now present. In fa
t,[T+; T�℄ = 26664 1 0 0 00 1 0 00 0 �1 00 0 0 �1 37775 ; (2.1.50)thanks to the fa
t that the upper right 2 � 2 blo
k of T+ has been 
leverly 
hosen to be anorthogonal matrix. The existen
e of the quark 
 was later 
on�rmed by the dis
overy of the J= parti
le. The 
urrent J�had is usually written in the following form, analogous to the 
orrespondingleptoni
 
urrent: J�had = (uLd0L)
��+  uLd0L !+ (
Ls0L)
��+  
Ls0L ! ; (2.1.51)9



where  d0Ls0L ! = V  dLsL ! ; V = " 
os �
 sin �
� sin �
 
os �
 # : (2.1.52)The pairs (u; d), (
; s) are 
alled quark families. A
tually, there is a 
orresponden
e betweenquark and lepton families, whose origin will be investigated in se
tion 3.3. The stru
ture outlinedabove 
an be extended to an arbitrary number of quark families. With n families, V be
omes ann� n matrix, and it must be unitary in order to ensure the absen
e of 
avour-
hanging neutral
urrents.The �nal form of the 
harged-
urrent intera
tion term, in
luding n families of leptons andquarks, is then L
 = gp2 nXf=1 �Lf
��+Lf +Qf
��+Qf�W+� + h:
:; (2.1.53)where Lf =  �eLeL ! ; ��L�L ! ; : : : (2.1.54)Qf =  uLd0L ! ; 
Ls0L ! ; : : : : (2.1.55)An equivalent (and often more useful) form of eq. (2.1.53) isL
 = gp2 0� nXf=1 ��fL 
� efL + nXf;g=1 �ufL 
� Vfg dgL1AW+� + h:
: (2.1.56)The neutral-
urrent lagrangian in eq. (2.1.24) is dire
tly generalizable to in
lude quark �elds.To 
on
lude the 
onstru
tion of the standard model lagrangian, we must 
onsider the pureYang-Mills term LYM = �14B��B�� � 14W i��W ��i ; (2.1.57)where B�� = ��B� � ��B�W ��i = ��W �i � ��W �i + g�ijkW �j W �k : (2.1.58)The 
orresponding expression in terms of the physi
al �eldsW�� , Z� and A� 
an be easily workedout with the help of eqs. (2.1.18), (2.1.25) and (2.1.26), whi
h we rewrite here:W 1� = 1p2(W+� +W�� ) (2.1.59)W 2� = ip2(W+� �W�� ) (2.1.60)W 3� = A� sin �W + Z� 
os �W (2.1.61)B� = A� 
os �W � Z� sin �W : (2.1.62)10



We getW 1�� = 1p2 hW+�� + ig sin �W (W+� A� �W+� A�) + ig 
os �W (W+� Z� �W+� Z�)i+ h:
:W 2�� = ip2 hW+�� + ig sin �W (W+� A� �W+� A�) + ig 
os �W (W+� Z� �W+� Z�)i+ h:
:W 3�� = F�� sin �W + Z�� 
os �W � ig(W+� W�� �W�� W+� )B�� = F�� 
os �W � Z�� sin �W ; (2.1.63)where F �� = ��A� � ��A� (2.1.64)Z�� = ��Z� � ��Z� (2.1.65)W ��� = ��W �� � ��W ��: (2.1.66)It follows thatLYM = �14F��F �� � 14Z��Z�� � 12W+��W ��� (2.1.67)+ig sin �W (W+��W ��A� �W���W �+A� + F��W �+W ��)+ig 
os �W (W+��W ��Z� �W���W �+Z� + Z��W �+W ��)�g22 (2g��g�� � g��g�� � g��g��)�W+� W�� (A�A� sin2 �W + Z�Z� 
os2 �W + 2A�Z� sin �W 
os �W )� 12W+� W+� W�� W�� �2.2 MassesMasses for the gauge bosonsWe will now show that, in order to make 
onta
t with the Fermi theory, whi
h is known to
orre
tly des
ribe low-energy weak intera
tions, the gauge ve
tor bosons of weak intera
tionsmust have a non-zero mass. We will also be able to set a lower bound to the mass of the Wboson. Let us 
onsider the amplitude for down-quark � de
ay. In the Fermi theory, it is simplygiven by �GFp2u
�(1� 
5)d e
�(1� 
5)�e: (2.2.1)In the 
ontext of the standard model, the same pro
ess is indu
ed by the ex
hange of aW boson,with amplitude  gp2uL
�dL! 1q2 �m2W  gp2eL
��eL! ; (2.2.2)(we are negle
ting Cabibbo mixing for simpli
ity). The virtuality q2 of the ex
hanged ve
torboson is bounded from above by the square of the neutron-proton mass di�eren
e, q2 � (mN �11



mP )2 � (1:3 MeV)2. For eq. (2.2.2) to be equal to the Fermi amplitude in the q2 ! 0 limit, mWmust be non zero, and GFp2 =  g2p2!2 1m2W : (2.2.3)Re
alling that g = e= sin �W , eq. (2.2.3) gives us the lower boundmW � 37:3 GeV; (2.2.4)quite a large value, if 
ompared with the present upper bound on the photon mass,m
 � 2 � 10�16 eV: (2.2.5)So, we know sin
e the beginning that if weak intera
tions are to be mediated by ve
tor bosons,these must be very heavy. On the other hand, we also know that gauge theories are in
ompatiblewith mass terms for the ve
tor bosons. One possibility is to break gauge invarian
e expli
itlyand insert a mass term for the W boson by hand, but this leads to a non-renormalizable theory.Let us investigate this point in more detail. Consider for simpli
ity the lagrangian of a pureabelian gauge theory, with a mass term for the gauge ve
tor �eld:L = �14(��A� � ��A�)(��A� � ��A�) + 12m2
A�A�; (2.2.6)and work out the propagator ��� for A� in momentum spa
e. We get��� = ik2 �m2
  �g�� + k�k�m2
 ! : (2.2.7)The propagator ��� has not the 
orre
t behaviour for large values of the momentum k: fork !1 it be
omes a 
onstant, rather than vanishing as k�2, thus violating power-
ounting andmaking the theory unrenormalizable.A related problem of a massive ve
tor boson theory, su
h as the one de�ned by eq. (2.2.6),is again unitarity of the s
attering matrix. The amplitude for a generi
 physi
al pro
ess whi
hinvolves the emission or the absorption of a ve
tor boson with four-momentum k and polarizationve
tor �(k) has the form M =M���(k): (2.2.8)A massive ve
tor (
ontrary to a massless one) may be polarized longitudinally. In this 
ase,
hoosing the z axis along the dire
tion of the 3-momentum of the ve
tor boson, the polarizationis given by �L = (���~k��� =m
 ; 0; 0; E=m
) = k=m
 +O(m2
=E2); (2.2.9)where we have imposed the transversity 
ondition k � � = 0 and the normalization 
ondition �2 =�1. Clearly, the amplitudeM will grow inde�nitely with the energy E, unless some me
hanismtakes pla
e to 
ut o� this growth, and unitarity of the s
attering matrix will eventually beviolated. 12



To see how one 
an introdu
e a mass term for gauge ve
tor bosons without spoiling renor-malizability and unitarity, we �rst 
onsider a simple example where this happens, and then wegeneralize our 
onsiderations to the standard model. The simple theory we 
onsider is s
alarele
trodynami
s, that is, a gauge theory based on U(1) invarian
e, 
oupled to one 
omplex s
alar�eld � with 
harge e. The lagrangian is given byL = �14F ��F�� + (D��)yD��� V (�); (2.2.10)where D� = ��� ieA�, and V (�) is the so-
alled s
alar potential, whi
h is 
onstrained by gaugeinvarian
e and renormalizability to be of the formV (�) = m2 j � j2 +� j � j4 : (2.2.11)We look for �eld 
on�gurations that minimize the energy of the system. Be
ause of the require-ment of translational invarian
e, they must be 
onstant 
on�gurations, so we 
an negle
t thederivative terms and look for the minimum of the potential V . Now, if m2 � 0, then V has aminimum for � = 0. If, on the other hand, m2 < 0, then m2 
an no longer be interpreted as amass squared for the �eld �; furthermore, the potential has now an in�nite number of degenerateminima, given by all those �eld 
on�gurations for whi
hj � j2= �m22� � 12v2: (2.2.12)All these minimum 
on�gurations (in the language of quantum theory, all these ground states)are 
onne
ted by gauge transformations, that 
hange the phase of the 
omplex �eld � withouta�e
ting its modulus. The system will 
hoose one of the in�nite possible minimum 
on�gura-tions. This phenomenon is usually 
alled spontaneous breaking of the gauge symmetry, but thesymmetry is not a
tually broken. In fa
t, the Lagrangian is still gauge invariant, and all theproperties 
onne
ted with this invarian
e (su
h as, for example, 
urrent 
onservation) are stillthere. It is important to stress this point, be
ause at the quantum level this is essentially whatguarantees the renormalizability of the theory, whi
h would instead be lost in the 
ase of anexpli
it breaking of the gauge symmetry.Let us now expand the �eld � around one of the in�nite minimum 
on�gurations; we 
hoosethe one for whi
h � is real at the minimum, but of 
ourse any other 
hoi
e would be equivalent.We introdu
e real s
alar �elds H(x) and G(x) by�(x) = 1p2 [v +H(x) + iG(x)℄ ; (2.2.13)where v is de�ned in eq. (2.2.12). In prin
iple, the �eld G 
ould have been removed from thelagrangian by an appropriate gauge transformation. In fa
t, we 
ould have �rst applied a lo
algauge transformation to � in order to make it real, and then shift it a

ording to � = (v+H)=p2.For the moment, we keep both H and G in the lagrangian; we will 
ome ba
k to this point later.Up to an irrelevant 
onstant, the s
alar potential takes the formV (�) = (m2v + �v3)H + 12(m2 + 3�v2)H2 + 12(m2 + �v2)G2+�vH(H2 +G2) + �4 (H2 +G2)2: (2.2.14)13



Using eq. (2.2.12), �v2 = �m2, we see that the terms proportional to H and G2 vanish, whi
hmeans that the �eld G is massless. The 
oeÆ
ient of the H2 term is now (�2m2)=2, and hastherefore the 
orre
t sign to be interpreted as a mass term (remember that m2 is negative).After the reparametrization eq. (2.2.13), the jD�j2 term takes the following form:(D��)yD�� = 12��H��H + 12��G��G+ 12e2(H2 +G2 + 2vH)A�A�� eA�(H��G�G��H)� evA���G+ 12e2v2A�A�: (2.2.15)We see that the gauge �eld A� has a
quired a mass m
 = ev, pre
isely the result we were lookingfor. The term �evA���G is unpleasant, be
ause it mixes the gauge ve
tor �eld A� with theunphysi
al �eld G; we will see in a moment how to get rid of it.We must now 
he
k that the appearan
e of a mass term for A� via the spontaneous symme-try breaking me
hanism has not spoiled the renormalizability of our theory, 
ontrary to whathappened when we tried to break the symmetry expli
itly. It is well known that, in order toquantize a gauge theory, a gauge-�xing term must be added to the lagrangian (obviously, thiswas not ne
essary in the 
ase of expli
it gauge symmetry breaking). A 
onvenient 
hoi
e for thegauge-�xing term is LGF = � 12� (��A� + ev�G)2; (2.2.16)where � is an arbitrary 
onstant (the gauge parameter). Equation (2.2.16) 
orresponds to thegauge-�xing 
ondition ��A� = �ev�G: (2.2.17)The gauge-�xing lagrangian (2.2.16) has been 
arefully 
hosen in order to 
an
el the term pro-portional to A���G in eq. (2.2.15). Indeed, eq. (2.2.16) 
ontains a term �ev��AG, whi
h afterpartial integration 
an
els the unwanted term in eq. (2.2.15). Observe also that the gauge-�xinglagrangian introdu
es a term �12�e2v2G2 = �12�m2
G2; (2.2.18)whi
h gives a squared mass �m2
 to the unphysi
al �eld G.Colle
ting the various terms, the lagrangian is given by:L = �12(��A���A� � ��A���A�) + 12m2
A�A� � 12� (��A�)2+12��H��H � 12m2HH2 + 12��G��G� 12�m2
G2+12e2(H2 +G2 + 2vH)A�A� � eA�(H��G�G��H)��vH(H2 +G2)� �4 (H2 +G2)2; (2.2.19)where m
 = ev and m2H = 2�v2. The propagators 
an be worked out from the quadrati
 terms,
olle
ted in the �rst two rows of eq. (2.2.19). We get���� (k) = ik2 �m2
 "�g�� + (1� �)k�k�k2 � �m2
 # (2.2.20)14



for the photon propagator, and�H(k) = ik2 �m2H ; �G(k) = ik2 � �m2
 (2.2.21)for the two s
alar propagators.Observe that the photon propagator has now the 
orre
t behaviour 1=k2 at large momenta.However, in addition to the pole at k2 = m2
 , an unphysi
al singularity at k2 = �m2
 has nowappeared. This singularity is lo
ated at the mass squared of the unphysi
al s
alar �eld G. One
an prove that the 
ontributions of this term of the photon propagator to physi
al quantitiesare exa
tly 
an
elled by the 
ontributions of G ex
hange. It is easy to 
he
k this 
an
ellation inspe
i�
 
ases, su
h as e.g. H
 ! H
 s
attering at tree level. In order to perform this kind of
he
ks, it is useful to rewrite the propagator in eq. (2.2.20) in the form���� (k) = ik2 �m2
  �g�� + k�k�m2
 !� k�k�m2
 ik2 � �m2
 ; (2.2.22)where the G propagator appears expli
itly.When we let � tend to in�nity, the photon propagator eq. (2.2.20) takes the form of eq. (2.2.7):lim�!1���� (k) = ik2 �m2
  �g�� + k�k�m2
 ! : (2.2.23)The theory is still renormalizable, but in a hidden way: renormalizability must arise as a 
on-sequen
e of 
an
ellations among di�erent 
ontributions to the same Green fun
tion, sin
e thepropagator does not obey the power-
ounting rule. The limit � !1 is 
alled the unitary gauge.The advantage of the unitary gauge is that the theory 
ontains only physi
al degrees of free-dom. In fa
t, when � ! 1 the gauge-�xing 
ondition redu
es to G(x) = 0 (see eq. (2.2.16));it 
orresponds to the gauge 
hoi
e that eliminates G from the theory sin
e the very beginning.The drawba
k is that in the unitary gauge renormalizability is not manifest at ea
h intermediatestep of a 
al
ulation.Two 
ommon gauge 
hoi
es are the Feynman gauge, � = 1, whi
h gives���F = � ig��k2 �m2
 (2.2.24)and the Landau gauge, � = 0, for whi
h���L = ik2 �m2
  �g�� + k�k�k2 ! : (2.2.25)One last observation about the �eld G(x). It looks like we lost a degree of freedom, sin
e westarted with a 
omplex s
alar �eld and we end up with one real s
alar. A
tually, the numberof degrees of freedom stays the same, sin
e the photon is now massive, and has therefore threepolarization states instead of two. The �eld G(x) is 
alled a would-be Goldstone boson. Thisterminology re
e
ts the fa
t that, in the absen
e of gauge invarian
e and of the gauge-�xing15



term, G would have simply been a physi
al, zero-mass state, whi
h is always present whenspontaneous symmetry breaking o

urs. This me
hanism is known as the Higgs me
hanism. Itis possible to extend it to the standard model, with a few modi�
ations that we now des
ribe indetail.We have learned that, in order to break spontaneously a gauge symmetry, we must intro-du
e s
alar �elds in the game. How should we do this in the standard model? First, the s
alar�eld must transform non-trivially under that part of the gauge group that we want to undergospontaneous breaking. Se
ondly, we must be 
areful not to break the U(1) invarian
e 
orre-sponding to ele
trodynami
s, or, in other words, we want the photon to stay massless. Thismeans that spontaneous symmetry breaking must take pla
e in three of the four \dire
tions" ofthe SU(2)� U(1) gauge group, the fourth one being that 
orresponding to ele
tri
 
harge. Thesimplest way to do this is to assign the s
alar �eld � to a doublet representation of SU(2):� =  �1�2 ! : (2.2.26)The Higgs me
hanism takes pla
e in analogy with s
alar ele
trodynami
s. The most generals
alar potential 
onsistent with gauge invarian
e and renormalizability isV (�) = m2 j � j2 +� j � j4; (2.2.27)whi
h has a minimum at j � j2= �m22� � 12v2: (2.2.28)The value of the hyper
harge of the s
alar doublet � is �xed by the requirement that the minimum
on�guration � = 1p2  v1v2 ! ; jv1j2 + jv2j2 = v2 (2.2.29)is left un
hanged by ele
tromagneti
 gauge transformations, that 
orrespond to the subgroupU(1)em. This 
orresponds to the requirementeieQ� 1p2  v1v2 ! = 1p2  v1v2 ! ; (2.2.30)or equivalently Q1 00 Q2 ! v1v2 ! =  1=2 + Y=2 00 �1=2 + Y=2 ! v1v2 ! =  00 ! ; (2.2.31)where Q1; Q2 are the ele
tri
 
harges of �1; �2, and we have used eq. (2.1.34). There are twopossibilities: 1) v1 = 0; jv2j = v; Y = +1 (2.2.32)2) v2 = 0; jv1j = v; Y = �1: (2.2.33)16



We will adpot the �rst 
hoi
e, with Y = +1 and therefore Q1 = 1; Q2 = 0. We will furtherassume that v2 is real and positive.We 
an reparameterize � in the following way:� = 1p2ei� i�i(x)=v  0v +H(x) ! ; (2.2.34)with �i(x) and H(x) real. This parametrization is not suited for renormalizable gauges, be
auseit is non-linear and 
ontains all powers of the �elds �i. It is 
onvenient, however, if we work inthe unitary gauge; in fa
t, it is apparent that the �elds �i 
an be transformed away by an SU(2)gauge transformation. In this se
tion, we will use the unitary gauge �i = 0. The standard modellagrangian in a generi
 renormalizable gauge is given in Appendix 4.4.The s
alar potential takes the formV = 12(2�v2)H2 + �vH3 + 14�H4; (2.2.35)the Higgs s
alar H has a squared mass m2H = 2�v2. The term (D��)yD�� 
an be worked outusing eq. (2.2.34) with �i = 0. We getD�� =  �� � ig2� iW i� � ig02B�! 1p2  0H(x) + v != 1p2  0��H !� i2 (H + v) 1p2  g(W �1 � iW �2 )�gW �3 + g0B� != 1p2  0��H !� i2 (H + v)  gW �+�q(g2 + g02)=2Z� ! ; (2.2.36)where in the last step we have used eqs. (2.1.18), (2.1.25), (2.1.26) and (2.1.33). We havetherefore(D��)yD�� = 12��H��H + �14g2W �+W�� + 18(g2 + g02)Z�Z�� (H + v)2: (2.2.37)We see that the W and Z bosons have a
quired massesm2W = 14g2v2 (2.2.38)m2Z = 14(g2 + g02)v2: (2.2.39)Note that the photon stays massless. With the s
alar �eld � transforming as a doublet of SU(2),there is always a linear 
ombination of B� and W �3 that does not re
eive a mass term, but onlyif Y (�) = 1 (or �1) does this linear 
ombination 
oin
ide with the one in eq. (2.1.25). Thelagrangian in a generi
 renormalizable gauge is mu
h more 
ompli
ated, sin
e it also involveskineti
 and intera
tion terms for non-physi
al Higgs s
alars, the would-be Goldstone bosons. Itis des
ribed in Appendix 4.4. 17



The value of v, the va
uum expe
tation value of the neutral 
omponent of the Higgs doublet,
an be obtained 
ombining eqs. (2.2.3) and (2.2.38), and using the measured valued of the Fermi
onstant. We get v = s 1GFp2 ' 246:22 GeV: (2.2.40)The value of the Higgs quarti
 
oupling � (or equivalently the Higgs mass) is not �xed by ourpresent knowledge.Masses for hadrons and 
avour-mixingFermion masses are also forbidden by the gauge symmetry of the standard model. In fa
t, themass term for a fermion �eld  has the form�m  = �m( L R +  R L); (2.2.41)and 
annot be invariant under a 
hiral transformation, that is, a transformation that a
ts di�er-ently on left-handed and right-handed �elds. The gauge transformations of the standard modelare pre
isely of this kind. Again, this diÆ
ulty 
an be 
ir
umvented by means of the Higgsdoublet �.We �rst 
onsider the hadroni
 se
tor. We have seen in se
tion 2.1 that the intera
tionlagrangian is not diagonal in terms of quark �elds with de�nite 
avours. Let us 
all u0f andd0f the �elds that bring the intera
tion terms diagonal (the index f runs over the n fermiongenerations); in prin
iple, there is no reason why only down-type quarks should be rotated. Wealso de�ne Q0f =  u0fLd0fL ! U 0f = u0fR D0i = d0fR: (2.2.42)A Yukawa intera
tion term 
an be added to the lagrangian:LhadrY = �( �Q0 �h0DD0 + �D0 �y h0yDQ0)� ( �Q0 �
 h0U U 0 + �U 0 �y
 h0yU Q0); (2.2.43)where h0U and h0D are generi
 n� n 
onstant 
omplex matri
es in the generation spa
e, and�
 =  �0���� ! : (2.2.44)It easy to 
he
k that LhadrY is Lorentz-invariant, gauge-invariant2 and renormalizable, and there-fore it 
an (a
tually, it must) be in
luded in the lagrangian. The matri
es h0U and h0D 
an bediagonalized by means of bi-unitary transformations:hU � V UL yh0UV UR (2.2.45)hD � V DL yh0DV DR ; (2.2.46)2If � transforms as an SU(2) doublet, so does �
 = ���, where � is the antisymmetri
 tensor; 
he
k it as anexer
ise. 18



where V U;DL;R are unitary matri
es, 
hosen so that are diagonal with real, non-negative entries.Now, we de�ne new quark �elds u and d byu0L = V UL uL; u0R = V UR uR (2.2.47)d0L = V DL dL; d0R = V DR dR; (2.2.48)In the unitary gauge, eq. (2.2.43) be
omesLhadrY = � 1p2(v +H) nXf=1(hfD �dfdf + hfU �ufuf); (2.2.49)where hfU;D are the diagonal entries of the matri
es hU;D. We 
an now identify the quark masseswith mfU = vhfUp2 ; mfD = vhfDp2 : (2.2.50)Sin
e the matri
es V U;DL;R are 
onstant in spa
e-time, eqs. (2.2.47,2.2.48) are obviously globalsymmetry transformations of the free quark lagrangian. They also leave un
hanged the neutral-
urrent intera
tion term, be
ause of the universality of the 
ouplings of fermions of di�erentfamilies to the photon and the Z. The only term in the lagrangian whi
h is a�e
ted byeqs. (2.2.47,2.2.48) is the 
harged-
urrent intera
tion, be
ause the up and down 
omponentsof the same left-handed doublet are transformed in a di�erent way. Indeed, we �ndJ�hadr = nXf=1 �Q0f 
� �+Q0f = nXf;g=1 �ufL 
� Vfg dgL; (2.2.51)where V = V UL yV DL : (2.2.52)The matrix V is usually 
alled the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is a unitarymatrix, and its unitarity guarantees the suppression of 
avour 
hanging neutral 
urrents, as wealready dis
ussed in se
tion 2 in the 
ase of two fermion families. The matrix V enters thestandard model lagrangian as a fundamental parameter, on the same step as masses and gauge
ouplings. The values of its entries must be determined from experiments.To 
on
lude this subse
tion, we now determine the number of independent parameters in theCKM matrix. A generi
 n � n unitary matrix is formed with n2 independent real parameters.Some (nA) of them 
an be thought of as rotation angles in the n-dimensional spa
e of generations,and there are as many as the 
oordinate planes in N dimensions:nA =  n2 ! = 12n(n� 1): (2.2.53)The remaining parameters are just 
omplex phases; their number isn̂P = n2 � nA = 12n(n+ 1): (2.2.54)19



Some of the n̂P 
omplex phases, however, 
an be eliminated by rede�ning the left-handed quark�elds. This means that 2n � 1 phases are eliminable: in fa
t, there are n up-type quarks andn down-type quarks, that 
an be rotated to eliminate the phase of one row and one 
olumn ofV , and the �1 a

ounts for the fa
t that the entry 
orresponding to the interse
tion of the rowand the 
olumn 
annot be rotated twi
e. The number of really independent 
omplex phases inV is therefore nP = n̂P � (2n� 1) = 12(n� 1)(n� 2): (2.2.55)Observe that, with one or two fermion families, the CKM matrix 
an be made real. The �rst
ase with non-trivial phases is n = 3, whi
h 
orresponds to nP = 1. In the standard model withthree fermion families, the CKM matrix has four independent parameters: three rotation anglesand one 
omplex phase. In the general 
ase, the total number of independent parametersi in theCKM matrix is nA + nP = (n� 1)2: (2.2.56)Masses for leptonsThe same pro
edure 
an be applied to the leptoni
 se
tor. Everything is formally un
hanged:up-quarks are repla
ed by neutrinos and down-quarks are repla
ed by 
harged leptons (e�, ��and ��). There is however an important di�eren
e, whi
h leads to 
onsiderable simpli�
ations:as we have seen, right-handed neutrinos have no intera
tions. Therefore, there is no Yukawa
oupling involving the 
onjugate s
alar �eld �
, and there is only one matrix of Yukawa 
ouplings,h0E: LleptY = �(L0�h0EE 0 + E 0�yh0yEL0) ; (2.2.57)whi
h 
an be diagonalized by means of a biunitary transformationhE = V EL yh0EV ER : (2.2.58)The di�eren
e with respe
t to the 
ase of quarks is that now we have the freedom of rede�ningthe left-handed neutrino �elds using the same matrix V EL that rotates 
harged leptons:� 0L = V EL �L (2.2.59)e0L = V EL eL; e0R = V ER eR : (2.2.60)This puts the Yukawa intera
tion in diagonal form,LleptY = � nXf=1 hfE (�Lf � efR + �efR �y Li); (2.2.61)but, 
ontrary to what happens in the quark se
tor, leaves the 
harged intera
tion term un-
hanged, sin
e J�lept = �L0 
� �+ L0 = �L
� �+ L = nXf=1 ��fL 
� efL: (2.2.62)20



In other words, in the leptoni
 se
tor there is no mixing among di�erent generations, be
ausethe Yukawa 
oupling matrix 
an be diagonalized by a global transformation under whi
h thefull lagrangian is invariant. As a 
onsequen
e, not only the overall leptoni
 number, but alsoindividual leptoni
 
avors are 
onserved. This is due to the absen
e of right-handed neutrinos.The values of the Yukawa 
ouplings hfE are determined by the values of the observed leptonmasses. In fa
t, using eq. (2.2.34), we �ndLleptY = � nXf=1 hfEp2(v +H)�efef ; (2.2.63)thus allowing the identi�
ations mfE = vhfEp2 : (2.2.64)As in the 
ase of ve
tor bosons, in renormalizable gauges there are also intera
tion terms betweenquarks and non-physi
al s
alars; the details are given in Appendix 4.4.
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2.3 SummaryTo summarize, the standard model lagrangian in the unitary gauge is given byLSM = Lkin + Lem + L
 + Ln + LYM + LHiggs + LY ukawa; (2.3.1)where� Lkin is the free fermion lagrangian:Lkin = nXf=1 h��f i�= �f + �ef (i�=�mfE) ef + �uf (i�=�mfU) uf + �df (i�=�mfD) dfi : (2.3.2)The index f labels the n fermion families. Neutrinos are assumed massless.� Lem is the ele
tromagneti
 
oupling:Lem = e nXf=1���ef 
� ef + 23 �uf 
� uf � 13 �df 
� df� A�; (2.3.3)� L
 is the 
harged-
urrent intera
tion term:L
 = g2p2 24 nXf=1 ��f 
�(1� 
5) ef + nXf;g=1 �uf 
�(1� 
5)Vfg dg35W+�+ g2p2 24 nXf=1 �ef 
�(1� 
5) �f + nXf;g=1 �df 
�(1� 
5)V �fg ug35W�� : (2.3.4)� Ln is the neutral-
urrent intera
tion term:Ln = e4 
os �W sin �W nXf=1 "��f 
�(1� 
5) �f + �ef 
� ��1 + 4 sin2 �W + 
5� ef+ �uf 
� �1� 83 sin2 �W � 
5� uf + �df 
� ��1 + 43 sin2 �W + 
5� df#Z�:(2.3.5)� LYM is the pure Yang-Mills lagrangian:LYM = �14F��F �� � 14Z��Z�� � 12W+��W ��� (2.3.6)+ig sin �W (W+��W ��A� �W���W �+A� + F��W �+W ��)+ig 
os �W (W+��W ��Z� �W���W �+Z� + Z��W �+W ��)�g22 (2g��g�� � g��g�� � g��g��)�W+� W�� (A�A� sin2 �W + Z�Z� 
os2 �W + 2A�Z� sin �W 
os �W )� 12W+� W+� W�� W�� �where F �� = ��A� � ��A�; Z�� = ��Z� � ��Z�; W ��� = ��W �� � ��W ��: (2.3.7)22



� The Higgs se
tor provides a termLHiggs = 12 ��H ��H+�m2W W �+W�� + 12 m2Z Z�Z���1 + Hv �2�12 m2H H2��vH3�14�H4:(2.3.8)� The Yukawa 
oupling LY ukawa is given byLY ukawa = �Hv nXf=1(mfD �dfdf +mfU �ufuf +mfE �efef): (2.3.9)The parameters appearing in LSM are not all independent. The gauge-Higgs se
tor is entirelyspe
i�ed by the four parameters g; g0; v; mH ; (2.3.10)sin
e m2W = 14g2v2; m2Z = 14(g2 + g02)v2; � = m2H2v2 ; tan �W = g0g (2.3.11)and g sin �W = g0 
os �W = e. However, g; g0; v are often eliminated in favour of the ele
tromag-neti
 
oupling �em, the Fermi 
onstant GF and the Z0 mass mZ, whi
h are measured with higha

ura
y. We have�em = g2g024�(g2 + g02) ; GF = 1p2v2 ; m2Z = 14(g2 + g02)v2: (2.3.12)The free parameters in the fermioni
 se
tor are the 3n masses mfU ; mfD; mfE, and the (n � 1)2independent parameters in the Cabibbo-Kobayashi-Maskawa matrix V . This gives a total of 17free parameters for the standard model with three fermion generations.

23



Chapter 3Spe
ial topi
s
3.1 The s
alar se
tor beyond the tree levelE�e
tive a
tion and e�e
tive potentialIn this se
tion we will study the s
alar se
tor of the standard model, and in parti
ular thephenomenon of spontaneous breaking of the gauge symmetry, beyond the 
lassi
al level. This ismost 
onveniently done in the 
ontext of the generating fun
tional formalism, whi
h we brie
yre
all. One introdu
es the fun
tionalZ[J ℄ = h0jTeiR d4xJ(x)�(x)j0i = h0j0iJ; (3.1.1)where J(x) is a 
lassi
al sour
e with the appropriate gauge transformation properties (we areonly interested in the s
alar se
tor, so we do not introdu
e here sour
es for the other �elds inthe theory). Fun
tional derivatives of Z[J ℄ with respe
t to J at J = 0 give the Green's fun
tionsof the theory; for this reason, Z[J ℄ is 
alled the generating fun
tional. It 
an be shown that thefun
tional W [J ℄ = �i logZ[J ℄ (3.1.2)is the generating fun
tional for 
onne
ted Green's fun
tions. One then de�nes the 
lassi
al �eld�
 as �
(x) = ÆW [J ℄ÆJ(x) = h0j�(x)j0iJh0j0iJ (3.1.3)and the e�e
tive a
tion �[�
℄ as�[�
℄ = W [J ℄� Z d4x J(x)�
(x): (3.1.4)The e�e
tive a
tion has an expansion in powers of the 
lassi
al �eld,�[�
℄ = 1Xn=0 1n! Z d4x1 : : : d4xn �
(x1) : : : �
(xn)�n(x1; : : : xn); (3.1.5)24



whose 
oeÆ
ients �n(x1; : : : xn) 
an be shown to be the 
onne
ted, one-parti
le irredu
ibleGreen's fun
tions of the theory. The fun
tional �[�
℄ is the appropriate tool to study spon-taneous symmetry breaking. In fa
t, the 
ondition for spontaneous symmetry breaking is that�
 is di�erent from zero even when the sour
e J is set equal to zero, as 
an be read o� eq. (3.1.3).On the other hand, for J = 0, one has Æ�[�
℄Æ�
 = 0: (3.1.6)We 
on
lude that spontaneous symmetry breaking takes pla
e when the 
lassi
al �eld thatminimizes the e�e
tive a
tion is di�erent from zero.Consider now the Fourier transforms of the fun
tions �n(x1; : : : xn):�n(x1; : : : xn) = Z d4p1(2�)4 : : : d4pn(2�)4 ei(p1x1+:::pnxn) (2�)4Æ(p1 + : : :+ pn)~�n(p1; : : : pn); (3.1.7)and expand ~�n in powers of momenta around pi = 0,~�n(p1; : : : ; pn) = ~�n(0) + : : : : (3.1.8)The e�e
tive a
tion be
omes�[�
℄ = 1Xn=0 1n! Z d4x1 : : : d4xn �
(x1) : : : �
(xn)Z d4p1(2�)4 : : : d4pn(2�)4 ei(p1x1+:::pnxn) Z d4x e�ix(p1+:::+pn) h~�n(0) + : : :i= Z d4x 1Xn=0 1n! ~�n(0)�n
 (x) + : : : : (3.1.9)The �rst term in this expansion is usually written as� Z d4x V (�
); (3.1.10)where V (�
) = � 1Xn=0 1n! ~�n(0)�n
 (3.1.11)is 
alled the e�e
tive potential of the theory, sin
e it does not 
ontain derivatives of the 
lassi
al�eld. The following terms, originating from higher powers of momenta in the expansion of ~�n,
ontain instead two or more derivatives of �
. The minimum 
ondition eq. (3.1.6) redu
es toÆÆ�
 Z d4x V (�
) = dV (�
)d�
 = 0 (3.1.12)if we require translational invarian
e of the va
uum state.25



E�e
tive potential for a real s
alar �eldThe e�e
tive potential 
an be 
omputed dire
tly, by taking the sum of all diagrams with anarbitrary number of external s
alar lines and zero external momenta. Consider for example atheory with a single real s
alar �eld �, and a tree-level potential given byV0(�) = 12m2�2 + 14��4: (3.1.13)The one-loop Green's fun
tions at zero external momenta are given by~�2n(0) = �i Sn  �4! i�4 !n Z d4k(2�)4  ik2 �m2 + i�!n ; (3.1.14)while Green's fun
tions with an odd number of external lines are obviously zero. The 
ombina-torial fa
tor Sn is Sn = (2n)!2n2n ; (3.1.15)and 
an be determined in the following way: there are (2n)! ways of assigning the externalmomenta to the verti
es; this number must be divided by 2n be
ause there are two external linesfor ea
h vertex, and by 2n be
ause there are 2n identi
al verti
es in the diagram. The one-loop
orre
tion to the s
alar potential is therefore given byV1(�
) = i2 1Xn=1 �3��2
�n 1n Z d4k(2�)4 1(k2 �m2 + i�)n : (3.1.16)One sees immediately that the terms 
orresponding to n = 1 and n = 2 are divergent. This isno surprise: these terms are proportional to �2
 and �4
 respe
tively, and the divergen
es mustundergo the usual pro
edure of mass and 
oupling 
onstant renormalization. Let us �rst take
are of the �nite part. The loop integrals 
an be performed using eq. (4.5.2); we �ndV �nite1 = i2 i(4�)2 1Xn=3 �3��2
�n (�1)nn �(n� 2)�(n) m4�2n; (3.1.17)or, using the properties of the � fun
tion and de�ning z = 3��2
=m2,V �nite1 = � m432�2 1Xn=3 (�1)nznn(n� 1)(n� 2)= � m464�2 1Xn=3(�1)nzn � 1n � 2n� 1 + 1n� 2� : (3.1.18)It is now easy to sum the series by shifting the summation index to n+1 and n+2 in the se
ondand third term, and by adding and subtra
ting the missing n = 1; 2 terms. We getV �nite1 = m464�2 �(1 + z)2 log(1 + z)� z � 32z2�= 164�2 "�m2 + 3��2
�2 log m2 + 3��2
m2 � 3��2
m2 � 32(3��2
)2# : (3.1.19)26



Let us now 
onsider the divergent part:V div1 i2 "�3��2
� Z d4k(2�)4 1k2 �m2 + i� + 12 �3��2
�2 Z d4k(2�)4 1(k2 �m2 + i�)2# : (3.1.20)The renormalization pro
edure requires that a regularization pres
ription is given in order to givemathemati
al meaning to the divergent integrals. Then, one must add suitable 
ounterterms inorder to 
an
el the divergen
es; the renormalizability of the theory manifests itself in the fa
tthat the only divergent diagrams 
orrespond to terms whi
h are already present in the barelagrangian. The �nite parts of the 
ounterterms are arbitrary; di�erent 
hoi
es 
orrespond todi�erent renormalization s
hemes, and 
onsequently to di�erent de�nitions of the renormalizedparameters.We noti
e that the �rst term in eq. (3.1.20) is quadrati
ally divergent: if we were to regularizethe integrals by simply imposing an ultraviolet 
ut-o� � on the modulus of the loop momentumk, we would �nd a term proportional to ��2�2
, whi
h 
orresponds to a quadrati
ally divergentradiative 
orre
tion to the mass of the s
alar �eld �
. This fa
t is 
hara
teristi
 of s
alar massparameters.In general, after regularization, the divergent part of the one-loop potential takes the formV div1 = A�2
 +B�4
 ; (3.1.21)where A and B are fun
tions of �, m and of some parameter whi
h de�nes the regularizationpres
ription; both are divergent in the physi
al limit, e.g. �!1 for the 
ut-o� regularization,or d ! 4 in dimensional regularization. We must give some renormalization pres
ription to �xthe �nite 
ounterterms. For example, we 
ould require that~�2(0) = �m2; ~�4(0) = �6�: (3.1.22)Sin
e eqs. (3.1.22) hold for the tree-level potential, and sin
e the �nite part of the one-loop
orre
tions starts with �6
 , this pres
ription simply means that the 
ounterterms must be exa
tlyequal and opposite to the divergent part, namelyV 
t1 = �A�2
 � B�4
; (3.1.23)so that in this 
ase V1 = V �nite1 : (3.1.24)Another possibility is to perform the so-
alled minimal subtra
tion (MS). This pres
riptionamounts to 
omputing the divergent part in dimensional regularization, and then �xing the
ounterterms in su
h a way that only the pole in d� 4 is subtra
ted. A modi�ed version of thisrenormalization pres
ription (MS) 
onsists in subtra
ting the term proportional to1� � 
 + log(4�); (3.1.25)where the spa
e-time dimension is d = 4 � 2�. In this 
ase, we have to 
ompute expli
itly theloop integrals in eq. (3.1.20). Using again eq. (4.5.2), we �ndV div1 = � 164�2 "6��2
m2 + 6��2
 �m2 + 32��2
� 1� � 
 + log(4�) + log �2m2!# ; (3.1.26)27



where � is an arbitrary mass parameter whi
h must be introdu
ed in dimensional regularizationin order to keep the 
oupling 
onstant � dimensionless. Now, we simply subtra
t the termproportional to 1=�� 
 + log(4�). Adding all together, we �ndV MS1 = 164�2 �m2 + 3��2
�2 "log m2 + 3��2
�2 � 32# ; (3.1.27)where we have used the identity6��2
 �m2 + 32��2
� = �m2 + 3��2
�2 �m4 (3.1.28)and we have dropped 
onstant terms.In more 
ompli
ated theories, like the standard model, the e�e
tive potential re
eives 
ontri-butions also from fermion and ve
tor loops. These 
ontributions 
an be 
omputed in the sameway as the s
alar one, but the 
al
ulations are quite tedious and 
ompli
ated. Fortunately, thereis a mu
h 
leverer te
hnique, whi
h allows one to obtain all 
ontributions to the one-loop s
alarpotential in a very simple way. Consider a new theory, obtained from the original one by shiftingthe s
alar �eld by an arbitrary quantity !:�! �+ !: (3.1.29)The 
orresponding e�e
tive potential isV 0(�
) = � 1Xn=0 1n! ~�n(0) (�
 + !)n = � 1Xn=0 1n! ~�0n(!; 0)�n
 ; (3.1.30)where the Green's fun
tions ~�0n 
an be 
omputed in terms of ~�n. From eq. (3.1.30) we �nd~�01(!; 0) = 1Xn=1 1n! ~�n(0)n!n�1 (3.1.31)and therefore Z �
0 d! ~�01(!; 0) = 1Xn=0 1n! ~�n(0)�n
 = �V (�
): (3.1.32)Equation (3.1.32) tells us that the e�e
tive potential of the original theory 
an be obtained by
omputing the one-parti
le (or tadpole) amplitude of the shifted theory and integrating it withrespe
t to the shift. Let us see expli
itly how this works. The tree-level potential of the shiftedtheory is V 00(�) = 12m2(�+ !)2 + 14�(�+ !)4: (3.1.33)The tree-level tadpole is therefore �m2! � �!3; (3.1.34)whi
h, integrated in ! between 0 and �
 gives minus the tree-level potential (3.1.13) as expe
ted.We now turn to the one-loop term. There is only one diagram to be 
omputed, with one external28



line and one internal propagator. In the shifted theory, the mass of the �
 �eld is m2 + 3�!2,and the �3
 vertex is �3�! (the fa
tor 3 is due to the fa
t that the three lines are identi
al), andtherefore ~�01(!; 0) = �3�! Z ddk(2�)d ik2 �m2 � 3�!2 : (3.1.35)Using the results of appendix 4.5 we readily �nd~�01(!; 0) = �3�! (4�)�(4�)2 �(�1 + �)(m2 + 3�!2)1��= 3�!(4�)2 (m2 + 3�!2) "1� � 
 + log(4�)� log m2 + 3�!2�2 + 1#+O(�); (3.1.36)where � is the renormalization s
ale introdu
ed by dimensional regularization. After performingthe MS subtra
tion, we �ndV1(�
) = 1(4�)2 Z �
0 d! 3�!(m2 + 3�!2) log m2 + 3�!2�2 � 1!= 164�2 (m2 + 3��2
)2  log m2 + 3��2
�2 � 32! : (3.1.37)whi
h is the same result obtained with the dire
t 
al
ulation, eq. (3.1.27).The e�e
tive potential in the standard modelThe pro
edure outlined at the end of the previous subse
tion 
an be applied to the standardmodel. The s
alar �eld is now a 
omplex doublet, whi
h we write in terms of four real s
alar�elds �i: � = 1p2  �1 + i�2�3 + i�4 ! : (3.1.38)In the standard model, the e�e
tive potential re
eives 
ontributions from the s
alar se
tor, theve
tor boson se
tor, the Faddeev-Popov ghost se
tor and the fermion se
tor:V1(�) = VS(�) + VV (�) + Vg(�) + VF (�) (3.1.39)(we drop the suÆx 
 on from now on).The e�e
tive potential is a gauge-dependent quantity. It 
an be shown that the gaugedependen
e of the e�e
tive potential is governed by the equation"� ��� + C(�; �) ���#V (�; �) = 0 ; (3.1.40)where � is the gauge parameter and C(�; �) is a fun
tion whi
h 
an be 
omputed order by orderin perturbation theory. Equation (3.1.40), in parti
ular, tells us that V is gauge-independent at29



its minimum, where �V=�� = 0. We will 
ompute V (�) in the Landau gauge � = 0; in this 
ase,the ghost 
ontribution Vg(�) vanishes.We begin by 
omputing the s
alar 
ontribution. After the shift �i ! �i + !i, the tree-levelpotential V0(�) = m2 j�j2 + � j�j4 (3.1.41)be
omes V 00(�) = �i!i(m2 + �!2) + 12 h(m2 + �!2)Æij + 2�!i!ji�i�j+�!i�i�j�j + 14�(�i�i)2; (3.1.42)where !2 = !i!i. It is immediate to 
he
k that integrating the tree-level tadpole with respe
t to!i and summing over the index i gives ba
k the tree-level potential. The one-loop 
ontributionis obtained in the same way as in the 
ase of the real s
alar �eld, that is by 
omputation of theone-loop tadpole diagram. A 
ompli
ation arises here, due to the fa
t that the mass term ineq. (3.1.42) is not diagonal. A simple way to 
ir
umvent this diÆ
ulty is to 
hoose !i = 0 forall i ex
ept one of them, say !3 = ! (the reason of this 
hoi
e will be
ome 
lear later; of 
ourse,it does not a�e
t the �nal result). This 
hoi
e simpli�es 
onsiderably the 
al
ulation, sin
e noweq. (3.1.42) des
ribes three real s
alars, �1, �2 and �4, with mass m2 + �!2, and one real s
alar,�3, with mass m2 + 3�!2. The trilinear 
ouplings �3�j�j are simply ��! for i 6= 3 and �3�!for j = 3. The 
al
ulation is now exa
tly analogous to that of a single s
alar �eld, ex
ept thatall four 
ontributions must be taken into a

ount. The result is thereforeVS(�) = 164�2 (m2 + 3��2)2 "log m2 + 3��2�2 � 32#+ 364�2 (m2 + ��2)2 "log m2 + ��2�2 � 32# ; (3.1.43)where �2 = �i�i. Some 
omments are in order. First of all, we observe that the same result
ould have been obtained without any spe
i�
 assumption about the shift variables !i. Se
ondly,we stress the fa
t that the result in eq. (3.1.43) (as well as all the other 
ontributions, to be
omputed below) is independent of the values of m2 and �. More spe
i�
ally, this result holdsin both the m2 > 0 and m2 < 0 
ases. In the �rst 
ase, there is no spontaneous breaking ofthe gauge symmetry, the va
uum expe
tation values of the �elds �i are all zero, and the s
alarmasses are all equal to m2. In the m2 < 0 
ase, the minimum of the tree-level potential lies at�2 = v2, and eq. (3.1.43) is easily intrerpreted: there is a 
ontribution 
oming from the physi
alHiggs boson, with massm2+3�v2, and a 
ontribution from the three would-be Goldstone bosons,whose masses vanish at the minimum of the tree-level potential. In both 
ases, the one-loope�e
tive potential has the same form. Note that the masses of the unphysi
al s
alars vanishbe
ause we are working in the Landau gauge.We now turn to the 
ontribution of ve
tor bosons, VV (�). The only term of the lagrangian weneed is the s
alar-s
alar-ve
tor-ve
tor term that appears in the squared 
ovariant derivative ofthe Higgs doublet. In fa
t, after shifting the �elds �i, this term 
ontains both the mass terms for30



the ve
tor bosons and the s
alar-ve
tor-ve
tor verti
es needed to 
ompute the one-loop tadpole.With the help of the results in 4.4 we �nd that the relevant term in the shifted lagrangian isL = (!i!i + 2�i!i) �14g2W+�W�� + 18(g2 + g02)Z�Z�� ; (3.1.44)where again we have 
hosen !i = 0 for i 6= 3 and !3 = !. Therefore, the one-loop tadpole re
eivesone 
ontribution from a loop of a W ve
tor boson with mass g2!2=4 and 
ouplings g2!ig��=2 tothe s
alar �elds �i, and a 
ontribution from the Z boson with mass (g2+ g02)!2=4 and 
ouplings(g2+g02)!ig��=4. The 
orresponding 
ontributions to the e�e
tive potential are easily 
omputedwith the help of eq. (3.1.36), re
alling that a fa
tor g��(�g�� + k�k�=k2) = �3 + 2� must nowbe in
luded be
ause of the form of the ve
tor boson propagators in the Landau gauge. The �nalresult is VV (�) = 364�2 �14(g2 + g02)�2�2 "log (g2 + g02)�2=4�2 � 56# :+ 664�2 �14g2�2�2 "log g2�2=4�2 � 56# : (3.1.45)Finally, we must 
onsider the 
ontribution of fermions. For simpli
ity, we 
onsider onlythe 
ontribution of the top quark, sin
e all other Yukawa 
ouplings in the standard model arenegligibly small. With the 
hoi
e of ! adopted above, the relevant pie
e of the shifted lagrangianis L = � htp2(�3 + !)tt; (3.1.46)and pro
eeding as above we �ndVF (�) = � 1264�2 �12h2t�2�2 "log h2t�2=2�2 � 32# ; (3.1.47)where we have in
luded a fa
tor of three for the 
olour quantum number, and a minus signbe
ause of the fermion loop.To summarize our results, we have 
omputed the one-loop e�e
tive potential of the standardmodel in the MS subtra
tion s
heme. The result isV (�) = 12m2�2 + 14�(�2)2+ 164�2 "H2  log H�2 � 32!+ 3G2  log G�2 � 32!+6W 2  logW�2 � 56!+ 3Z2  log Z�2 � 56!� 12T 2  log T�2 � 32!# ; (3.1.48)whereH = m2 + 3��2; G = m2 + ��2; W = 14g2�2; Z = 14(g2 + g02)�2; T = 12h2t�2: (3.1.49)31



The quantities de�ned in eq. (3.1.49) are usually 
alled the �eld dependent squared massesof the theory; there is one su
h fun
tion for ea
h parti
le in the spe
trum, and its value at�2 = v2 equals the squared mass of the 
orresponding parti
le. We may denote these fun
tions
olle
tively with the symbol M2i (�2) (3.1.50)with the index i running over all parti
les in the theory, and rewrite the one-loop 
orre
tion tothe s
alar potential asV1(�) = 164�2 Xi (�1)2si(2si + 1)M4i (�2) "logM2i (�2)�2 � 
i# ; (3.1.51)where si is the spin of parti
le i, 
i = 3=2 for s
alars and fermions, and 
i = 5=6 for ve
tors.A number of interesting things 
an be done with the one-loop e�e
tive potential (the originalwork of S. Coleman and E. Weinberg is parti
ularly instru
tive). We will 
on
entrate on someof them. Let us 
onsider for example the dependen
e on the renormalization s
ale �. Fromeq. (3.1.11), we have dV (�)dt = 0; (3.1.52)where t = log�2. In fa
t, the one-parti
le irredu
ible Green's fun
tions obey the Callan-Symanzik equations  ��t + �� ��� +m2
m ��m2 + n
! ~�n = 0; (3.1.53)where d�dt = ��; (3.1.54)dm2dt = 
mm2; (3.1.55)d�2dt = 2
�2; (3.1.56)and ��, 
m and 
 are fun
tions of the 
oupling 
onstants, and are 
omputable in perturbationtheory. Using eqs. (3.1.53) in eq. (3.1.11), eq. (3.1.52) is immediately obtained.On the other hand, dV=dt 
an be 
omputed expli
itly by di�erentiating eq. (3.1.48) withrespe
t to log�2 and negle
ting two-loop e�e
ts. We �nddV (�)dt = 14�4 ��� + 4�
 � 116�2 �12�2 + 38g4 + 316(g2 + g02)2 � 3h4t ��+12m2�2 "
m + 2
 � 12�32�2# ; (3.1.57)and therefore �� + 4�
 = 116�2 �12�2 + 38g4 + 316(g2 + g02)2 � 3h4t � (3.1.58)
m + 2
 = 12�32�2 : (3.1.59)32



Observe that eqs. (3.1.58,3.1.59) are not quite enough to 
ompute all the anomalous dimensionsof the s
alar se
tor, but almost so: infa
t, it is suÆ
ient to 
ompute expli
itly one of them, forexample 
, to obtain the others.We will now study the behaviour of the e�e
tive potential for large values of the 
lassi
al�elds �i. We will be interested in dis
overing under whi
h 
onditions V (�)! +1 for large �2,a ne
essary 
ondition for the existen
e of a minimum of V (�) for �nite �2. We therefore assumethat �2 � �2, where � is some energy s
ale mu
h larger than the ele
troweak s
ale. Under thisassumptions, the e�e
tive potential is approximately given byV (�) ' 14�4(�+ 116�2 �12�2 + 38g4 + 316(g2 + g02)2 � 3h4t � log �2�2)+12m2�2 "1 + 12�32�2 log �2�2 # ; (3.1.60)or, using eqs. (3.1.58,3.1.59),V (�) ' 14�4 "�+ (�� + 4�
) log �2�2 #+ 12m2�2 "1 + (
m + 2
) log �2�2 # : (3.1.61)We now observe that the renormalization group equations (3.1.54-3.1.56) have the approximatesolutions �(�) ' �+ �� log �2�2 (3.1.62)m2(�) ' m2  1 + 
m log �2�2! (3.1.63)�2(�) ' �2  1 + 2
 log �2�2! ; (3.1.64)with � = �(�), m2 = m2(�), �2 = �2(�). It is now immediate to show that eq. (3.1.61) is justthe expansion of the renormalization group improved e�e
tive potentialVRG(�) = 12m2(�)�2(�) + 14�(�)�4(�): (3.1.65)We see that the stability 
ondition for the potential is simply the positivity of the running
oupling 
onstant �(�) at large s
ales.The stability 
ondition 
an be translated into a lower limit for the Higgs boson mass. To seethis, we need the expli
it form of the one-loop renormalization group equation for �(�):d�dt = 116�2 �12�2 + 38g4 + 316(g2 + g02)2 � 3h4t � 3�g2 � 32�(g2 + g02) + 6�h2t � : (3.1.66)This equation must be solved together with the one-loop renormalization group equations forgauge and Yukawa 
oupling 
onstants, whi
h in the standard model are given bydgdt = 132�2 ��196 g3� (3.1.67)33



dg0dt = 132�2 416 g03 (3.1.68)dgSdt = 132�2 (�7g3S) (3.1.69)dhtdt = 132�2 �92h3t � �8g2S + 94g2 + 1712g02� ht� ; (3.1.70)where gS is the strong intera
tion 
oupling 
onstant, and the MS s
heme is adopted. This systemof 
oupled �rst-order di�erential equations 
an be easily solved numeri
ally. The result for �(�)is shown in �g. 3.1 for di�erent values of the initial 
ondition �(� = mZ). Namely, we have
hosen �(mZ) 
orresponding to mH = 60; 100; 130; 150; 190 and 210 GeV, wherem2H ' 2�(mZ)v2 : (3.1.71)The interpretation of �g. 3.1 in 
onne
tion with the problem of the stability of the e�e
tive

Figure 3.1: The running 
oupling 
onstant �(�) for di�erent values of �(mZ), as ex-plained in the text.potential is as follows. We see that if the initial 
ondition at � = v is small, then �(�) be
omesnegative for some value of the renormalization s
ale. Conversely, the requirement that �(�)stay positive at least up to a given value of �, � � �, translates into a lower limit on �(v), orequivalently on mH . This lower bound depends on �; we see for example that if we ask �(�) > 0up to the grand uni�
ation s
ale, � 1016 GeV, the Higgs boson mass 
annot go below � 150 GeV(�g. 3.1 is obtained for mt = 175 GeV). This lower limit be
omes less stringent if we require�(�) > 0 in a smaller range of �.There is another lesson to be learned from �g. 3.1. We observe that, for large values of theHiggs boson mass, the 
oupling 
onstant � grows with in
reasing �, and eventually leaves the34



perturbative domain, � < 1. This is be
ause the solution of the renormalization group equationfor � has a singularity in �, known as the Landau singularity. Also in this 
ase, for the theory tomake sense up to a given s
ale �, we must ask �(�) < 1 (or something like that) for � � �. Thisin turns implies an upper bound on the Higgs boson mass, whi
h is approximately 180 GeV for� � 1016 GeV and mt = 175 GeV.The upper limit on the standard model Higgs boson mass is often referred to as the trivialitylimit. The reason for this is that the existen
e of a Landau singularity in the running 
oupling
onstant � would imply �(v) = 0 if we require that the theory be valid for all values of the s
ale�, that is, the theory would be non-intera
ting, or trivial, in the s
alar se
tor. Therefore, we arefor
ed to require the 
onsisten
y of the theory only up to some �nite value of �, and to assumethat some new phenomena be
ome relevant at higher energy s
ales. Noti
e however that norigorous proof of the triviality of the standard model has been given so far; there are only someindi
ations of this, 
oming from studies and latti
e simulations of simpli�ed theories.Both the triviality upper bound and the stability lower bound on the Higgs mass are shownin �g. 3.2, as fun
tions of �. As � in
reases, the allowed range formH be
omes narrower. Re
ent

Figure 3.2: Theoreti
al upper and lower bounds on the Higgs mass.LEP and SLD pre
ision data allow to estimate, although with a large un
ertainty, the value ofthe standard model Higgs mass, that a�e
ts various observables (like the W boson mass, orforward-ba
kward asymmetries) through radiative 
orre
tions. The 
entral values of these �tsare between 100 and 200 GeV. It is interesting to noti
e that a value of mH in this range is
ompatible with � 
lose to the uni�
ation s
ale, � 1016 GeV.
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3.2 The SU(2) 
ustodial symmetryWe have seen in se
tion 3 that in the standard model at tree level the weak ve
tor boson massesmW and mZ are related by � � m2Wm2Z 
os2 �W = 1: (3.2.1)Equation (3.2.1) 
ould in prin
iple be modi�ed at higher orders in perturbation theory. A
tually,the measured value of � is very 
lose to 1:�exp = 1:0048� 0:0022; (3.2.2)thus suggesting that some symmetry property prevents the quantity � from re
eiving largeradiative 
orre
tions. We will now show that this is indeed the 
ase.Preliminarly, we observe that, even after the in
lusion of radiative 
orre
tions, the mostgeneral ve
tor boson mass term is given byLmass = 12m2W (W 1�W 1� +W 2�W 2�) + 12(W �3 B�) " M2 M 02M 02 M 002 # W3�B� ! : (3.2.3)Furthermore, the 
ondition that the photon stays massless gives us M 02 = MM 00, and M2 +M 002 = m2Z. Therefore, the mass matrix in the neutral se
tor is 
ompletely �xed by the value ofone parameter, say M2, and it is diagonalized by a rotation of an angle �W given bytan �W = qm2Z �M2M : (3.2.4)This in turn implies that � = m2Wm2Z 
os2 �W = m2WM2 ; (3.2.5)that is, � = 1 only if M2 = m2W .Next we noti
e that the s
alar potentialV (�) = m2 j � j2 +� j � j4 (3.2.6)is invariant under a group of transformations whi
h is larger than the standard model SU(2)L�U(1)Y . In fa
t, de�ning � = 1p2  �1 + i�2�3 + i�4 ! (3.2.7)we see that j � j2= 12(�21 + �22 + �23 + �24) (3.2.8)
an be interpreted as the squared length of a real four ve
tor. Therefore, the s
alar potentialhas an O(4) � SU(2)� SU(2) invarian
e. This symmetry property 
an be implemented in thefollowing way. We de�ne a 2� 2 matrixH = " �+ �0��0 ��� # : (3.2.9)36



Re
alling that the �eld �
 = (�0�;���)T transforms as an SU(2) doublet, it follows that, underthe a
tion of a generi
 SU(2)L transformation U , we haveH ! UH: (3.2.10)On the other hand, it is easy to 
he
k that the s
alar potential 
an be written in terms of H asV (�) = 12m2 Tr �HyH�+ 12�Tr �HyH�2 ; (3.2.11)whi
h is invariant under the SU(2)L � SU(2) transformationH ! UHV y; (3.2.12)where V is a se
ond SU(2) 
onstant matrix, independent of U . This is possible be
ause thestru
ture of H in eq. (3.2.9) is preserved also by right multipli
ation with an SU(2) matrix.Equation (3.2.12) is a representation of the O(4) symmetry we mentioned above. Is it possibleto write also the kineti
 term for the �eld � in an O(4)-invariant way? The natural 
andidate isof 
ourse 12 Tr (D�H)yD�H; (3.2.13)whi
h is invariant under the transformations (3.2.12) sin
e D� ! UD�U y. However, one readilyrealizes that (3.2.13) is not equal to (D��)yD�� (prove this statement as an exer
ise); this isbe
ause � and �
 have opposite values of the hyper
harge quantum number. We 
on
lude thatthe O(4) symmetry is violated by the hyper
harge intera
tion term 
ontained in the 
ovariantderivative. Let us therefore negle
t for the moment the hyper
harge fa
tor of the gauge group,whi
h amounts to setting g0 = 0, in order to work with an O(4)-invariant theory.Due to spontaneous breaking of SU(2)L, the ground state is not invariant under O(4); how-ever, there is a residual O(3) � SU(2) symmetry under transformations of the kindH ! UH(�1U y�1); (3.2.14)that leave the va
uum expe
tation value < H >= p2v�1 un
hanged (U is now x-independent).We are almost at the end of the road: in fa
t, it is easy to 
he
k that the only mass term for theW i� �elds allowed by the symmetry in eq. (3.2.14) is of the formW i�W �i , that is, a s
alar produ
tin O(3). In other words, M2 = m2W in the notation of eq. (3.2.3).We have proven that � = 1 is a 
onsequen
e of the so-
alled 
ustodial SU(2) symmetryde�ned in eq. (3.2.14), and therefore it is not spoiled by radiative 
orre
tions. The in
lusion ofthe hyper
harge intera
tion, that breaks O(4) expli
itly, does not 
hange this 
on
lusion, sin
eradiative 
orre
tions to � due to the hyper
harge 
oupling are very small.Of 
ourse, fermion mass terms do not preserve the 
ustodial symmetry; we expe
t 
orre
tionsto eq. (3.2.1) of the order of G�m2f . More pre
isely, one �nds� ' 1 + 3G�m2t8�2p2 ; (3.2.15)where we have in
luded only the 
ontribution from the top quark, for obvious reasons.37



3.3 Axial anomaly 
an
ellationWe have seen in the previous se
tions that the renormalizability of the standard model is stri
tly
onne
ted with gauge invarian
e. In parti
ular, we have seen that the massive ve
tor boson prop-agators show unphysi
al singularities, that are 
an
elled by the presen
e of would-be Goldstonebosons. In turn, gauge invarian
e manifests itself in the form of identities between Green fun
-tions, 
alled Slavnov-Taylor identities, that are 
onsequen
es of 
urrent 
onservation, and thatmust hold at all perturbative orders for the theory to be renormalizable. In this se
tion, we willshow that this might not be the 
ase for theories with axial 
urrents, as the standard modelitself. It might happen that 
urrent 
onservation is spoiled at the quantum level, unless thespe
trum of the theory satis�es parti
ular 
onditions. In the language of quantum �eld theory,terms that spoil the validity of Slavnov-Taylor identities are 
alled anomalies. We will illustratethe problem of anomalies in the 
ontext of a simple example, and we will then state under whi
h
onditions the standard model is anomaly-free and renormalizable.We 
onsider quantum ele
trodynami
s with one massive fermion,  with ele
tri
 
harge eand mass m. We 
onsider the operators J�V =  
� (3.3.1)J�A =  
�
5 (3.3.2)JP =  
5 : (3.3.3)It is easy to show, using the equations of motion, that��J�V = 0 (3.3.4)��J�A = 2imJP : (3.3.5)The interpretation of eqs. (3.3.4) and (3.3.5) is well known. Equation (3.3.4) is simply the
onservation of the ele
tromagneti
 
urrent, whi
h re
e
ts the gauge-invarian
e of the theory.The 
urrent J�A, on the other hand, is asso
iated with axial transformations, ! ei�
5 : (3.3.6)The lagrangian of massive QED is not invariant under axial transformations be
ause of thepresen
e of the mass term, and as a 
onsequen
e the asso
iated 
urrent J�A is not 
onserved.Equation (3.3.5) pre
isely states this fa
t. Exa
t axial-
urrent 
onservation is obviously re
overedin the m! 0 limit.Now 
onsider the Green fun
tionT ���(k1; k2) = i Z d4x1d4x2eik1x1+ik2x2h0jT [J�V (x1)J�V (x2)J�A(0)℄j0i ; (3.3.7)whi
h 
an be easily shown to be related to the matrix element of the axial 
urrent between theva
uum state and a two-photon state by the relationh
(k1; �1)
(k1; �1)jJ�A(0)j0i = 2ie2 (��1)� (��2)� T���(k1; k2) : (3.3.8)38



Formally, it obeys the Slavnov-Taylor identitiesk�1T��� = k�2T��� = 0 (3.3.9)q�T��� = 2mT�� ; (3.3.10)where q = k1 + k2 andT ��(k1; k2) = i Z d4x1d4x2eik1x1+ik2x2h0jT [J�V (x1)J�V (x2)JP (0)℄j0i : (3.3.11)The identities in eqs. (3.3.9,3.3.10) 
an be worked out by exploiting eqs. (3.3.4) and (3.3.5), andthe 
anoni
al 
ommutation relations. We will now 
he
k expli
itly whether eqs. (3.3.9,3.3.10)are satis�ed in perturbation theory or not. At the one-loop order, the diagrams to be 
omputedare those of �g. 3.3. We have

Figure 3.3: Diagrams 
ontributing to T ���(k1; k2) and T ��(k1; k2).T ���(k1; k2) = T ���1 (k1; k2) + T ���2 (k1; k2) (3.3.12)T ��(k1; k2) = T ��1 (k1; k2) + T ��2 (k1; k2); (3.3.13)where T ���1 = �i Z d4k(2�)4Tr " ik=+ k=1 �m
�
5 ik=� k=2 �m
� ik=�m
�# (3.3.14)T ��1 = �i Z d4k(2�)4Tr " ik=+ k=1 �m
5 ik=� k=2 �m
� ik=�m
�# (3.3.15)and T ���2 (k1; k2) = T ���1 (k2; k1) (3.3.16)T ��2 (k1; k2) = T ��1 (k2; k1): (3.3.17)39



The overall minus sign is due to the presen
e of a fermion loop.The loop integrals in eqs. (3.3.14) and (3.3.15) are super�
ially divergent. We must therefore
hoose a regularization s
heme before pro
eeding. Dimensional regularization is not suited here,be
ause of the presen
e of 
5, whi
h has an intrinsi
ally four-dimensional meaning and 
annotbe generalized to other spa
e-time dimensions in a simple way. We will make a di�erent 
hoi
e,keeping in mind, however, that it is possible, although quite 
ompli
ated, to treat this problemwithin dimensional regularization. The regularization s
heme we 
hoose is the following. Wesubtra
t from ea
h integrand in eqs. (3.3.14) and (3.3.15) the same expression, but with m re-pla
ed by an arbitrary regularization parameterM . In the limitM !1 the original expressionis re
overed, while, for �nite M , the integrals are now 
onvergent. We will indi
ate with asubs
ript M the regularized quantities.Equations (3.3.9), that state the 
onservation of the ve
tor 
urrent, are satis�ed by T ��� asgiven in eqs. (3.3.12) and (3.3.14). In fa
t, writingk=1 = (k=+ k=1 �m)� (k=�m) (3.3.18)in T ���1 , and k=1 = (k=�m)� (k=� k=1 �m) (3.3.19)in T ���2 (and similarly in the regularizing part of the integrands), we �nd[k�1T���℄M = �i Z d4k(2�)4Tr " ik=+ k=1 �m
�
5 ik=� k=2 �m
� ik=�mk=1+ ik=+ k=2 �m
�
5 ik=� k=1 �mk=1 ik=�m
� � (m!M)#= Z d4k(2�)4Tr "
�
5 ik=� k=2 �m
� ik=�m � ik=+ k=1 �m
�
5 ik=� k=2 �m
�+ ik=+ k=2 �m
�
5 ik=� k=1 �m
� � ik=+ k=2 �m
�
5 ik=�m
� � (m!M)# : (3.3.20)Now, shifting k ! k + k2 in the �rst term and shifting k ! k � k1 + k2 in the se
ond one,they 
an
el against the fourth and se
ond terms, respe
tively. We have therefore[k�1T���℄M = 0; (3.3.21)and also [k�2T���℄M = 0 (3.3.22)by an analogous argument. The limit M ! 1 
an then be taken safely, thus obtaining theannoun
ed results.We may use a similar pro
edure to 
he
k the identity in eq. (3.3.10). Usingq=
5 = 2m
5 + (k=+ k=1 �m)
5 + 
5(k=� k=2 �m) (3.3.23)40



and q=
5 = 2m
5 + (k=+ k=2 �m)
5 + 
5(k=� k=1 �m) (3.3.24)in q�T ���1 and q�T ���2 respe
tively (and making similar repla
ements in the terms with m!M),we get [q�T ���℄M = [2mT ��℄M + [R�� ℄M ; (3.3.25)where R�� = Z d4k(2�)4Tr " ik=+ k=1 �m
5
� ik=�m
� � ik=� k=2 �m
5
� ik=�m
�+ ik=+ k=2 �m
5
� ik=�m
� � ik=� k=1 �m
5
� ik=�m
�# : (3.3.26)It is now easy to see that [R�� ℄M vanishes. In fa
t, by shifting the loop momentum k to k + k2in the se
ond term, and to k + k1 in the fourth, they 
an
el against the third and the �rstrespe
tively. The important point here is that these shifts in the integration variable 
an beperformed only after regularizing the integrals. Therefore,[q�T ���℄M = [2mT ��℄M : (3.3.27)Let us now 
ompute [2mT ��℄M expli
itly. Using the Feynman parametrization1d�11 : : : d�nn = �(�1 + : : :+ �n)�(�1) : : :�(�n)� Z 10 dx1 : : : Z 10 dxnx�1�11 : : : x�n�1n Æ(1� x1 � : : :� xn)(x1d1 + : : :+ xndn)�1+:::+�n ; (3.3.28)we �nd[2mT ��1 ℄M = 2 Z 10 dx Z 1�x0 dy Z d4k(2�)4 " �8im2�����k�1k�2[k2 + 2k(k1x� k2y)�m2℄3 � (m!M)# ; (3.3.29)where we have set k21 = k22 = 0. The simple expression in the numerator is obtained by droppingall produ
ts of 
5 with two, three and �ve 
 matri
es, and exploiting the antisymmetry of �����.The integration over the loop momentum k 
an be easily performed by shifting the integrationvariable k ! k � k1x + k2y (3.3.30)with the result[2mT�� ℄M = 1�2 �����k�1k�2 Z 10 dx Z 1�x0 dy " m2m2 � q2xy � M2M2 � q2xy# : (3.3.31)41



Noti
e that the RHS of eq. (3.3.31) is �nite when M !1. The limit 
an now be taken safely,giving q�T��� = 2mT�� � 12�2 �����k�1k�2 : (3.3.32)The e�e
t of the regularization is that the Slavnov-Taylor identity in eq. (3.3.10) is spoiled byan anomalous term, whi
h is usually 
alled the axial anomaly, or the Adler-Bardeen-Ja
kiwanomaly. This term arises be
ause of the impossibility of regularizing the theory in a way thatpreserves both the ve
tor and axial ve
tor 
lassi
al 
urrent divergen
e relations; one of the twomust be given up. The anomalous term is �nite; however, a regularization pro
edure is neededin order to prove the 
an
ellation of integrals with two propagators, whi
h are divergent.The anomalous term 
an be taken into a

ount by modifying eq. (3.3.5) at the one-loop levelin the following way: ��J�A = 2imJP + 1(4�)2 �����F ��F ��; (3.3.33)where F �� is the �eld-strength tensor of QED. In other words, the axial 
urrent is not 
onserved,at the quantum level, even ifm = 0. Noti
e in fa
t that the anomaly is independent of the fermionmass. Furthermore, it 
an be proved that higher-order 
orre
tions do not modify the one-loopexpression of the anomaly.The result in eq. (3.3.33) 
an be immediately generalized to a theory with n fermion �elds i, i = 1; : : : ; n with masses mi, ve
tor 
harges Qi and axial 
harges Q5i :��J�A = nXi=1Q5iQ2i "2imiJ iP + 1(4�)2 �����F��F��# ; (3.3.34)where now J�A = nXi=1Q5i i
�
5 i; J iP =  i
5 i : (3.3.35)The above 
onsiderations 
an be extended to the 
ase of a theory with non-abelian gaugeinvarian
e. In this 
ase, also fermion loops with four and �ve internal lines 
ontribute to theanomaly. It 
an be shown that the anomalous term of the axial ve
tor 
urrent in a non-abeliantheory is proportional to Tr (fT a; T bgT 
); (3.3.36)where T a are the gauge group generators. In the standard model, fermions are either in thedoublet or in the singlet representation of SU(2); this means that the four quantitiesTr (f�a; � bg� 
) (3.3.37)Tr (f�a; � bgY ) (3.3.38)Tr (Y 2� 
) (3.3.39)Tr (Y 3) (3.3.40)must all vanish, for the axial anomaly to be 
an
elled. The �rst quantity is obviously zero:Tr (f�a; � bg� 
) = 2ÆabTr (� 
) = 0: (3.3.41)42



The se
ond quantity requires more 
are. Sin
e �a = 0 for right-handed fermions, we haveTr (f�a; � bgY ) = 2ÆabTr (YL); (3.3.42)where YL is the hyper
harge matrix restri
ted to left-handed fermions. Sin
e Y = 1=3 for thedoublets of left-handed quarks, and Y = �1 for the doublets of left-handed leptons, we �ndTr (YL) = nq � 3� 2� 13 + nl � 2� (�1) = 2(nq � nl); (3.3.43)where nq (nl) is the number of quark (lepton) families. The fa
tor of 3 in front of the quark termis due to the 
olour degree of freedom, and the overall fa
tor of 2 is due to the fa
t that left-handed fermions are SU(2) doublets. We see that the 
an
ellation of the axial anomaly requiresthat the numbers of quark and lepton families are equal! This is an important predi
tion of thestandard model, whi
h has been re
ently 
on�rmed by the dis
overy of the top quark.The third 
ondition, Tr (Y 2� 
) = 0, is again trivially satis�ed, sin
e Y has the same valuefor both 
omponents of ea
h doublet, and Tr (� 
) = 0 (for singlets, we have simply � 
 = 0).The last 
ondition, Tr (Y 3) = 0, is also satis�ed provided nq = nl. To show this, it is
onvenient to write the axial 
urrent as� 
�
5 = � 
� 12(1 + 
5) � � 
�12(1� 
5) : (3.3.44)In this way, it is 
lear that left-handed fermions and right-handed fermions 
ontribute to theaxial anomaly with opposite signs. We have thereforeTr (Y 3) = Tr (Y 3L )� Tr (Y 3R): (3.3.45)Using Y = 2(Q� T3) we �ndTr (Y 3L ) = 6nq �13�3 + 2nl(�1)3 (3.3.46)Tr (Y 3R) = 3nq "�43�3 + ��23�3# + nl(�2)3; (3.3.47)and therefore Tr (Y 3) = �6(nq � nl): (3.3.48)It is easy to prove that, be
ause of the axial anomaly, the 
urrents asso
iated with the leptoni
and baryoni
 numbers, L� = nlXi=1 [�ei
�ei + ��i
��i℄ (3.3.49)B� = 13 nqXi=1 h�ui
�ui + �di
�dii (3.3.50)43



are anomalous. In order to prove this statement, let us 
onsider the 
ase of only one generation(the extension to more than one generation is trivial), and let us rewrite the leptoni
 
urrent asL� = L�L + L�R; (3.3.51)where L�L = (��L; �eL)
�  �LeL ! (3.3.52)L�R = �eR
�eR: (3.3.53)We now 
onsider triangle diagrams with L�L or L�R on one vertex, and weak ve
tor bosons on thethe two remaining verti
es. Clearly, only left-handed (right-handed) fermions 
ir
ulate in theloop with L�L (L�R). This is easily seen by working out the Dira
 stru
ture of the loop integrand:
�PLk̂(a
�PL + b
�PR)k̂0(a0
�PL + b0
�PR) = aa0
�PLk̂
� k̂0
�: (3.3.54)Thus, ��L�L = � 1(4�)2 ����� "g02B��B��Tr �YL2 ; YL2 � + g2W i��W j��Tr (� i2 ; � j2 )# : (3.3.55)The minus sign arises be
ause 
5 appears in L�L with a minus sign. Using YL = �1 and theanti
ommutation relations among the Pauli matri
es, we �nd��L�L = � 1(4�)2 ����� hg02B��B�� + g2W i��W i��i : (3.3.56)By a similar argument, we get��L�R = 1(4�)2 �����g02B��B��Tr �YR2 ; YR2 � = 2(4�)2 �����g02B��B��; (3.3.57)sin
e YR = �2, and therefore��L� = 1(4�)2 ����� hg02B��B�� � g2W i��W i��i : (3.3.58)This results in a (numeri
ally negligible) non-
onservation of leptoni
 and baryoni
 numbers Land B, due to instanton e�e
ts. The di�eren
e B � L is however 
onserved. Indeed, we maywrite for the baryoni
 
urrent B� = B�L +B�R; (3.3.59)where B�L = 13(�uL; �dL)
�  uLdL ! (3.3.60)B�R = 13 �uR
�uR + 13 �dR
�dR; (3.3.61)44



and 
ompute ��B� as in the 
ase of the leptoni
 
urrent. We �nd��B� = � 1(4�)2 ����� "g02B��B��Tr �YQ2 ; YQ2 �+ g2W i��W j��Tr (� i2 ; � j2 )#+ 1(4�)2 �����g02B��B�� �Tr �YuR2 ; YuR2 �+ Tr �YdR2 ; YdR2 �� : (3.3.62)The global fa
tor of 1=3 is 
an
elled by a fa
tor of 3 from 
olor. Using the known values of quarkhyper
harges YQ = 13 YuR = 43 YdR = �23 (3.3.63)we get ��B� = 1(4�)2 ����� "�g02B��B��  Y 2Q � Y 2uR2 � Y 2dR2 !� g2W i��W i��#= 1(4�)2 ����� hg02B��B�� � g2W i��W i��i (3.3.64)whi
h is exa
tly equal to ��L�. This shows that the 
urrent B� � L� is 
onserved.3.4 A

idental symmetriesThe need for a Yukawa intera
tion term of fermion �elds with s
alar �elds 
an be motivated ina di�erent way. Consider the standard model with only one generation of quarks and leptons,and no s
alar �elds. The lagrangian for fermion �elds 
an be written in the following 
ompa
tform: L = 5Xk=1 � kD= k; (3.4.1)where the sum runs over the �ve di�erent irredu
ible representations of SU(2)L 
 U(1)Y of thefermions in a generation:  1 = eR � (1;�2) 2 = L � (2;�1) 3 = uR � (1; 4=3) 4 = dR � (1;�2=3) 5 = Q � (2; 1=3):Here, the symbol � means \transforms as", and the two numbers in bra
kets stand for the SU(2)representation (2 for the doublet, 1 for the s
alar) and for the hyper
harge quantum number,respe
tively. Mass terms are forbidden by the gauge symmetry.In addition to the assumed gauge symmetry, the lagrangian in eq. (3.4.1) is manifestly in-variant under a large 
lass of global transformations: namely, the fermion �elds within ea
hrepresentation 
an be multiplied by an arbitrary 
onstant phase k ! ei�k k (3.4.2)45



without a�e
ting L. This [U(1)℄5 global symmetry was not imposed at the beginning: it is justa 
onsequen
e of the assumed gauge symmetry and of the renormalizability 
ondition. It istherefore 
alled an a

idental symmetry.Let us take a 
loser look to the a

idental symmetry. The �ve 
onserved 
urrents 
orrespond-ing to the global transformations (3.4.2) areJ�1 = �eR
�eRJ�2 = ��L
��L + �eL
�eLJ�3 = �uR
�uRJ�4 = �dR
�dRJ�5 = �uL
�uL + �dL
�dLEquivalently, one 
ould de�ne the a

idental symmetry transformations in su
h a way that the
orresponding 
urrents are �ve independent linear 
ombinations of J�1 ; : : : ; J�5 . Consider forexample the 
hoi
e J�Y = 5Xk=1 Yk2 J�kJ �̀ = J�1 + J�2 � ��
�� + �e
�eJ �̀5 = J�1 � J�2 � ��
�
5� + �e
�
5eJ�b = 13(J�3 + J�4 + J�5 ) � 13(�u
�u+ �d
�d)J�b5 = J�3 + J�4 � J�5 � �u
�
5u+ �d
�
5d:The 
urrent JY is the hyper
harge 
urrent, whi
h 
orresponds to a lo
al invarian
e of the theory.The true a

idental symmetry is therefore [U(1)℄4, rather than [U(1)℄5.The 
urrents J` and Jb are immediately re
ognized to be the leptoni
 and baryoni
 number
urrents, respe
tively. The invarian
e of the lagrangian under the 
orresponding global symme-tries is 
ertainly good news, sin
e baryoni
 and leptoni
 number are known to be 
onserved toan extremely high a

ura
y.On the other hand, experiments show no sign of the 
onservation of J`5 and Jb5; in a realisti
theory, the 
orresponding symmetries should be broken. In fa
t, they are in
ompatible withmass terms, and they are broken by the Yukawa intera
tion terms that generate fermion massesvia the Higgs me
hanism.When the theory is extended to in
lude more fermion generations, the a

idental symmetrygets mu
h larger, sin
e also mixing among di�erent generation is allowed. The Yukawa intera
-tion terms of the previous subse
tion break this larger a

idental symmetry too, leaving howeverbaryoni
 and leptoni
 numbers 
onserved. Individual leptoni
 numbers are separately 
onserved,while only the total baryoni
 number is 
onserved, be
ause of 
avour mixing.To 
on
lude this subse
tion, let us brie
y review the most important experimental eviden
esof baryon and lepton number 
onservation. The most obvious test of baryon number 
onservationis proton stability. The experimental lower bound on the proton lifetime is at present�p > 1:6 � 1025 y : (3.4.3)46



The most a

urate tests of lepton number 
onservation are provided by the following observables:B(�! e
) � 1:2 � 10�11 (3.4.4)B(�! 3e) � 1 � 10�12 (3.4.5)�(�T i! e T i)�(�T i! all) � 4 � 10�12 (3.4.6)B(� ! �
) � 2:7 � 10�6 : (3.4.7)
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Chapter 4Appendi
es
4.1 Renormalizability and power 
ountingIn this appendix, we des
ribe the power-
ounting 
riterion for renormalizability of lo
al �eldtheories. Consider a Feynman diagram 
ontaining{ L loops;{ V verti
es;{ If internal fermioni
 lines;{ Ef external fermioni
 lines;{ Ib internal bosoni
 lines;{ Eb external bosoni
 lines.Let us assume that there are di�erent types of verti
es, ea
h type being labelled by the indexi, and that V =Xi V i; (4.1.1)where V i is the number of verti
es of type i. Finally, let nif , nib, di be the number of fermioni
lines, bosoni
 lines and �eld derivatives in type-i verti
es, respe
tively. The following relationshold: 2If + Ef =Xi nifV i (4.1.2)2Ib + Eb =Xi nibV i: (4.1.3)The number L of loops is equal to the number of independent internal momenta, whi
h in turnis equal to the total number of internal lines I = If + Ib minus the number of independentmomentum 
onservation equations. Therefore, we haveL = If + Ib � (V � 1): (4.1.4)We now de�ne the degree of super�
ial divergen
e D of the diagram as the power of momentain the numerator minus the power of momenta in the denominator of the Feynman diagram.49



Clearly, D = dL� If � 2Ib +Xi diV i; (4.1.5)sin
e fermion propagators behave as k�1, boson propagator behave as k�2, ea
h �eld derivative
orresponds to one power of momentum, and d powers of momentum are 
arried by ea
h loopintegration in d-dimensional spa
e-time. Now, repla
ing eqs. (4.1.1) and (4.1.4) in eq. (4.1.5)and eliminating If and Ib via eqs. (4.1.2) and (4.1.3), we �ndD = d� d� 12 Ef � d� 22 Eb +Xi V i  di + d� 12 nif + d� 22 nib � d! : (4.1.6)If D � 0, the Feynman amplitude will be ultraviolet divergent. On the other hand, D < 0is not a suÆ
ient 
ondition for 
onvergen
e, sin
e there 
an still be subdiagrams with D � 0.However, we noti
e that D de
reases with in
reasing number of external lines. Therefore, if thelast term in the r.h.s. of eq. (4.1.6) is zero or negative, then only a �nite number of diagramshave D � 0, and the whole theory 
an be made �nite by renormalizing only these primitivelydivergent amplitudes, at any order in perturbation theory. The 
ondition for renormalizabilitythen be
omes di + d� 12 nif + d� 22 nib � d (4.1.7)and it must hold for ea
h i separately (a diagram 
an 
ontain only verti
es of one type). Noti
ethat the l.h.s. of eq. (4.1.7) is just the mass dimension of the operator that 
orresponds totype i verti
es: in fa
t, fermion �elds have dimension 3=2, boson �elds have dimension 1 andderivatives have dimension 1. For this reason, the 
ondition in eq. (4.1.7) 
an be rephrased interms of 
oupling 
onstant dimensionality: a renormalizable theory 
an 
ontain only 
onstantswith mass dimension � 0.
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4.2 Non-unitarity of the Fermi theoryIn this Appendix we will work out the restri
tions imposed on s
attering amplitudes by theunitarity 
ondition of the s
attering matrix, and we will show that the Fermi theory violatesthis unitarity bound at suÆ
iently high energy. Writing the s
attering matrix asS = I + iT; (4.2.1)the unitarity 
ondition SyS = I gives T yT = �i(T � T y): (4.2.2)For generi
 states a; b we havehajT yT jbi = �i �hajT jbi � hajT yjbi� : (4.2.3)Now de�ne the invariant amplitudeMaf for the pro
ess a! f byhf jT jai =Maf (2�)4 Æ(4)(Pa � Pf); (4.2.4)and insert the identity operator between T y and T in the l.h.s. of eq. (4.2.3):I =Xf Yi Z d3P fi(2�)32Efi jfihf j (4.2.5)where P fi is the momentum of parti
le i in the state f . We getXf Yi Z d3P fi(2�)32Efi (2�)4 Æ(4)(Pa �Xi P fi ) (2�)4 Æ(4)(Pb �Xi P fi )MbfM�af= �i (Mba �M�ab) (2�)4Æ(4)(Pa � Pb); (4.2.6)or Xf Yi Z d3P fi(2�)32Efi (2�)4 Æ(4)(Pa �Xi P fi )MbfM�af = �i (Mba �M�ab) : (4.2.7)For a = b, eq. (4.2.7) givesXf Yi Z d3P fi(2�)32Efi (2�)4 Æ(4)(Pa �Xi P fi ) jMaf j2 = 2 ImMaa; (4.2.8)whi
h is the so-
alled opti
al theorem: the total 
ross se
tion for the pro
ess a ! f is propor-tional to the imaginary part of the forward invariant amplitudeMaa.Let us now assume that jai is a state of two parti
les of the same spe
ies, with momentap1; p2; furthermore, let us assume that only elasti
 s
attering is allowed. Under these 
onditions,the states jfi are also two-parti
le states of the same spe
ies as those in jai, and the amplitudes51



Maf depend on the initial and �nal states through the two independent Mandelstam variabless; t: Maf �M(s; t); (4.2.9)where s = (p1 + p2)2; t = (p1 � P1)2: (4.2.10)In the 
enter-of-mass frame, t = �s2(1� 
os �) ! 
os � = 1 + 2ts ; (4.2.11)where � is the s
attering angle. Thus, for a given value of the 
enter-of mass squared energys, the amplitude M(s; t) is a fun
tion of 
os � only, and 
an be expanded on the basis of theLegendre polynomials PJ(z) = 1J !2J dJdzJ (z2 � 1)J : (4.2.12)The Legendre polynomials obey the orthogonality 
onditionsZ 1�1 dz PJ(z)PK(z) = 22J + 1 ÆJK (4.2.13)and the normalization 
onditions PJ(1) = 1: (4.2.14)We �nd M(s; t) = 16�XJ (2J + 1) aJ(s)PJ(
os �); (4.2.15)where the partial-wave amplitudes aJ are given byaJ(s) = 132� Z 1�1 d 
os � PJ(
os �)M(s; t): (4.2.16)Repla
ing eq. (4.2.15) in the l.h.s. of eq. (4.2.8) we getZ d3P1(2�)3 2E1 d3P2(2�)3 2E2 (2�)4Æ(4)(p1 + p2 � P1 � P2) jM(s; t)j2= 116� Z 1�1 d 
os � "16�XJ (2J + 1) aJ(s)PJ(
os �)# "16�XK (2K + 1) a�K(s)PK(
os �)#= 32� XJ (2J + 1) jaJ(s)j2 ; (4.2.17)while the r.h.s. is given by 2 ImM(s; 0) = 32�XJ (2J + 1) ImaJ(s); (4.2.18)
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where we have set t = 0, or equivalently 
os � = 1, as appropriate for a forward amplitude, andwe have used the normalization 
ondition (4.2.14). Therefore, unitarity of the s
attering matrixrequires jaJ(s)j2 = Im aJ(s) (4.2.19)for all partial amplitudes. Equation (4.2.19) provides the unitarity boundjaJ(s)j � 1: (4.2.20)Let us now 
onsider a spe
i�
 pro
ess, namely the s
atteringe�(p1) + ��(p2)! ��(P1) + �e(P2) (4.2.21)within the Fermi theory. The relevant amplitude isM(s; t) = �GFp2 �u(P2) 
�(1� 
5) u(p1) �u(P1) 
�(1� 
5) u(p2); (4.2.22)whi
h givesjM(s; t)j2 = G2F2 Tr h
�(1� 
5) p=1 
�(1� 
5) k=2 i Tr [
�(1� 
5) p=2 
�(1� 
5) k=1 ℄= 32G2F s2; (4.2.23)where a sum over polarizations is understood. We see that only the partial amplitude a0(s) isnonzero, sin
e there is no t dependen
e at all. Using the de�nition eq. (4.2.16) we obtainja0(s)j = GF s2p2� : (4.2.24)The unitarity bound eq. (4.2.20) is therefore violated atps = vuut2p2�GF ' 875GeV: (4.2.25)From eq. (4.2.23) we obtain the total 
ross se
tion� = G2F s2� : (4.2.26)Let us now repeat the same 
al
ulation in the 
ontext of a theory with an intera
ting ve
torboson W with mass mW and 
oupling g=(2p2) to left-handed fermions (the 
oupling g is dimen-sionless; the numeri
al fa
tor is 
onventional). The squared amplitude in this theory is obtainedfrom the result in eq. (4.2.23) by performing the repla
ement�GFp2 ! g28 1t�m2W : (4.2.27)53



We get jM(s; t)j2 = 32  g2p28 1t�m2W !2 s2 = g4s2(t�m2W )2 : (4.2.28)The total 
ross se
tion is now given by� = g464�m2W ss+m2W : (4.2.29)For s � m2W , this expression redu
es to the result obtained in the Fermi theory, eq. (4.2.26),with the identi�
ation GFp2 = g28m2W : (4.2.30)In this 
ase, however, the linear growth of the 
ross se
tion with s is 
ut o� at s � m2W . At verylarge energy we have � ! g464�m2W = G2Fm2W2� : (4.2.31)The value of mW is related to the size of the 
oupling g through eq. (4.2.30). If mW were 
lose tothe energy at whi
h the Fermi theory breaks down, about 900 GeV, then g would take a value
lose to 10, far from the perturbative domain. The fa
t that the measured value mW is insteadmu
h smaller, mW ' 80 GeV, is a signal of the fa
t that a theory of weak intera
tions with anintermediate ve
tor boson 
an be treated perturbatively: indeed, in this 
ase we get g � 0:7.
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4.3 Gauge theoriesThe abelian 
aseThe Dira
 free lagrangian for a massive fermionL =  (i�̂ �m) (4.3.1)is invariant under the global (or �rst kind) U(1) gauge transformation !  0 = eie�  !  0 = e�ie� ; (4.3.2)where � is a real 
onstant. The 
onstant e plays the role of the 
onserved 
harge asso
iatedwith this invarian
e property. We want to promote this global symmetry to a lo
al one, that is,we want to modify L in order to make it invariant under the �eld transformation (4.3.2) with� = �(x). The derivative term is not invariant: �� ! e�ie� ��(eie� ) =  �� + ie (���) : (4.3.3)The ordinary derivative must be repla
ed by a 
ovariant derivative,D� = �� � ieA�; (4.3.4)where A� is a real ve
tor �eld. The transformation property of A� must be �xed in su
h a waythat D� ! eie�D� : (4.3.5)This gives (�� � ieA0�) 0 = eie�(�� � ieA�) (�� � ieA0�)eie� = eie�(�� � ieA�) �� + ie(���) � ieA0� = �� � ieA� (���) � A0� = �A� (4.3.6)whi
h implies A� ! A0� = A� + ���: (4.3.7)The lagrangian L =  (iD̂ �m) (4.3.8)is invariant under the lo
al (or se
ond kind) gauge transformation !  0 = eie�(x)  !  0 = e�ie�(x) ;A� ! A0� = A� + ���(x): (4.3.9)55



Noti
e that the requirement of lo
al gauge invarian
e generates the intera
tion term e 
� A�.A kineti
 term, involving derivatives of the ve
tor �eld A�, must now be introdu
ed. Itis uniquely �xed by the requirements of Lorentz and gauge invarian
e, and by assuming thestandard normalization of the propagator for A�. It is given byLYM = �14F ��F�� ; (4.3.10)where F �� = ��A� � ��A�: (4.3.11)Noti
e that (D�D� �D�D�) = �ieF �� ; (4.3.12)and that F �� is invariant under a gauge transformation. Noti
e also that gauge invarian
e forbidsthe presen
e of a mass term for the gauge �eld A�. Finally, we observe that no self-intera
tionterm for the ve
tor �eld A� is present in the lagrangian. This is 
onne
ted with the abeliannature of the invarian
e group.The non-abelian 
aseLet us 
onsider now the 
ase when the invarian
e group of the theory is non-abelian. Forde�niteness, we 
onsider the group SU(N) of N � N unitary matri
es with unit determinant.This group has N2 � 1 hermitian tra
eless generators tA, that obey the 
ommutation relations[tA; tB℄ = ifABCtC ; A; B; C = 1; :::; N2 � 1; (4.3.13)where fABC is 
ompletely antisymmetri
. A generi
 element U of SU(N) 
an be expressed interms of the generators tA and of a set of real fun
tions �A(x) byU � U(�) = exp(ig�AtA); U�1 = U y; (4.3.14)where we have inserted a 
oupling 
onstant g in analogy with the abelian 
ase. The 
ovariantderivative is now given by D� = ��I � igA�; (4.3.15)where I is the unity matrix in the representation spa
e, and the ve
tor �eld A� is now a hermitianmatrix A� = A�AtA: (4.3.16)It is easy to show, in analogy with the abelian 
ase, that the transformation lawA� ! A0� = UA�U�1 + igU(��U�1) (4.3.17)ensures that D� ! UD�U�1: (4.3.18)56



Consider now an in�nitesimal gauge transformationU(�) = I + ig�AtA +O(�2): (4.3.19)To �rst order in �, eq. (4.3.17) be
omesA0� = A� + ig[�AtA; A�℄� ig ig���AtA= A�CtC � g�AA�BfABCtC + ���CtC ; (4.3.20)or A0�C = A�C � g�AA�BfABC + ���C: (4.3.21)A kineti
 term for the gauge �elds 
an be built in analogy with the abelian 
ase. We haveRe
alling eq. (4.3.12), we de�ne a �eld tensor F �� through(D�D� �D�D�) = �igF �� ; (4.3.22)where  is a multiplet of some SU(N) representation, and F �� = F ��A tA. We �ndF �� = ��A� � ��A� � ig[A�; A�℄;F ��A = ��A�A � ��A�A + gfABCA�BA�C : (4.3.23)The kineti
 term is then given by �14F ��A FA��: (4.3.24)In the non-abelian 
ase, self-intera
tion terms among the gauge �elds are present. This is relatedto the fa
t that, 
ontrary to the abelian 
ase, the �eld strength F �� transforms non-trivially undera gauge transformation: F �� ! F 0�� = UF ��U�1: (4.3.25)For an in�nitesimal gauge transformation, we �ndF 0��A = F ��A � gfABC�BF ��C ; (4.3.26)whi
h means that the 
omponents F ��A form a multiplet in the adjoint representation of thegauge group.
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4.4 The standard model lagrangian in renormalizable gaugesLet us 
onsider the following part of the standard model lagrangian:LD � V (�) + LGF ; (4.4.1)where LD = (D��)yD�� (4.4.2)V (�) = m2 j�j2 + � j�j4 (4.4.3)LGF = � 12� h��W i� � �f i(�)i2 � 12� [��B� � �f(�)℄2 : (4.4.4)For the moment, we do not spe
ify the value of the hyper
harge quantum number Y of the Higgsdoublet �. We de�ne � = �1 + �2; (4.4.5)where �1 = 1p2  v1v2 ! �2 =  G+(H + iG)=p2 ! (4.4.6)and v1; v2 are arbitrary 
omplex numbers, only restri
ted by the minimization 
onditionjv1j2 + jv2j2 � v2 = �m2� : (4.4.7)We have LD = ����y + i2�y �gW �i � i + g0Y B��� ����� i2 �gW j�� j + g0Y B����� L�� + L��V V + L��V : (4.4.8)The �rst term is simply the kineti
 term for �,L�� = (���)y��� = ��G+��G� + 12��H��H + 12��G��G: (4.4.9)Next, we 
onsider the ��V V term:L��V V = 14(g2W �i W i� + g02Y 2B�B�)�y�+ 12gg0Y B�W i��y� i�= 14(W �i B�) " g2�y�Æij gg0Y �y� i�gg0Y �y� j� g02Y 2�y� # Wj�B� ! : (4.4.10)Equation (4.4.10) 
ontains a mass term for the ve
tor �elds, that 
an be isolated by repla
ing �with �1: Lmass = (W �i B�)M2  Wj�B� ! ; (4.4.11)58



where M2 = 14 " g2�y1�1Æij gg0Y �y1� i�1gg0Y �y1� j�1 g02Y 2�y1�1 # : (4.4.12)Observe that the matrixM2 has zero determinant:detM2 = 116 g2g02 Y 2 j�1j4 ��y1� j�1 �y1� j�1 � j�1j4� (4.4.13)whi
h vanishes be
ause of the identity� jab� j
d = 2�ÆadÆb
 � 12ÆabÆ
d� : (4.4.14)In other words, with only one s
alar doublet of any hyper
harge, one of the four physi
al ve
torboson has always zero mass. This is be
ause it is always possible to �nd a U(1) subgroup of thegauge group whi
h leaves the va
uum expe
tation value �1 invariant.Let us now diagonalizeM2. This is easily done by 
hoosing v1 = 0; v2 = v, whi
h is allowedbe
ause all the degenerate va
uum 
on�gurations are 
onne
ted by gauge transformations. We�nd Lmass = 14 g2v2W+�W�� + 18v2(W �3 B�) " g2 �gg0Y�gg0Y g02Y 2 #  W3�B� ! : (4.4.15)The �rst term is already in diagonal form, and tells us that the 
harged ve
tor bosonsW�� = 1p2(W 1� � iW 2� ) (4.4.16)are mass eigenstates, with masses m2W = 14g2v2: (4.4.17)The se
ond term in eq. (4.4.15) is diagonalized by the rotation W �3B� ! = " 
os � sin �� sin � 
os � # Z�A� ! ; tan � = g0Yg ; (4.4.18)where the 
ombination A� 
orresponds to the zero-mass ve
tor boson. We see immediately that,for Y = 1, A� is pre
isely equal to the photon �eld 
oupled to the ele
tromagneti
 
urrent, and� � �W . The eigenvalue 
orresponding to Z� ism2Z = 14(g2 + g02)v2: (4.4.19)In terms of W�� , A� and Z� eq. (4.4.10) be
omesL��V V = W+�W�� �mW + 12gH�2 + 12Z�Z� �mZ + 12 g
os �WH�259



+12g2W+�W�� (G+G� + 12G2) + 18 g2
os2 �W Z�Z�G2+14 g2
os2 �W (A� sin 2�W + Z� 
os 2�W )2G+G�+g sin �W (mWA� �mZZ� sin �W ) �G�W+� +G+W�� �+12g2 sin �W (A� � Z� tan �W ) hG�W+� (H + iG) +G+W�� (H � iG)i :(4.4.20)The third term in LD must be 
onsidered in 
onjun
tion with the gauge-�xing term. Wehave L��V = � i2gW i� h(���2)y� i�1 � �y1� i���2i� i2g0B� h(���2)y�1 � �y1���2i� i2gW i� h(���2)y� i�2 � �y2� i���2i� i2g0B� h(���2)y�2 � �y2���2i : (4.4.21)Exploiting the fa
t that ���1 = 0, we 
an integrate by parts the �rst row. Adding LGF , we �ndL��V + LGF = � i2gW i� h(���2)y� i�2 � �y2� i���2i� i2g0B� h(���2)y�2 � �y2���2i+��W i� � i2g(�y2� i�1 � �y1� i�2) + f i(�)�+��B� � i2g0(�y2�1 � �y1�2) + f(�)�� 12� (��W i�)2 � 12� (��B�)2 � 12�f i(�)f i(�)� 12�f(�)f(�): (4.4.22)With the 
hoi
es f i(�) = � i2g(�y2� i�1 � �y1� i�2) (4.4.23)f(�) = � i2g0(�y2�1 � �y1�2) (4.4.24)the mixing between ve
tor bosons and s
alars disappears, and we remain withL��V + LGF = � i2gW+� h(H + iG)��G� �G���(H + iG)i+ i2gW�� h(H � iG)��G+ �G+��(H � iG)i� i2 [2g sin �WA� + (g 
os �W � g0 sin �W )Z�℄ (G+��G� �G���G+)�12(g 
os �W + g0 sin �W )Z�(G��H �H��G)� 12� (��W i�)2 � 12� (��B�)2 � �m2WG+G� � 12�m2ZG2: (4.4.25)60



We see that the would-be Goldstone bosons G� and G have a
quired squared masses equal to�m2W and �m2Z, respe
tively, as is ne
essary in order to 
an
el the unphysi
al singularities in theve
tor boson propagators. These masses vanish in the Landau gauge, � = 0.The last term to be 
onsidered is the s
alar potential V (�). After some algebra, we �ndV (�) = 12m2H "H + H2 + 2G+G� +G22v #2 ; (4.4.26)where m2H = 2�v2: (4.4.27)We 
onsider now the intera
tion between fermions and s
alars. From eqs. (2.2.43-2.2.46) andthe de�nition in eq. (2.2.52), we getLhadrY = �G+ (uLV hDdR � uRhUV dL)�G� �dRhDV yuL � dLV yhUuR�� 1p2(v +H) �dhDd+ uhUu�� iGp2 �dhD
5d� uhU
5u� ; (4.4.28)and LleptY = � 1p2(v +H)ehLe�G+�hLeR �G�eRhL�; (4.4.29)where sums over generation indi
es are understood.
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4.5 Dimensional regularizationA 
onvenient way of regularizing divergent integrals, like those appearing when 
omputing loopdiagrams in perturbation theory, is that of modifying the dimension of the integration spa
e(spa
e-time in our 
ase): the integral of 1=(k2 �m2)2 is logarithmi
ally divergent at large mo-menta in four-dimensional spa
e-time, while it would be 
onvergent if spa
e-time dimensions arelowered to 3, for example. More generally, one 
omputes the integral in a d-dimensional spa
e-time, with d 
hosen in su
h a way that the integral 
onverges, and then 
ontinues anality
ally theresult in the 
omplex d plane. Divergen
es will therefore appear as poles in d� 4. Dimensionalregularization is parti
ularly useful be
ause it preserves Lorentz invarian
e and gauge invarian
eof the theory.In the following, I will show how to 
ompute ultraviolet-divergent loop integrals in dimen-sional regularization. After Feynman redu
tion of the denominators and appropriate shifts inthe loop variable, loop integrals 
an be redu
ed to the formZ ddq(2�)d q�1 : : : q�k(q2 �m2 + i�)n ; (4.5.1)where k is an even integer and m2 is a fun
tion of external momenta, masses, and Feynmanparameters. For k = 0; 2; 4 we �ndZ ddq(2�)d 1(q2 �m2 + i�)n = (�1)n i(4�)�(4�)2 �(n� 2 + �)�(n) (m2)�(n�2+�) (4.5.2)Z ddq(2�)d q�q�(q2 �m2 + i�)n = (�1)n�1 i(4�)�2(4�)2 �(n� 3 + �)�(n) (m2)�(n�3+�) g�� (4.5.3)Z ddq(2�)d q�q�q�q�(q2 �m2 + i�)n = (�1)n i(4�)�4(4�)2 �(n� 4 + �)�(n) (m2)�(n�4+�)�(g��g�� + g��g�� + g��g��); (4.5.4)where we have set, as usual, d = 4� 2�: (4.5.5)The Euler � fun
tion is de�ned by �(z) = Z +10 dt e�t tz�1: (4.5.6)The properties �(z + 1) = z�(z); �(1) = 1; �(1=2) = p� (4.5.7)follow from the de�nition. Furthermore, it 
an be shown that �(z) is analyti
 in the whole
ompex plane z, ex
ept when z is 0 or a negative integer, where it has simple poles. One �nds�(�n + �) = (�1)nn! �1� +  (n+ 1) +O(�)� ; (4.5.8)62



where  (s) = dds log �(s) (4.5.9)and  (n+ 1) = 1 + 12 + : : :+ 1n � 
; (1) = �
 = �0:5772 : : : (4.5.10)We now 
ompute expli
itly the integral in eq. (4.5.2). Equations (4.5.3,4.5.4) (and similarformulae with higher powers of q in the numerator) 
an be obtained by shifting q ! q + k andtaking derivatives with respe
t to k at k = 0. By virtue of the analiti
ity properties of theintegrand in the 
omplex q0 plane, the q0 integral along the 
losed path C shown in �g. 4.1 is

Figure 4.1: Integration in the 
omplex q0 plane. Crosses indi
ate the singularities ofthe Feynman integrands at q0 = �(E � i�), with E = p~q2 +m2.equal to zero. We have thereforeZ +1�1 dq0 1(q20 � ~q2 �m2 + i�)n + Z �i1+i1 dq0 1(q20 � ~q2 �m2 + i�)n = 0: (4.5.11)With the variable 
hange q0 = iq4 in the se
ond term of eq. (4.5.11), we �ndZ +1�1 dq0 1(q20 � ~q2 �m2 + i�)n = i(�1)n Z +1�1 dq4 1(q24 + ~q2 +m2)n (4.5.12)63



Noti
e that the +i� pres
ription is now immaterial, sin
e the integration is performed along theimaginary axis. We have thereforeZ ddq(2�)d 1(q2 �m2 + i�)n = i(�1)n Z ddq(2�)d 1(q2 +m2)n ; (4.5.13)where q in the r.h.s. is a ve
tor in a 4-dimensional Eu
lidean spa
e. We �rst observe that theintegrand does not depend on angular variables, whi
h 
an therefore be integrated dire
tly. Theintegral over the d-dimensional solid angle 
an be obtained in the following way. We haveZ ddq e�q2 = Z d
d Z +10 dq qd�1e�q2 = 12 Z +10 dq2 (q2)d=2�1e�q2 = 12�(d=2); (4.5.14)where we have used polar 
oordinates and the de�nition of �(z). On the other hand, the usualgaussian integration formula gives Z ddq e�q2 = �d=2: (4.5.15)Thus, Z d
d = 2�d=2�(d=2) : (4.5.16)For d = 2; 3 the familiar results R d
2 = 2�; R d
3 = 4� are re
overed. Using this result, we haveZ ddq(2�)d 1(q2 +m2)n = 1(2�)d 2�d=2�(d=2) 12 Z +10 dq2 (q2) d�22(q2 +m2)n : (4.5.17)The integral 
an be performed with the 
hange of integration variablex = m2q2 +m2 ; (4.5.18)whi
h gives Z ddq(2�)d 1(q2 +m2)n = 1(4�)d=2 (m2)�n+d=2�(d=2) Z 10 dx xn�d=2�1(1� x)d=2�1= 1(4�)d=2 �(n� d=2)�(n) (m2)�n+d=2; (4.5.19)where we have used Z 10 dx xa�1(1� x)b�1 = �(a)�(b)�(a + b) : (4.5.20)By repla
ing d = 4� 2�, we �nally obtainZ ddq(2�)d 1(q2 �m2 + i�)n = i(�1)n (4�)�(4�)2 �(n� 2 + �)�(n) (m2)�(n�2+�); (4.5.21)whi
h is the announ
ed result. Noti
e in parti
ular that the integral vanishes when m2 = 0.This happens, for example, when one 
omputes on-shell amplitudes in a massless theory.64



The use of dimensional regularization poses some spe
ial problems in 
al
ulations where the
5 matrix is involved. In fa
t, 
5 (or equivalently the antisymmetri
 tensor �����) is a quantitywhose de�nition is stri
tly 
onne
ted to the fa
t that spa
e-time is four-dimensional, and ade�nition in d dimensions requires spe
ial 
are. It is tempting to de�ne 
5 simply by requiringthat its four-dimensional properties 
25 = I; f
5; 
�g = 0 (4.5.22)hold in d dimensions as well. It is easy to prove that this assumption, together with the 
ir
ularproperty of the tra
e operator, leads to in
onsistent results. To see this important fa
t expli
itly,
onsider the tra
e of 
5 times an even number of 
 matri
es:T = Tr 
5
�1 : : : 
�2n : (4.5.23)We 
an use the anti
ommutation rules f
�; 
�g = 2g�� to bring, for example, 
�1 at the right ofthe produ
t; this requires 2n� 1 steps, and at ea
h step a tra
e with 2n� 2 
 matri
es appears.We denote by C2n�1 the sum of su
h terms. At the end of the pro
edure, using the 
ir
ularityproperty of the tra
e and eq. (4.5.22), the tra
e 
an brought to its original form, and we getT = T + C2n�1 (4.5.24)or C2n�1 = 0: (4.5.25)For n = 1 eq. (4.5.25) gives g�1�2Tr 
5 = 0 (4.5.26)and, for n=2, g�1�2Tr 
5
�3
�4 � g�1�3Tr 
5
�2
�4 + g�1�4Tr 
5
�2
�3 = 0: (4.5.27)Using eq. (4.5.26), eq. (4.5.27) implies(d� 2)Tr 
5
�1
�2 = 0: (4.5.28)Repeating the same pro
edure for n = 3 one gets(d� 2)(d� 4)Tr 
5
�1
�2
�3
�4 = 0: (4.5.29)For d = 4, eq. (4.5.29) is satis�ed for any value of Tr 
5
�1
�2
�3
�4 , whi
h in fa
t is non-zero(and proportional to the axial 
urrent anomalous term, by the way); however, if we requireeq. (4.5.29) to hold for any value of d, then we are for
ed to 
on
lude thatTr 
5
�1
�2
�3
�4 = 0 (4.5.30)whi
h is manifestly an in
onsistent result, sin
e it does not give the 
orre
t answer when d tendsto 4. In parti
ular, one would 
on
lude that there is no axial 
urrent anomaly! We 
on
ludethat the de�nition of 
5 
annot be based on eq. (4.5.22).65



The 
orre
t way to de�ne 
5 in dimensional regularization is the following. We de
omposeall 
 matri
es into a four-dimensional and an extra-dimensional 
omponent:
� = �
� + 
̂�; (4.5.31)where �
� is non-zero only when � takes the ordinary values 0,1,2,3 and 
̂� vanishes in theordinary dimensions. Correspondingly, the matrix tensor g�� has a four-dimensional and anextra-dimensional part, g�� = �g�� + ĝ��; (4.5.32)mixed 
omponents obviously vanish. The anti
ommutation relations be
omef�
�; �
�g = 2�g��; f
̂�; 
̂�g = 2ĝ��; f�
�; 
̂�g = 0: (4.5.33)Then, we simply de�ne 
5 as in four dimensions, that is
5 = i�
0�
2�
2�
3: (4.5.34)It is easy to 
he
k that the de�nition (4.5.34) impliesf
5; �
�g = 0; [
5; 
̂�℄ = 0; (4.5.35)or, in a more 
ompa
t form, f
5; 
�g = 2
5
̂�: (4.5.36)The identities Tr 
5 = 0; Tr 
5
�
� = 0 (4.5.37)
an be shown to hold, regardless of the value of d (this result is nontrivial; it 
an be obtainedby the same way of reasoning that leads to eqs. (4.5.26) and (4.5.27). Prove it as an exer
ise).Furthermore, one sees immediately that the quantityTr 
5
�1
�2
�3
�4 (4.5.38)vanishes if at least one of the indi
es has a value in the extra dimensions. We have thereforeTr 
5
�1
�2
�3
�4 = Tr 
5�
�1�
�2�
�3�
�4 = 4i��1�2�3�4 ; (4.5.39)whi
h is the 
orre
t four-dimensional result.The use of the de�nition (4.5.34) requires spe
ial attention, be
ause it introdu
es an expli
itviolation of 
hiral invarian
e, whi
h must therefore be restored by means of �nite renormalization.I will not dis
uss this point in detail here.In the following, I will show that the 
omputation of the axial 
urrent anomaly, performedin se
t. 3.3 in the Pauli-Villars regularization s
heme, 
an also be performed in dimensionalregularization. I will present the 
omputation in the massless 
ase; the extension to massivefermions is straightforward. From eq. (3.3.14) we have(k1 + k2)�T ���1 = � Z ddk(2�)d Tr 
5(k=� k=2)
�k=
�(k=+ k=1)(k=1 + k=2)k2(k � k2)2(k + k1)2 ; (4.5.40)66



where the integral is made 
onvergent by dimensional regularization. The numerator of theintegrand 
ontains terms whi
h are linear, quadrati
 or 
ubi
 in the loop momentum k. Thelinear term is 
onvergent, and it gives a vanishing 
ontribution:Tr 
5k=2
�k=
�k=1(k=1 + k=2) = 0 (4.5.41)be
ause k21 = k22 = 0.The quadrati
 term requires more work. We have�Tr 
5k=
�k=
�k=1(k=1 + k=2) + Tr 
5k=2
�k=
�k=(k=1 + k=2)= 2k2Tr 
5
�
�k=1k=2 � 2k�k�Tr 
5
�
�k=1k=2 � 2k�k�Tr 
5
�
�k=1k=2: (4.5.42)The �rst term 
ontributes to the �nal result with2ITr 
5
�
�k=1k=2; (4.5.43)where I = Z ddk(2�)d 1(k � k2)2(k + k1)2 : (4.5.44)The se
ond and third terms in eq. (4.5.42) involve the integralI�� = Z ddk(2�)d k�k�k2(k � k2)2(k + k1)2 ; (4.5.45)whi
h 
an be written in the formI�� = Ag�� +B(k�1k�2 + k�2k�1 ) + C(k�1k�1 + k�2k�2 ); (4.5.46)exploiting symmetry under k1 $ k2 and � $ �. It is 
lear from eq. (4.5.42) that only the termAg�� 
ontributes to the result. In order to 
ompute A, we observe that eq. (4.5.46) givesI�� � I = dA+ 2k1k2Bk�1k�2 I�� = k1k2A+ (k1k2)2B: (4.5.47)Now, using the identities k1k = ((k + k1)2 � k2)=2, k2k = (k2 � (k� k2)2)=2, one 
an show thatk�1k�2 I�� = �14J; (4.5.48)where J = Z ddk(2�)d k2(k � k2)2(k + k1)2 : (4.5.49)Solving the system (4.5.47), one getsA = 1d� 2 �I + J2k1k2� : (4.5.50)67



Finally, we 
ome to the 
ubi
 term:�Tr 
5k=
�k=
�k=(k=1 + k=2) = k2Tr 
5k=
�
�(k=1 + k=2); (4.5.51)sin
e the anti
ommutator term gives zero 
ontribution be
ause of antisymmetry. We musttherefore 
ompute I� = Z ddk(2�)d k�(k � k2)2(k + k1)2 = D(k�1 � k�2 ); (4.5.52)and taking the produ
t I�k�1 one easily obtainsD = J2k1k2 : (4.5.53)Colle
ting all our results, we �nally obtain(k1 + k2)�T ��� = �4 d� 4d� 2 �I + J2k1k2� Tr 
5
�
�k=1k=2; (4.5.54)where a fa
tor of 2 has been inserted to take into a

ount the 
ontribution of T ���2 . The �nal resultis ultraviolet-�nite: indeed, in dimensional regularization at one loop ultraviolet divergen
esmanifest themselves as simple poles in d� 4, and there is a d� 4 fa
tor in front of the divergentintegrals. It is now easy to 
ompute (d�4)I and (d�4)J for d = 4 with the help of the formulaeobtained earlier in this Appendix, and re
over the result of eq. (3.3.33).
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