13 | | The details of these issues will be discussed in a forthcoming publication; This wiki page is mainly to describe the various options to the command '{{{check cms}}}' which automatically tests the consistency of the CMS implementation. The core idea of the test is to compare amplitudes in the CMS scheme ($\mathcal{A}_{\text{CMS}}$) and in the case of widths set to zero ($\mathcal{A}_{\Gamma=0}$) for a given kinematic configuration where all resonances are far off-shell. |
14 | | The difference between these two amplitudes must be higher order. More formally, this means $\mathcal{A}^{\text{Born}}_{\text{CMS}}\sim \mathcal{A}^{\text{Born}}_{\Gamma=0} \sim \mathcal{O}(\alpha^a)$. |
| 13 | The details of these issues will be discussed in a forthcoming publication; this wiki page is mainly to describe the various options to the command '{{{check cms}}}' which automatically tests the consistency of the CMS implementation. The core idea of the test is to compare amplitudes in the CMS scheme ($\mathcal{A}_{\text{CMS}}$) and in the case of widths set to zero ($\mathcal{A}_{\Gamma=0}$) for a given kinematic configuration where all resonances are far off-shell. |
| 14 | The difference between these two amplitudes must be higher order. More formally, this means that if we have $\mathcal{A}^{\text{Born}}_{\text{CMS}}\sim \mathcal{A}^{\text{Born}}_{\Gamma=0} \sim \mathcal{O}(\alpha^a)$, then we can write the following: |