11 | | In general, the probability that an event is accepted depends on the characteristics of the measured event, and not on the process that produced it. The measured probability density $\bar{P}(x,\alpha)$ can be related to the produced probability density $P(x,\alpha)$: $\bar{P}(x,\alpha){{{ |
12 | | Acc(x) P(x,\alpha)$ where $ Acc(x)$ is the detector acceptance, which depends only on $ x $. So the quantity that we have to minimize is $-ln (\tilde{L}) |
13 | | }}}-\sum_{i=1}^{N} ln(P(x_i;\alpha)) + N \int Acc(x) P(x,\alpha)dx$ where the term $-\sum_{i=1}^N ln(Acc(x_i))$ has been omitted since it does not depend on $\alpha$. |
| 11 | In general, the probability that an event is accepted depends on the characteristics of the measured event, and not on the process that produced it. The measured probability density $\bar{P}(x,\alpha)$ can be related to the produced probability density $P(x,\alpha)$: $\bar{P}(x,\alpha){{{Acc(x) P(x,\alpha)$ where $ Acc(x)$ is the detector acceptance, which depends only on $ x $. So the quantity that we have to minimize is $-ln (\tilde{L})}}}-\sum_{i=1}^{N} ln(P(x_i;\alpha)) + N \int Acc(x) P(x,\alpha)dx$ where the term $-\sum_{i=1}^N ln(Acc(x_i))$ has been omitted since it does not depend on $\alpha$. |