Changes between Version 1 and Version 2 of FeynRules


Ignore:
Timestamp:
Apr 4, 2012, 2:28:09 PM (13 years ago)
Author:
trac
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • FeynRules

    v1 v2  
    1 = !FeynRules =
    2 
    3 == Material ==
    4 
    5 The latest version of !FeynRules: [http://feynrules.irmp.ucl.ac.be/downloads/feynrules-current.tar.gz download here].
    6 
    7 The !FeynRules (not up-to-date) manual: [http://feynrules.irmp.ucl.ac.be/attachment/wiki/WikiStart/Manual_a4.pdf download here].
    8 
    9 The slides associated to the lectures: [http://cp3.irmp.ucl.ac.be/~bfuks/fuks_kias.pdf download here].
    10 
    11 
    12 == Model files ==
    13 During the lectures, a supersymmetric (SUSY) QCD theory is implemented.
    14  * The gauge group is SU(3)_c (as in QCD)
    15  * The field content is given by
    16    * Three generations of up-type quarks
    17    * Three generations of up-type left-handed squarks
    18    * Three generations of up-type right-handed squarks
    19    * A gluon
    20    * A gluino
    21  * The free parameters of the theory consists in
    22    * The masses of the particles
    23    * The strong coupling constant (both gs and alpha_s)
    24  * For the Lagrangian, see the slides.
    25 
    26 The implementation has been performed in three different ways which will illustrate the different features of !FeynRules.
    27  * The good old way, using regular fields including a four-component representation for the fermions: [/attachment/wiki/SchoolKias/FeynRules/susyqcd_dirac.fr susyqcd_dirac.fr]
    28  * A better approach, using regular fields including a two-component representation for the fermions: [/attachment/wiki/SchoolKias/FeynRules/susyqcd_weyl.fr susyqcd_weyl.fr]
    29  * The best method for supersymmetric theoric, using superfields: [/attachment/wiki/SchoolKias/FeynRules/susyqcd_dirac.fr susyqcd_sf.fr]
    30 
    31 In the case you want to start from your own Weyl fermion implementation to get the superfield implementation, you will have to replace right-handed Weyl quarks and right-handed squarks by their charge-conjugate counterparts. Since this will not be performed explicitly during the lectures, you can either do it yourself or download the add-on to merge to your model file [/attachment/wiki/SchoolKias/FeynRules/addon.fr here].
    32 
    33 
    34 == Tutorial ==
    35 
    36 [/attachment/wiki/SchoolKias/FeynRules/fuks.pdf Slides for the tutorial].
    37 
    38 Documentation for projects 4 and 5:
    39  * [/attachment/wiki/SchoolKias/FeynRules/PhysRevD.48.2182.pdf Paper on triple gauge boson interactions].
    40  * [/attachment/wiki/SchoolKias/FeynRules/notes.pdf Notes on E_6 inspired Z'].
    41 
     1
     2
     3== FeynRules ==
     4
     5=== A (short) user manual ===
     6
     7
     8
     9''FeynRules'' is a ''Mathematica'' © based package allowing the calculation of the Feynman rules from a lagrangian.
     10
     11==== The ''FeynRules'' model-file ====
     12
     13The main ingredient used by ''FeynRules'' to calculate the Feynman rules from a specific lagrangian is the so-called ''model-file''. The model-file is a text file containing all the information about a specific model (particle content, coupling constants,...) that is read by ''Mathematica'' © to initialize the calculation of the Feynman rules.
     14Notice that the structure of the ''FeynRules'' model-file is similar to the one encountered for ''FeynArts''. The ''FeynRules'' model-file contains in general a fourfold information,
     15   1. the declaration of all the indices that appear inside the lagrangian.
     16   1. a list of all the parameters that appear inside the lagrangian.
     17   1. a list of all the gauge groups.
     18   1. a list of all the particles appearing in the model.
     19
     20===== The index declaration =====
     21For ''FeynRules'' to run properly, all the indices (flavor, gauge,...) have to be declared in the model-file, together with the range of value they can take, ''e.g.''
     22{{{
     23IndexRange[ Index[Colour] ] = Range[3]
     24
     25IndexRange[ Index[Gauge] ] = NoUnfold[ Range[8] ]
     26}}}
     27This declares two indices {{{
     28Colour
     29}}} and {{{
     30Gauge
     31}}} which range from 1 to 3 and 1 to 8 respectively.
     32The command {{{
     33NoUnfold
     34}}} is a ''FeynArts'' command that is ignored by ''FeynRules''. Notice that four-vector indices ({{{
     35Lorentz
     36}}}) and Dirac indices ({{{
     37Spin
     38}}}) are predefined in ''FeynRules'' and do not need to be declared in the model-file.
     39
     40The user should also tell ''FeynRules'' which symbol he should use for each symbol when writing the output (although this is not mandatory, it is strongly recommended, because it makes the output more readable). This is done by including the following lines in the model-file,
     41{{{
     42IndexFormat[ Colour, i]
     43
     44IndexFormat[ Gauge, a]
     45}}}
     46telling ''FeynRules'' to print {{{
     47Colour
     48}}} -indices and {{{
     49Gauge
     50}}} -indices as {{{
     51i
     52}}} and {{{
     53a
     54}}} respectively.
     55
     56===== The parameter declaration =====
     57The parameter declaration contains all symbols that appear inside the lagrangian and that should be treated as c-numbers, and not as fields.
     58The parameters are entered as a list that ''must'' be called {{{
     59M$Parameters
     60}}}, each element of the list corresponding to a different parameter, together with possible options,
     61{{{
     62M$Parameters = {
     63   param1 == { options },
     64   param2 == { options },
     65   ...
     66}
     67}}}
     68where {{{
     69options
     70}}} is the list of options associated with each parameter, entered as a ''Mathematica'' list of replacements.
     71''FeynRules'' distinguishes between two types of parameters,
     72   1. scalar parameter (''e.g.'' coupling constants, mixing angles,...),
     73   1. tensor parameters (''e.g.'' CKM matrix).
     74
     75The options for a scalar parameter are
     76   * {{{
     77ComplexParameter
     78}}} : This options defines whether the parameter should be treated as real ({{{
     79False
     80}}}) or complex ({{{
     81True
     82}}}). By default, this option is set to {{{
     83False
     84}}}.
     85   * {{{
     86TeX
     87}}} : Fixes this parameter to print in {{{
     88TeXForm
     89}}} as the right-hand side of the replacement rule.
     90   * {{{
     91Definitions
     92}}} : a list of replacements rules that should be applied by ''FeynRules'' before performing any calculation.
     93   * {{{
     94Description
     95}}} : a string, describing the parameter (''e.g.'' ="Fermi Constant"=).
     96In addition to these options, several additional options are needed when running interfaces (''e.g.'' the numerical values of the parameters needed for the MC integration). In particular, all parameters must be declared to be either {{{
     97External
     98}}} or {{{
     99Internal
     100}}}: an external parameter gets its numerical value form the user , whereas the value of an internal parameter is calculated a posteriori from more fundamental parameters (external as well as internal). By default a scalar parameter is {{{
     101External
     102}}}.
     103It is important to realize that the external parameters are not necessarily independent one from each other. But the relation linking them to the true primary free parameters is complex enough to justify the use of an external software (called a Calculator in the MadGraph language) to compute them. For example, widths of SM particles are related to the SM parameters and masses but the relation is complex enough to justify the use of the SM calculator. In the other hand some parameters like $\cos(\theta_W)$ are trivially linked to external parameters (like $\sin(\theta_W)$) and should thus be defined as internal, the link relation being defined in ''FeynRules''. One could of course use ''Mathematica'' replacement rules to get rid of internal parameters but this would in general badly affect the readability of the generated Fortran code.
     104       
     105The full list of MG options for scalar parameters is
     106   * {{{
     107ParameterType
     108}}} : taking the values {{{
     109External
     110}}} or {{{
     111Internal
     112}}}, the default value being {{{
     113External
     114}}}.
     115   * {{{
     116OrderBlock
     117}}} : a list which contains the LH block name of the parameter. By default, the block name is {{{
     118FRBlock
     119}}}.
     120   * {{{
     121Value
     122}}} :       
     123      * for external parameters, the numerical value.
     124      * for internal parameters, the definition in terms of more fundamental parameters (external and internal).
     125      The default value is 1 (for both external and internal).
     126   * {{{
     127InteractionOrder
     128}}} : ''e.g.'' the interaction order of $\alpha_s$ is ={QCD, 2}=.
     129   * {{{
     130ParameterName
     131}}} : The name with which the parameter should be printed in the ''Fortran'' output code.
     132
     133The options for a tensor parameter are
     134   * {{{
     135Indices
     136}}} (mandatory): list of indices attached to the tensor.
     137   * {{{
     138TensorClass
     139}}} (mandatory): A name to identify all tensors belonging to the same class, ''e.g.'' all Dirac-matrices.
     140   * {{{
     141Unitary
     142}}} : defines unitary matrices ({{{
     143True
     144}}} or {{{
     145False
     146}}})
     147   * {{{
     148Hermitian
     149}}} : defines hermitian matrices ({{{
     150True
     151}}} or {{{
     152False
     153}}})
     154   * {{{
     155Orthogonal
     156}}} : defines orthogonal matrices ({{{
     157True
     158}}} or {{{
     159False
     160}}})
     161   * {{{
     162Definitions
     163}}} : a list of replacements rules that should be applied by ''FeynRules'' before performing any calculation.
     164Notice that, unlike scalar parameters, tensor parameters are by default complex. Tensor parameters are by default internal (the components are in general specified by a small number os parameters, like for example mixing angles). We must thus add in the mode the definition of the components of the tensor in terms of more fundamental parameters (''e.g.''  the CKM matrix for two quark generations can be defined by the Cabibbo angle)
     165   * {{{
     166Value
     167}}} : the definition in terms of more fundamental parameters (external and internal).
     168
     169There is an additional option for tensor parameters having only one index. Let us suppose we want to write into the lagrangian a Yukawa coupling of the form
     170%\[
     171y_f H \bar{\psi}''f\psi''f\]%
     172where {{{
     173f
     174}}} is a flavor index running from 1 to 3. For FeynRules to run properly, it is necessary that all indices are connected properly, ''i.e.'' connected two by two. This of course is not satisfied by a term like this. However, it can be achieved by adding to the list of options for the one-index tensor parameter {{{
     175y
     176}}} the option {{{
     177NoTensor -> True
     178}}}. This option tells ''FeynRules'' to ignore the index {{{
     179f
     180}}} when connecting the indices among each other.
     181 
     182===== The gauge group declaration =====
     183
     184The declaration of the gauge groups follows similar lines as the parameter declaration,
     185{{{
     186M$GaugeGroups = {
     187    gaugegroup1 == { options },
     188    gaugegroup2 == { options },
     189    ...
     190}
     191}}}
     192The options for a gauge group are
     193   * {{{
     194Abelian
     195}}} (mandatory) : defines the gauge group to be abelian ({{{
     196True
     197}}})  or not ({{{
     198False
     199}}}).
     200   * {{{
     201GaugeBoson
     202}}} (mandatory) : the name of the gauge boson associated to the gauge boson (notice that this symbol must be declared during the parameter declaration).
     203   * {{{
     204StructureConstant
     205}}} (mandatory for non abelian groups) : the symbol associated to the structure constants of the group.
     206   * {{{
     207Charge
     208}}} (mandatory for abelian groups) : the symbol associated with the U(1) charge.
     209   * {{{
     210CouplingConstant
     211}}} (mandatory) : the symbol associated with the coupling constant of the gauge group (notice that this symbol must be declared during the parameter declaration)
     212   * {{{
     213Representations
     214}}} : a list with the symbols for the different representation matrices used in the lagrangian.
     215   * {{{
     216Definitions
     217}}} : a list of replacements rules that should be applied by ''FeynRules'' before performing any calculation.
     218
     219The declaration of a U(1) gauge group is then for example
     220{{{
     221M$GaugeGroups ={
     222   ...
     223   U1EM == {
     224       Abelian -> True,
     225       GaugeBoson -> A,
     226       Charge -> Q,
     227       CouplingConstant -> ee},
     228   ...
     229}
     230}}}
     231Notice that this declaration defines automatically the field strength tensor associated with this gauge group. This field strength tensor can be called in ''Mathematica'' by {{{
     232FS[A, mu, nu]
     233}}}, where {{{
     234mu
     235}}} and {{{
     236nu
     237}}} denote the Lorentz indices carried by the field strength tensor.
     238
     239Similarly, the declaration of an SU(3) gauge group is
     240{{{
     241M$GaugeGroups ={
     242   ...
     243   SU3C == {
     244       Abelian -> False,
     245       GaugeBoson -> G,
     246       StructureConstant -> f,
     247       CouplingConstant -> gs,
     248       Representations -> {T, Colour}},
     249   ...
     250}
     251}}}
     252where {{{
     253T
     254}}} is the symbol representing the SU(3) matrices in the fundamental representation, and {{{
     255Colour
     256}}} is the name of the gauge index carried by the quarks.
     257Notice that this declaration defines automatically the field strength tensor associated with this gauge group. This field strength tensor can be called in ''Mathematica'' by {{{
     258FS[A, mu, nu,a]
     259}}}, where {{{
     260mu
     261}}} and {{{
     262nu
     263}}} denote the Lorentz indices and {{{
     264a
     265}}} the (adjoint) gauge-index carried by the field strength tensor.
     266
     267===== The particle declaration =====
     268
     269The declaration of the particle follows similar lines as the parameter and gauge group declaration,
     270{{{
     271M$ClassesDescription = {
     272    particle1 == { options },
     273    particle2 == { options },
     274    ...
     275}
     276}}}
     277The particles are grouped into classes having the same quantum numbers (''e.g.'' neutrinos, charged leptons, up and down-type quarks,...).
     278The right-hand sides of the class declaration must be of the form {{{
     279F[1]
     280}}}, {{{
     281F[2]
     282}}},..., {{{
     283V[1]
     284}}}, {{{
     285V[2]
     286}}},..., {{{
     287S[1]
     288}}}, {{{
     289S[2]
     290}}},..., with
     291   * {{{
     292S
     293}}} : scalar fields
     294   * {{{
     295F
     296}}} : fermion fields (Spin 1/2)
     297   * {{{
     298V
     299}}} : vector fields
     300   * {{{
     301Sp2
     302}}} : spin 2 fields
     303The possible options for a particle class are
     304   * {{{
     305ClassName
     306}}} (mandatory) : The symbol representing the class.
     307   * {{{
     308SelfConjugate
     309}}} (mandatory): defining whether a field is selfconjugate ({{{
     310True
     311}}}) or not ({{{
     312False
     313}}})
     314   * {{{
     315ClassMembers
     316}}} : a list of all members of the class. If the class contains only one members, this is by default the {{{
     317ClassName
     318}}}.
     319   * {{{
     320Indices
     321}}} : a list of all possible indices carried by the field. Notice that the Lorentz-indices ({{{
     322Lorentz
     323}}}, {{{
     324Spin
     325}}}) are not included in this list because they are implicit in the class declaration.
     326   * {{{
     327QuantumNumbers
     328}}} : a list of all quantum numbers (charges,...) carried by the field.
     329   * {{{
     330FlavorIndex
     331}}} : The name of the index ''FeynRules'' should expand over when the {{{
     332FlavorExpand
     333}}} option is turned to {{{
     334True
     335}}} during the vertex calculation.
     336   * {{{
     337Mass
     338}}} : a list of all the masses for all the class members. A mass can be entered as
     339      * the symbol that represents the mass in the lagrangian.
     340      * a two-component list, the first element being the symbol for the mass, and the second being the numerical value.
     341   * {{{
     342Unphysical
     343}}} : declares auxiliary fields ({{{
     344True
     345}}}), that should not be used for the output. The default value is {{{
     346False
     347}}}. The relations of the unphysical fields to the physical ones can be obtained via the {{{
     348Definitions
     349}}} option.
     350   * {{{
     351Definitions
     352}}} : a list of replacements rules that should be applied by ''FeynRules'' before performing any calculation.
     353Notice that only those elements of {{{
     354M$ClassesDescription
     355}}} are read where a {{{
     356ClassName
     357}}} is defined. This allows to write very general model-files, where only those particle declarations are read in where {{{
     358ClassName
     359}}} is not commented out.
     360
     361The additional options for the interfaces ignored by ''FeynRules'', are
     362   * {{{
     363PropagatorLabel
     364}}} : a list of strings by which the lines in the MG output should be labeled.
     365   * {{{
     366PropagatorType
     367}}} : the linetype, by which the corresponding MG output is drawn. Supported linetypes are:
     368      * {{{
     369S
     370}}} / {{{
     371Straight
     372}}} : Straight
     373      * {{{
     374D
     375}}} / {{{
     376ScalarDash
     377}}} : Dashed
     378      * {{{
     379W
     380}}} / {{{
     381Sine
     382}}} : Wavy
     383      * {{{
     384C
     385}}} / {{{
     386Cycles
     387}}} : Curly
     388   * {{{
     389ParticleName
     390}}} : a list of strings, corresponding to the particle names as they should appear in the {{{
     391particles.dat
     392}}} file. By default, this is the same as the symbol defined for ''FeynRules''.
     393   * {{{
     394AntiParticleName
     395}}} : a list of strings, corresponding to the anti-particle names as they should appear in the {{{
     396particles.dat
     397}}} file. By default, this is the same as {{{
     398ParticleName
     399}}}, with an extra =~= added.
     400   * {{{
     401PDG
     402}}} : the PDG code of the particle (or a list containing the PDG codes for each class member). An automatically generated pdg code is is assigned if this options is omitted.
     403   * {{{
     404GaugeIndex
     405}}} : the index which should be used to obtain the MG colour structure (''S'', ''T'', ''O'') of the particle. By default, the MG colour structure is ''S''.
     406   * {{{
     407FullName
     408}}} : a string, specifyinh the full name of the particle (''e.g.'' {{{
     409Electron
     410}}}), or a list containing the names for each class member. By default {{{
     411FullName
     412}}}  is the same as {{{
     413ParticleName
     414}}}.
     415
     416A QCD-type model, containing 3 up-quark generations and a gluon would then correspond to
     417{{{
     418M$ClassesDefinitions = {
     419   (* Quarks (u)*)
     420   F[1] == {
     421      ClassName -> uq,
     422      ClassMembers -> {u, c, t},
     423      FlavorIndex -> Generation,
     424      SelfConjugate -> False,
     425      Indices -> {Index[Generation], Index[Colour]},
     426      Mass -> {{MU, 0.4}, {MC, 3}, {MT, 200}},
     427      Width -> {{WU, 0}, {WC, 0}, {WT,5}},
     428      QuantumNumbers -> { Q -> 2/3},
     429      PropagatorLabel -> {"u", "c", "t"},
     430      GaugeIndex -> Colour,
     431      PropagatorType -> Straight,
     432      PDG -> {2,4,6},
     433      FullName -> {"UQuark", "CQuark", "TQuark"},
     434   
     435   (* Gluons *)
     436   V[1] == {
     437      ClassName -> G,
     438      SelfConjugate -> True,
     439      Indices -> {Index[Gluon]},
     440      Mass -> 0,
     441      PropagatorLabel -> {"G"},
     442      GaugeIndex -> Gluon,
     443      PropagatorType -> Sine,
     444      PDG -> 21,
     445      FullName -> "Gluon" }
     446}
     447}}}
     448
     449
     450
     451==== Running ''FeynRules'' ====
     452Before loading ''FeynRules'', the user should tell ''Mathematica'' where to look for the package. This is done via the command
     453{{{
     454SetDirectory[ <the address of the package> ];
     455
     456$FeynRulesPath = <the address of the package>;
     457}}}
     458
     459The ''FeynRules'' package is loaded via the command
     460{{{
     461<< FeynRules`
     462}}}
     463
     464The user can now load the model-file. First, the working directory should be set to the address of the model-file
     465{{{
     466SetDirectory[<address of the model-file>];
     467}}}
     468
     469The model-file is loaded via the command
     470{{{
     471LoadModel[ < file > ]
     472}}}
     473Notice that for FeynRules to run properly, the extension of the model-file should be =.fr=.
     474
     475After the model-file is loaded, names for the anti-particle fields are generated automatically, ''e.g.'' if {{{
     476e
     477}}} denotes the electron field, {{{
     478ebar
     479}}} denotes the positron field. These symbols can also be obtained via the commands
     480{{{
     481HC[ e ]
     482anti[ e ]
     483}}}
     484
     485The lagrangian can be entered using standard ''Mathematica'' language. Notice that ''FeynRules'' has some predefined commands,
     486   * {{{
     487del[ psi, mu ]
     488}}} denotes the derivative of the field {{{
     489psi
     490}}} with respect to the space-time coordinate {{{
     491x^mu
     492}}}.
     493   * {{{
     494Ga[ mu ]
     495}}} denotes the Dirac-matrix with index {{{
     496mu
     497}}} ({{{
     498mu
     499}}} may also be 5).
     500   * {{{
     501ProjP
     502}}} and {{{
     503ProjM
     504}}} denote the projectors on right and left-handed fields.
     505   * {{{
     506ProjP[ mu ]
     507}}} and {{{
     508ProjM[ mu ]
     509}}} are shorthands for {{{
     510Ga[ mu ].ProjP
     511}}} and {{{
     512Ga[ mu ].ProjM
     513}}}.
     514   * {{{
     515HC[ V ]
     516}}} denotes the hermitian conjugate of the tensor parameter {{{
     517V
     518}}}.
     519   * {{{
     520right[ psi ]
     521}}} and {{{
     522left[ psi ]
     523}}} denote the right and left-handed parts of the Dirac field {{{
     524psi
     525}}}.
     526
     527If there is no ambiguity, indices of scalar fields and fermion fields may be omitted when writing down the lagrangian. Instead, the ''Mathematica'' {{{
     528Dot
     529}}} command (=.=) must then be used, ''e.g.'' the QCD interaction term for up-type quarks can be entered in two different ways,
     530{{{
     531-gs uqbar.Ga[mu].T[a].uq G[mu, a] == -gs Ga[mu, s, r] T[a, i, j]  uqbar[s, f, i].uq[r, f, j] G[mu, a]
     532}}}
     533Notice that the anticommutation of the fermion fields is taken into account by the dot-product on the right-hand side.
     534Notice also that by writing the QCD interaction term for up-type quarks in this way, we implicitly used the class notation. We could have entered the same interaction term as
     535{{{
     536-gs uqbar.Ga[mu].T[a].uq G[mu, a] == -gs ubar.Ga[mu].T[a].u G[mu, a]
     537                                                             -gs cbar.Ga[mu].T[a].c G[mu, a]
     538                                                             -gs tbar.Ga[mu].T[a].t G[mu, a]
     539                                                      == -gs Ga[mu, s, r] T[a, i, j] ubar[s, i].u[r, j] G[mu, a]
     540                                                            -gs Ga[mu, s, r] T[a, i, j] cbar[s, i].c[r, j] G[mu, a]
     541                                                            -gs Ga[mu, s, r] T[a, i, j] tbar[s, i].t[r, j] G[mu, a]
     542}}}
     543Notice that in the last line, the fields {{{
     544u
     545}}}, {{{
     546c
     547}}} and {{{
     548t
     549}}} do not carry the {{{
     550Generation
     551}}} -index {{{
     552f
     553}}}, because we have the identification
     554{{{
     555u[s, i] == uq[s, 1, i]
     556c[s, i] == uq[s, 2, i]
     557t[s, i] == uq[s, 3, i]
     558}}}
     559
     560The QCD lagrangian (gluons + up-type quarks) reads
     561%\[
     562\begin{cal}L\end{cal} = -\frac{1}{4}\,F_{\mu\nu}^a\,F_a^{\mu\nu}+i\bar u_f\gamma^\mu\partial_\mu u_f-g_s\bar u_f\gamma^\mu T^a u_f G_\mu^a,
     563\]%
     564where $f$ denotes the flavor index of the up-type quark ($f=1,2,3$). In ''FeynRules'' language, this lagrangian reads
     565{{{
     566L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a] +I uqbar . Ga[mu] . del[uq, mu] -gs uq . Ga[mu] . T[a] . uq G[mu, a]
     567}}}
     568
     569The Feynman rules can be obtained via the command
     570{{{
     571FeynmanRules[ L ]
     572}}}
     573The {{{
     574FeynmanRules
     575}}} command has several optional arguments,
     576   * {{{
     577ScreenOutput
     578}}} : If {{{
     579True
     580}}}, then the output is written on the screen, otherwise it is not. The default value is {{{
     581True
     582}}}.
     583   * {{{
     584TeXOutput
     585}}} : Writes the vertices obtained by {{{
     586FeynmanRules
     587}}} into a TeX-file specified on the right-hand side of the argument (''e.g.'' {{{
     588TeXOutput -> < file.tex >
     589}}}).
     590   * {{{
     591FlavorExpand
     592}}} :
     593      * Expands over the flavor indices specified by the list at the right-hand side of the argument, ''e.g.'' {{{
     594FeynmanRules[ L ]
     595}}} will only generate a single quark-gluon vertex (uq uq G), whereas =FeynmanRules[ L, FlavorExpand -> Generation ] generates three quark-gluon vertices, one for each flavor (u u G, c c G, t t G).
     596      * {{{
     597FlavorExpand -> True
     598}}} expands over all flavor indices.
     599   * {{{
     600Name
     601}}} : A string chosen by the user. The analytic expressions of the vertices are stored in {{{
     602Vertices[ < Name > ]
     603}}}.
     604
     605For complicated lagrangians, it may sometimes be convenient to split the lagrangian into several small pieces, ''e.g.'',
     606{{{
     607L = LGauge + LQuarks
     608LGauge = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a]
     609LQuarks = I uqbar . Ga[mu] . del[uq, mu] -gs uq . Ga[mu] . T[a] . uq G[mu, a]
     610}}}
     611The Feynman rules can be generated separately for each piece using the {{{
     612FeynmanRules
     613}}} command. Giving each piece a name via the {{{
     614Name
     615}}} option allows to combine the results later, ''e.g.'' a TeX-file containing both the vertices obtained from {{{
     616LGauge
     617}}} and {{{
     618LQuarks
     619}}},
     620{{{
     621FeynmanRules[ LGauge, Name -> "LG" ]
     622FeynmanRules[ LQuarks, Name -> "LQ" ]
     623
     624WriteTeXOutput[ < file.tex >, {"LG", "LQ"}]
     625}}}
     626
     627==== The FeynArts interface ====
     628
     629The FeynArts model-file is then created via
     630{{{
     631WriteFeynArtsOutput[< file.mod>, {L1, L2, L3,...}]
     632}}}
     633where {{{
     634L1
     635}}}, {{{
     636L2
     637}}}, {{{
     638L3
     639}}}, ... denote the lagrangians which should be used to calculate Feynman rules from. This creates the FeynArts model-file {{{
     640file.mod
     641}}} in the current working directory.
     642
     643==== The MadGraph interface ====
     644
     645The model file, together with the vertices calculated by the FeynmanRules function, contain all the information needed to run a generic MC generator, so it is sufficient to read out this information.
     646
     647When the model file was loaded, the following (invisible) output was produced (See {{{
     648FirstExample.nb
     649}}}):
     650   * The list of all particles, with the corresponding properties.
     651     For each class member, this list contains the following information
     652      * a string, representing the name of the particle (e.g. u)
     653      * a string, representing the name of the corresponding antiparticle (e.g. u~)
     654      * the spin (scalar (S), fermion (F), vector(V))
     655      * the way the propagator should be drawn (straight (S), dashed(D), wavy (W), curly(C))
     656      * a string representing the mass (ZERO if the mass is 0)
     657      * a string representing the width (ZERO if the width is 0)
     658      * the colour structure (singlet (S), triplet, (T), octet (O))
     659      * a string, by which the propagator should be labelled in graphical representations (by default the same as the name of the particle)
     660      * the pdg code of the particle (generated automatically, if omitted)
     661      * a string, representing the full name of the particle (by default the same as the name of the particle)
     662   * The list of all values for the masses and the decay rates.
     663   * The list of all parameters entering the model (apart from masses).
     664      For each parameter this list contains
     665      * a string, representing the name of the variable.
     666      * a tag (Ext/Int) indicating whether the parameter is external (i.e.  given by a numerical value) or internal (i.e. given via a relation to other parameters)
     667      * the value of the parameter (numerical for Ext, symbolical for Int)
     668      * only for Ext: the name of the LH Block (assigned automatically if omitted)
     669      * the interaction order (e.g. QCD 1)
     670      * A tag indicating whether the parameter is a compex number (True) or not (False).
     671
     672This information , together with the vertices, can be used to write for example the corresponding MadGraph files (saved in a subdirectory of the currentworking directory).
     673{{{
     674WriteMGOutput[L1, L2, L3,...]
     675}}}
     676where {{{
     677L1
     678}}}, {{{
     679L2
     680}}}, {{{
     681L3
     682}}}, ... denote the lagrangians which should be used to calculate Feynman rules from.
     683
     684Notice that there is a compatibility problem of the current interface with ''Mathematica''6.0. This will be fixed soon. The problem does however not occur for version 5.2.
     685
     686The created MadGraph-files are
     687{{{
     688coupl_check.inc
     689coupl_definition.inc
     690coupl_write.inc
     691coupl.inc
     692ident_card.dat
     693input.inc
     694interactions.dat
     695param_card.dat
     696param_read.inc
     697param_write.inc
     698particles.dat
     699}}}
     700
     701
     702
     703
     704
     705
     706
     707
     708
     709
     710
     711
     712
     713
     714
     715
     716
     717
     718
     719
     720
     721
     722
     723
     724
     725
     726
     727
     728
     729