Changes between Version 1 and Version 2 of GravitonPlusJets


Ignore:
Timestamp:
04/06/12 16:33:02 (8 years ago)
Author:
trac
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • GravitonPlusJets

    v1 v2  
    6161      * '''LHC''': Pt grav = 450 GeV (minimum pt for the graviton)
    6262      * '''Tevatron''': Pt grav = 120 GeV
    63       * Htjmin = L_MG ("Step function" for the massless_grav case) => '''only for the massless case'''
    64 
    65 (In order to analyze Pt grav > 500 GeV for the LHC and Pt grav > 150 for the Tevatron, we will fix a lower parameter to generate the events.)
    66 ====== + <em><strong><br /></strong></em> ======
     63      * Htjmin = L_MG ("Step function" for the massless_grav case) => '''only for the massless case'''
     64
     65(In order to analyze Pt grav > 500 GeV for the LHC and Pt grav > 150 for the Tevatron, we will fix a lower parameter to generate the events.)
     66====== + <em>**g>[[br]]**</em> ======
    6767
    6868'''b) pythia_card.dat:'''
     
    8181      * M1_grav = 1 TeV
    8282      * L_RS = 3 TeV
    83 ====== + '''''In the RS model, L_RS=M1_grav/x1/(k/M_Pl) (See Phys.Rev.Lett. 84, 2080 (2000)), x1 is the first root of the Bessel function of order 1, x1~=3.83. Thus from Fig.4 in 0710.3338, for M1_grav=1TeV, L_RS ~&gt;2.6TeV''''' ======
     83====== + '''''In the RS model, L_RS=M1_grav/x1/(k/M_Pl) (See Phys.Rev.Lett. 84, 2080 (2000)), x1 is the first root of the Bessel function of order 1, x1~=3.83. Thus from Fig.4 in 0710.3338, for M1_grav=1TeV, L_RS ~>2.6TeV''''' ======
    8484
    8585Massless graviton) For both Tevatron and LHC
     
    9898First we show each matched results via its MatchChecker report. We also show here the comparative plots in which we compare (for each ADD run) the matched result with the NLO/LO result, given the K factor of normalization.
    9999====== + a) MatchChecker reports ======
    100 <table style="width: 561px; height: 1304px;" cellspacing="1" cellpadding="0" border="1"> <tbody> <tr> <td><strong>Model<br /></strong></td> <td><strong>Parameters<br /></strong></td> <td> '''Name of the Run''' </td> <td><strong>Plots<br /></strong></td> </tr> <tr> <td rowspan="6">ADD</td> <td rowspan="2">
     100<table style="width: 561px; height: 1304px;" cellspacing="1" cellpadding="0" border="1"> <tbody> <tr> <td>**g>Model[[br]]**</td> <td>**g>Parameters[[br]]**</td> <td> '''Name of the Run''' </td> <td>**g>Plots[[br]]**</td> </tr> <tr> <td rowspan="6">ADD</td> <td rowspan="2">
    101101
    102102L_ADD = 5 TeV
     
    114114
    115115[attachment:ADD_LHC_Run02_Report.pdf LHC Plots report]
    116 </td> </tr> <tr> <td>ADD_Tevatron_Run02</td> <td><br /></td> </tr> <tr> <td rowspan="2">L_ADD = 5 TeV
     116</td> </tr> <tr> <td>ADD_Tevatron_Run02</td> <td>[[br]]</td> </tr> <tr> <td rowspan="2">L_ADD = 5 TeV
    117117
    118118NADD = 6
     
    160160====== + b) Comparative plots: NLO/LO & matching results ======
    161161
    162 || <p>ADD model</p> || <p>[attachment:Results_LHC_d2.pdf LHC Comparative plot (PtGrav) for d=2]</p> <p>[attachment:Results_LHC_d4.pdf LHC Comparative plot (PtGrav) for d=4]</p> <p>[attachment:Results_LHC_d6.pdf LHC Comparative plot (PtGrav) for d=6]</p> <p> </p> <p>[attachment:Results_LHC_ADD.pdf LHC combined comparative plot]</p> ||
    163 || || ||
    164 || Massless grav. model || <p>[attachment:Results_LHC_Ml.pdf LHC combined comparative plot]</p> <p> </p> ||
    165 || || ||
    166 || RS model || <p> </p> <p>[attachment:Results_LHC_RS.pdf LHC combined comparative plot]</p> <p> </p> ||
     162||
     163 
     164DD model</p> || <p>[attachment:Results_LHC_d2.pdf LHC Comparative plot (PtGrav) for d=2]</p> <p>[attachment:Results_LHC_d4.pdf LHC Comparative plot (PtGrav) for d=4]</p> <p>[attachment:Results_LHC_d6.pdf LHC Comparative plot (PtGrav) for d=6]</p> <p> </p> <p>[attachment:Results_LHC_ADD.pdf LHC combined comparative plot]</p> ||
     165|| || ||
     166|| Massless grav. model ||
     167 
     168attachment:Results_LHC_Ml.pdf LHC combined comparative plot]</p> <p> </p> ||
     169|| || ||
     170|| RS model ||
     171 
     172</p> <p>[attachment:Results_LHC_RS.pdf LHC combined comparative plot]</p> <p> </p> ||
    167173====== + c) Jet Rates for the LHC samples ======
    168174
    169 || <p>ADD model</p> || <p>[attachment:JetRates_ADD.pdf Jet rates]</p> ||
    170 || || ||
    171 || Massless grav. model || <p>[attachment:JetRates_Ml.pdf Jet rates]</p> ||
    172 || || ||
    173 || RS model || <p>[attachment:JetRates_RS.pdf Jet rates]</p> ||
     175||
     176 
     177DD model</p> || <p>[attachment:JetRates_ADD.pdf Jet rates]</p> ||
     178|| || ||
     179|| Massless grav. model ||
     180 
     181attachment:JetRates_Ml.pdf Jet rates]</p> ||
     182|| || ||
     183|| RS model ||
     184 
     185attachment:JetRates_RS.pdf Jet rates]</p> ||
    174186
    175187PS. The number of events is normalized by the total number of events of each run.
    176188===== IV.2.2) Study on the shape of the curves (Pt grav) related to the mass of the graviton =====
    177189
    178 Particularly for the RS model, we can see that the slope of the curve changes with the mass of the graviton (for example, compare RS with L_{RS}{{{3TeV/M_{grav} }}} 1 TeV against L_{RS}{{{3TeV/M_grav }}} 100 GeV). That is related to the fact we are plotting the pt of the graviton. The harder is the emission, the more inclined the curve will be.
     190Particularly for the RS model, we can see that the slope of the curve changes with the mass of the graviton (for example, compare RS with L_{RS}{{{
     1913TeV/M_{grav}
     192}}} 1 TeV against L_{RS}{{{
     1933TeV/M_grav
     194}}} 100 GeV). That is related to the fact we are plotting the pt of the graviton. The harder is the emission, the more inclined the curve will be.
    179195
    180196For the RS model is easy to see, because we can control the graviton mass (considering it is an input in this case). For the ADD it is a bit harder because the graviton should be an integration of the KK states. However, we know that the mass density depends on the number of extra dimensions. Therefore, we should have a different slope for each curve given its number of extra dimensions (d=2,4,6).
     
    1982144) Since ADD model is only an effective model, the results we get are valid only as long as the scales involved in the hard scattering process do not exceed the fundamental scale, we need to quantify the sensitivity of our prediction to the unknown UV completion of the theory. Should we do this?
    199215
    200 5) Does matching can give reliable results for total cross section or not? Or just for shape/distribution?<br />It seems the total cross section after matching is definitely not the same as G+0jet's, or G+njet's. So what is the meaning of the matched total cross section?
     2165) Does matching can give reliable results for total cross section or not? Or just for shape/distribution?[[br]]It seems the total cross section after matching is definitely not the same as G+0jet's, or G+njet's. So what is the meaning of the matched total cross section?
    201217
    202218---
     
    208224For reference, the cuts in 0911.5095 (NLO QCD corrections to G+monojet) are the following:
    209225
    210    * '''LHC''': PTmiss&gt;500GeV; ||\eta_j||&lt;4.5
    211    * '''Tevatron''': PTmiss&gt;120GeV; harder jet : Ptj&gt;150GeV with ||\eta_j||&lt;1; softer jet with PT&gt;60GeV, ||\eta_j||&lt;3.6 is vetoed.
     226   * '''LHC''': PTmiss>500GeV; ||\eta_j||<4.5
     227   * '''Tevatron''': PTmiss>120GeV; harder jet : Ptj>150GeV with ||\eta_j||<1; softer jet with PT>60GeV, ||\eta_j||<3.6 is vetoed.
    212228
    213229   * mur=muf= Pt graviton
     
    219235<blockquote>
    220236
    221    * <p> '''For the LHC, "the jets are defined by the K_T algorithm with D=0.6, and are required to satisfy ||\eta_j||&lt;4.5 and PTj&gt;50GeV"''' </p>
    222    * <p> '''For the Tevatron,"jets are defined by the K_T algorithm with D=0.7, and are required to satisfy ||\eta_j||&lt;3.6 and PTj&gt;20GeV"''' </p>
     237   *
     238 
     239'''For the LHC, "the jets are defined by the K_T algorithm with D=0.6, and are required to satisfy ||\eta_j||<4.5 and PTj>50GeV"''' </p>
     240   *
     241 
     242'''For the Tevatron,"jets are defined by the K_T algorithm with D=0.7, and are required to satisfy ||\eta_j||<3.6 and PTj>20GeV"''' </p>
    223243</blockquote>
    224244
     
    227247In the matching procedure, the separation between jets is defined by the xqcut and pythia's QCUT parameters. We have to set Drjj to zero in the run_card.dat.
    228248
    229 <strong><br /></strong>
     249<strong>[[br]]**
    230250=== VI. References ===
    231251
     
    261281
    262282
     283