

Monte Carlo's and Event generators for the LHC

Fabio Maltoni

Center for Particle Physics and Phenomenology (CP3)
Université Catholique de Louvain

There has been a number of key theoretical results recently in the quest of achieving the best possible description of events at the LHC.

- There has been a number of key theoretical results recently in the quest of achieving the best possible description of events at the LHC.
- Monte Carlo development is a VERY active line of theoretical research in particle phenomenology with a community growing from O(10) to O(100) in the last years.

- There has been a number of key theoretical results recently in the quest of achieving the best possible description of events at the LHC.
- Monte Carlo development is a VERY active line of theoretical research in particle phenomenology with a community growing from O(10) to O(100) in the last years.
- MC's embody our level of understanding of high energy interactions.
 They naturally provide a framework where theory and experiment naturally meet.

LHC data is there!!!!

- There has been a number of key theoretical results recently in the quest of achieving the best possible description of events at the LHC.
- Monte Carlo development is a VERY active line of theoretical research in particle phenomenology with a community growing from O(10) to O(100) in the last years.
- MC's embody our level of understanding of high energy interactions.
 They naturally provide a framework where theory and experiment naturally meet.

Provide an overview on the recent achievements in our capabilities of making USEFUL predictions for the LHC and give an idea on the imminent future.

- Provide an overview on the recent achievements in our capabilities of making USEFUL predictions for the LHC and give an idea on the imminent future.
- 2. Give you the minimal set of TH concepts necessary to understand what MC generators are and do.

- Provide an overview on the recent achievements in our capabilities of making USEFUL predictions for the LHC and give an idea on the imminent future.
- 2. Give you the minimal set of TH concepts necessary to understand what MC generators are and do.
- 3. Be ready to work on the LHC data...

Several QCD and MC exercises on LHC phenomenology available at MadGraph Wiki:

Think

Several QCD and MC exercises on LHC phenomenology available at MadGraph Wiki:

Ask

Several QCD and MC exercises on LHC phenomenology available at MadGraph Wiki:

Several QCD and MC exercises on LHC phenomenology available at MadGraph Wiki:

Statements

TRUE | FALSE |

DEPENDS

I have no clue

	Statements	TRUE	FALSE	IT DEPENDS	I have no clue
0	MC's are black boxes, I don't need to know the details as long as the are no bugs.				

	Statements	TRUE	FALSE	IT DEPENDS	I have no clue
0	MC's are black boxes, I don't need to know the details as long as the are no bugs.				
	A MC generator produces "unweighted" events, i.e., events distributed as in Nature.				

	Statements	TRUE	FALSE	IT DEPENDS	I have no clue
0	MC's are black boxes, I don't need to know the details as long as the are no bugs.				
1	A MC generator produces "unweighted" events, i.e., events distributed as in Nature.				
2	MC's are based on a classical approximation (Markov Chain), QM effects are not included.				

	Statements	TRUE	FALSE	IT DEPENDS	I have no clue
0	MC's are black boxes, I don't need to know the details as long as the are no bugs.				
	A MC generator produces "unweighted" events, i.e., events distributed as in Nature.				
2	MC's are based on a classical approximation (Markov Chain), QM effects are not included.				
3	The "Sudakov form factor" directly quantifies how likely is for a parton to undergo branching.				

	Statements	TRUE	FALSE	IT DEPENDS	I have no clue
0	MC's are black boxes, I don't need to know the details as long as the are no bugs.				
	A MC generator produces "unweighted" events, i.e., events distributed as in Nature.				
2	MC's are based on a classical approximation (Markov Chain), QM effects are not included.				
3	The "Sudakov form factor" directly quantifies how likely is for a parton to undergo branching.				
4	A calculations/code at NLO for a process provides NLO predictions for any IR safe observable.				

	Statements		FALSE	IT DEPENDS	I have no clue
0	MC's are black boxes, I don't need to know the details as long as the are no bugs.				
	A MC generator produces "unweighted" events, i.e., events distributed as in Nature.				
2	MC's are based on a classical approximation (Markov Chain), QM effects are not included.				
3	The "Sudakov form factor" directly quantifies how likely is for a parton to undergo branching.				
4	A calculations/code at NLO for a process provides NLO predictions for any IR safe observable.				
5	Tree-level based MC's are less accurate than those at NLO.				

Statements		TRUE	FALSE	IT DEPENDS	I have no clue
0	MC's are black boxes, I don't need to know the details as long as the are no bugs.		✓		
	A MC generator produces "unweighted" events, i.e., events distributed as in Nature.	√			
2	MC's are based on a classical approximation (Markov Chain), QM effects are not included.		√		
3	The "Sudakov form factor" directly quantifies how likely is for a parton to undergo branching.		√		
4	A calculations/code at NLO for a process provides NLO predictions for any IR safe observable.		√		
5	Tree-level based MC's are less accurate than those at NLO.			✓	

Score	Result	Comment
5	Addict	Always keep in mind that there are also other interesting pheno activities in the field.
4	Excellent	No problem in following these lectures.
3	Fair	Check out carefully the missed topics.
≤2	Room for improvement (not passing the Turing test)	Enroll in a MC crash course at your home institution.
5 No clue	No clue	It's Time to Call 011 1 2 3 4 5 6 7 8 9 What to do in an EMERGENCY

A simple plan

- Physics challenges at the LHC
- Basics : QCD and MC's methods
- The new generation of MC tools
- New simulations for New Physics

A simple plan

- Physics challenges at the LHC
- Basics : QCD and MC's methods
- The new generation of MC tools
- New simulations for New Physics

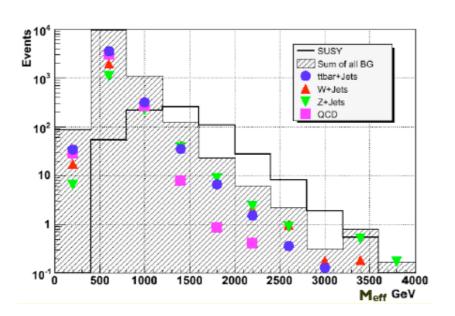
Discoveries at hadron colliders

peak 10⁻² 300 400 500 600 M(ee) (GeV/c²) "easy"

Background directly measured from data. TH needed only for parameter extraction (Normalization, acceptance,...)

shape

$$pp \rightarrow \widetilde{g}\widetilde{g},\widetilde{g}\widetilde{q},\widetilde{q}\widetilde{q} \rightarrow jets + \not\not\vdash_T$$

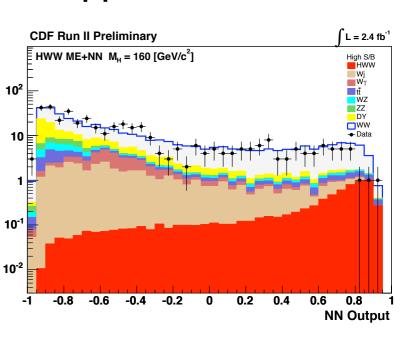


hard

Background shapes needed. Flexible MC for both signal and backgroud tuned and validated with data.

rate

$$PP \rightarrow H \rightarrow W^+W^-$$

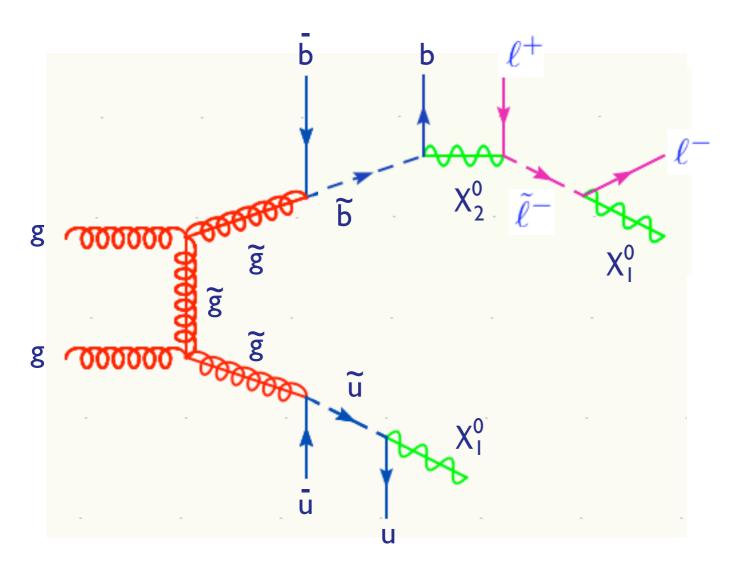


very hard

Background normalization and shapes known very well. Interplay with the best theoretical predictions (via MC) and data.

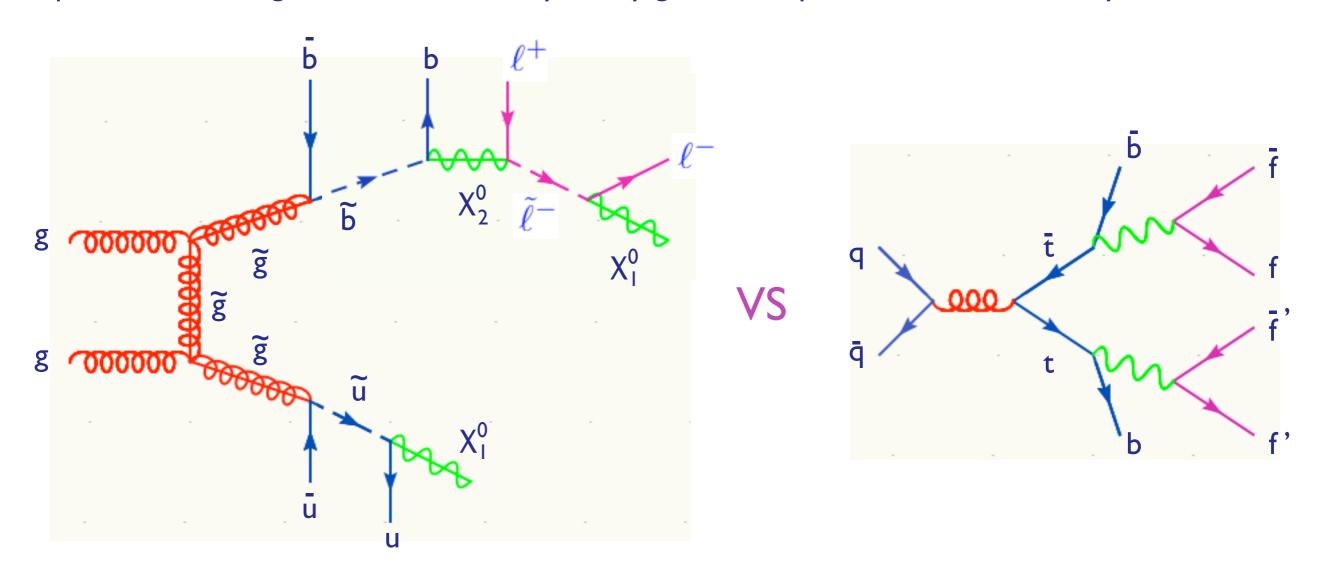
A new challenge

Consider SUSY-like inclusive searches: heavy colored states decaying through a chain into jets, leptons and missing E_{T} ...



A new challenge

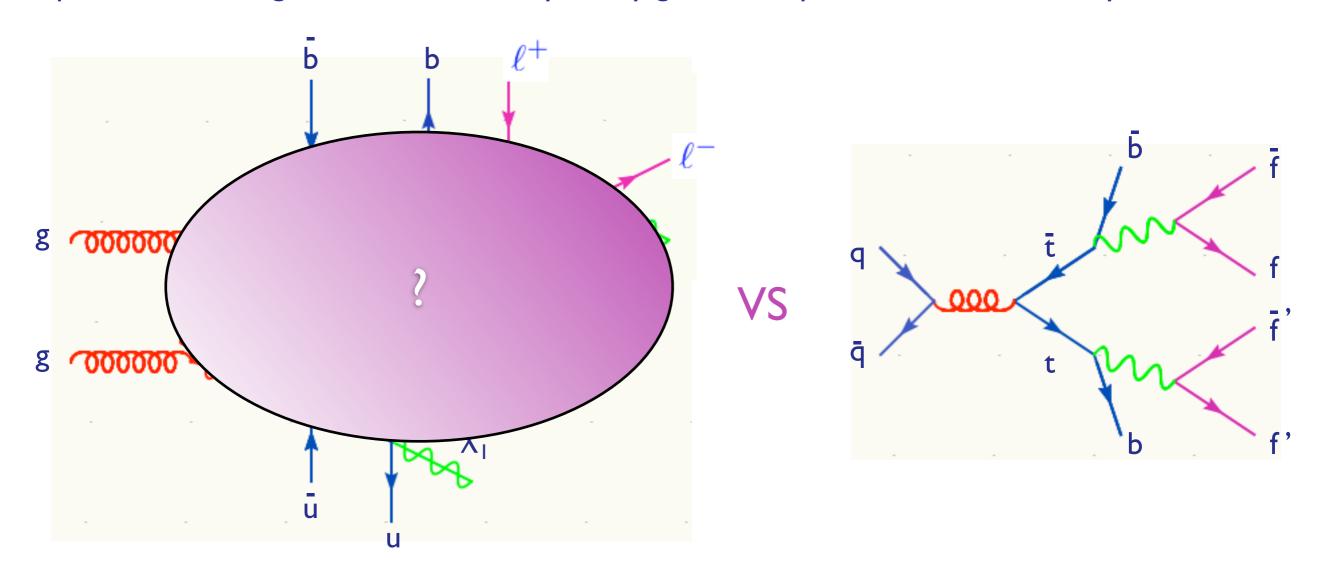
Consider SUSY-like inclusive searches: heavy colored states decaying through a chain into jets, leptons and missing E_T ... We have already a very good example of a similar discovery!



Follow the same approach of CDF in 1995 to establish first evidence of an excess wrt to SM-top and then consistency with SM top production [mt=174, t \rightarrow blv, $\sigma(tt)$], works for the SM Higgs, but in general beware that...

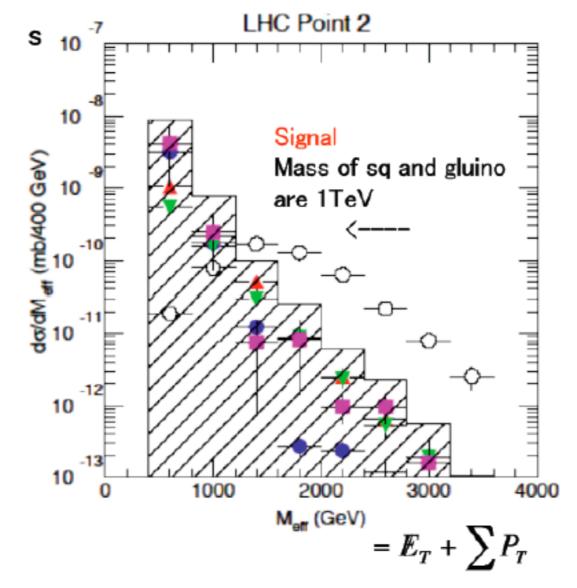
A new challenge

Consider SUSY-like inclusive searches: heavy colored states decaying through a chain into jets, leptons and missing E_T ... We have already a very good example of a similar discovery!



Follow the same approach of CDF in 1995 to establish first evidence of an excess wrt to SM-top and then consistency with SM top production [mt=174, t \rightarrow blv, $\sigma(tt)$], works for the SM Higgs, but in general beware that... we don't know what to expect!

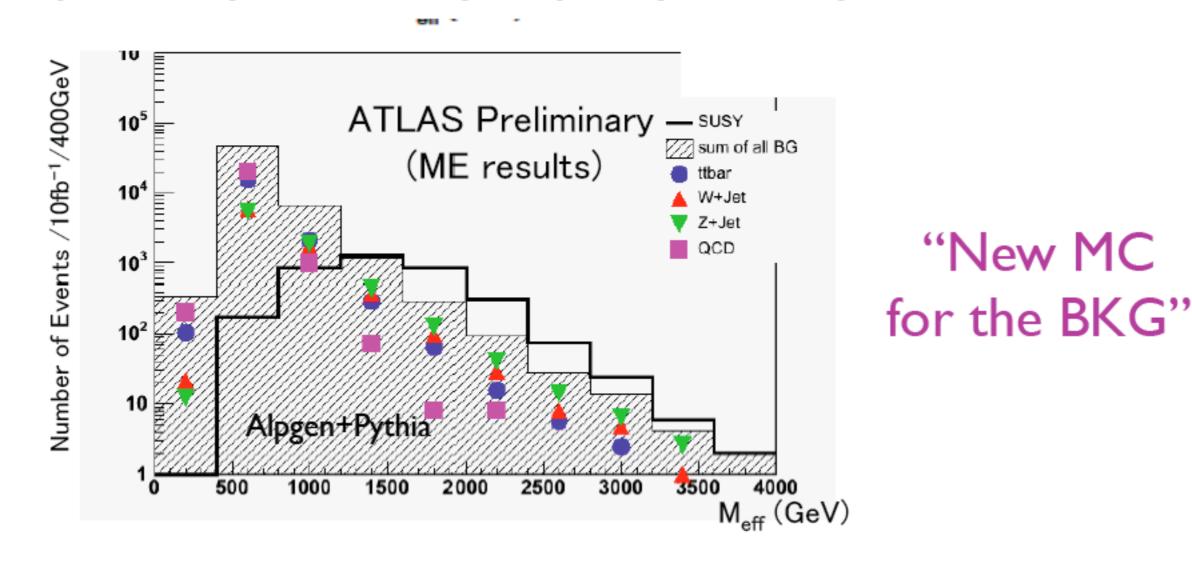
Example: early discovery SuperSymmetry at the LHC



"Old MC"

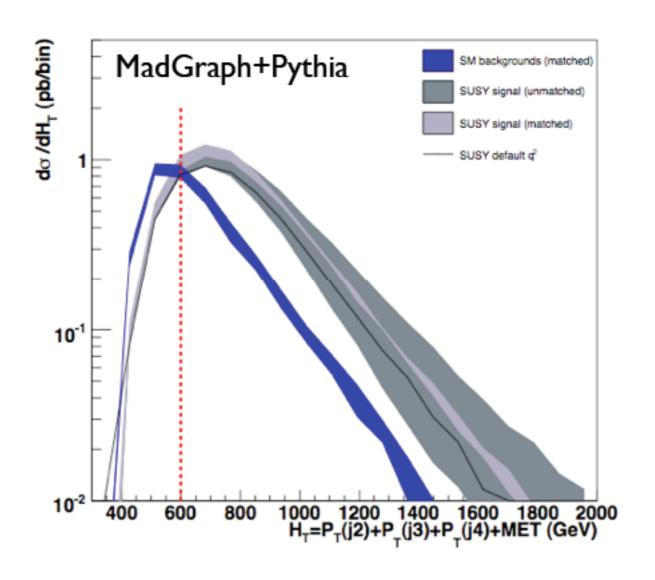
Background: t tbar+jets, (Z,W)+jets, jets. Very difficult to estimate theoretically: many parton calculation (2 \rightarrow 8 gluons = 10 millions Feynman diagrams diagrams!!). Now MC's for this are available...

Example: early discovery SuperSymmetry at the LHC



Background: t tbar+jets, (Z,W)+jets, jets. Very difficult to estimate theoretically: many parton calculation (2 \rightarrow 8 gluons = 10 millions Feynman diagrams diagrams!!). Now MC's for this are available...

Example: early discovery SuperSymmetry at the LHC



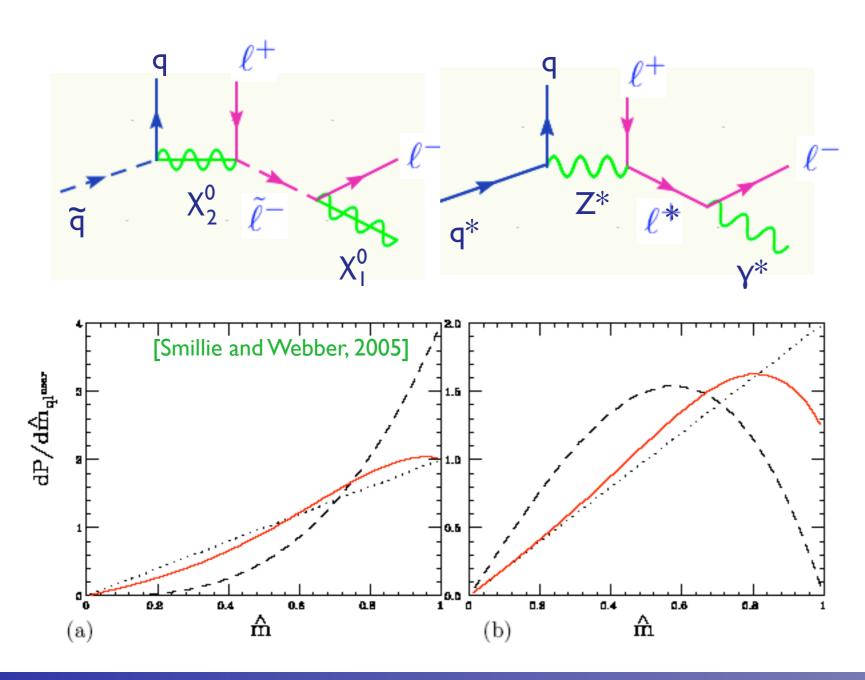
"New MC for Signal & BKG"

Background: t tbar+jets, (Z,W)+jets, jets. Very difficult to estimate theoretically: many parton calculation (2 \rightarrow 8 gluons = 10 millions Feynman diagrams diagrams!!). Now MC's for this are available...

Texte: signal matched ME+PS. Predictability improved. Same theoretical status as the background.

Example: SUSY vs UED

Information on the mass of the intermediate states can be obtained through the study of kinemetical edges. The shape of the edges can give information on the spin of the intermediate states. Compare for instance SUSY and UED:



Beware that most of the MC's make some of or all the following simplifications:

- I. production and decay are factorized.
- 2. Spin is ignored.
- 3.Chains proceed only throughI → 2 decays.
- 4. The narrow width approximation is employed.
- 5. Non-resonant diagrams are ignored.

Flexible and powerful ME tools are needed to check and in case go beyond the above approximations!

The path towards discoveries

LHC physics = $QCD + \epsilon$

I. Rediscover the known SM at the LHC (top's, W's, Z's) + jets.

New regime for QCD. Exclusive description for rich and energetic final states with flexible MC to be validated and tuned to control samples. Shapes for multi-jet final states and normalization for key process important. Accurate predictions (NLO,NNLO) needed only for standard candle cross sections.

2. Identify excess(es) over SM

Importance of a good theoretical description depends on the nature of the physics discovered: from none (resonances) to fundamental (inclusive SUSY).

3. Identify the nature of BSM: from coarse information to measurements of mass spectrum, quantum numbers, couplings.

Not fully worked out strategy. Several approaches proposed (MARMOSET, VISTA,...). Only in the final phase accurate QCD predictions and MC tools for SM as well as for the BSM signals will be needed.

Bottom-line

Bottom-line

No QCD ⇒ No Party

A simple plan

- Physics challenges at the LHC
- Basics : QCD and MC's methods
- The new generation of MC tools
- New simulations for New Physics

A simple plan

- Physics challenges at the LHC
- Basics : QCD and MC's methods
- The new generation of MC tools
- New simulations for New Physics

The QCD Lagrangian

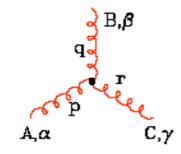
By direct inspection and by using the form non-abelian covariant derivation, we can check that indeed non-abelian gauge symmetry implies self-interactions. This is not surprising since the gluon itself is charged (In QED the photon is not!)

$$\mathcal{L} = \begin{bmatrix} -\frac{1}{4}F_{\mu\nu}^a F_a^{\mu\nu} \\ F_a \end{bmatrix} + \sum_f \bar{\psi}_i^{(f)} (i\partial - m_f) \psi_i^{(f)} - \bar{\psi}_i^{(f)} (g_s t_{ij}^a A_a) \psi_j^{(f)} \end{bmatrix}$$
Gauge Fields and their interact.
$$F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a - g f^{abc} A_\mu^b A_\nu^c$$

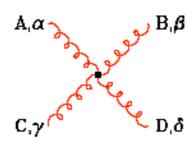
$$\delta^{AB} \left[-g^{\alpha\beta} + (1-\lambda) \frac{p^{\alpha}p^{\beta}}{p^{2} + i\epsilon} \right] \frac{i}{p^{2} + i\epsilon}$$

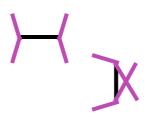
$$\delta^{AB} \frac{i}{(p^2+i\epsilon)}$$

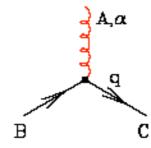
$$S^{ab} = \frac{i}{(p'-m+i\epsilon)_{\mu}}$$

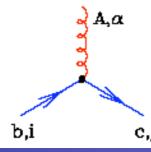


$$-g f^{ABC}[(p-q)^{\gamma}g^{\alpha\beta}+(q-r)^{\alpha}g^{\beta\gamma}+(r-p)^{\beta}g^{\gamma\alpha}]$$
(all momenta incoming)









$$-ig~(t^{\text{A}})_{\text{ob}}~(\gamma^{\alpha})_{ji}$$

$$t_{ij}^at_{kl}^a=\frac{1}{2}(\delta_{il}\delta_{kj}-\frac{1}{N_c}\delta_{ij}\delta_{kl}) \qquad \qquad = 1/2 *$$

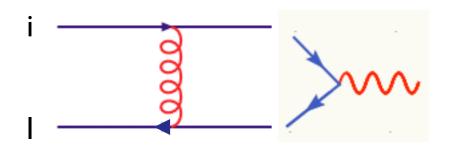
$$t_{ij}^a t_{kl}^a = \frac{1}{2} (\delta_{il} \delta_{kj} - \frac{1}{N_c} \delta_{ij} \delta_{kl})$$

Problem: Show that the one-gluon exchange between quark-antiquark pair can be attractive or repulsive. Calculate the relative strength.

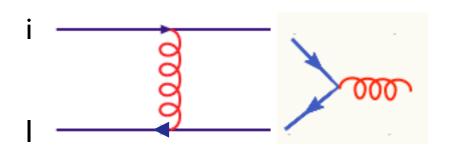
$$t_{ij}^a t_{kl}^a = \frac{1}{2} (\delta_{il} \delta_{kj} - \frac{1}{N_c} \delta_{ij} \delta_{kl})$$

Problem: Show that the one-gluon exchange between quark-antiquark pair can be attractive or repulsive. Calculate the relative strength.

Solution: a q qb pair can be in a singlet state (photon) or in octet (gluon): $3 \otimes 3 = 1 \oplus 8$



$$\frac{1}{2}(\delta_{ik}\delta_{lj} - \frac{1}{N_c}\delta_{ij}\delta_{lk})\delta_{ki} = \frac{1}{2}\delta_{lj}(N_c - \frac{1}{N_c}) = C_F\delta_{lj}$$

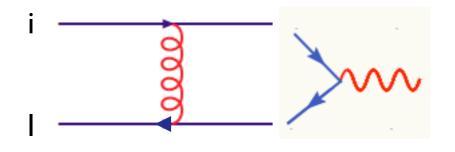


$$\frac{1}{2}(\delta_{ik}\delta_{lj} - \frac{1}{N_c}\delta_{ij}\delta_{lk})t^a_{ki} = -\frac{1}{2N_c}t^a_{lj}$$

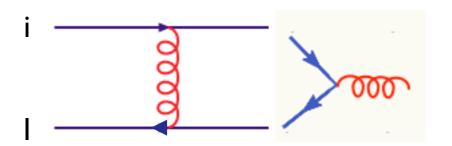
$$t_{ij}^a t_{kl}^a = \frac{1}{2} (\delta_{il} \delta_{kj} - \frac{1}{N_c} \delta_{ij} \delta_{kl})$$

Problem: Show that the one-gluon exchange between quark-antiquark pair can be attractive or repulsive. Calculate the relative strength.

Solution: a q qb pair can be in a singlet state (photon) or in octet (gluon): $3 \otimes 3 = 1 \oplus 8$

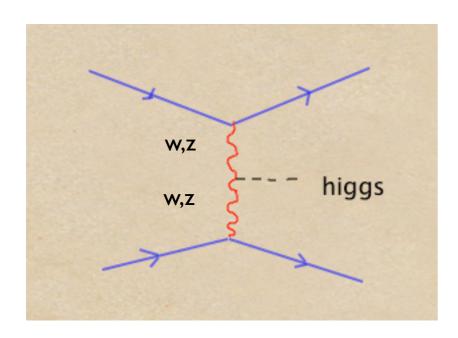


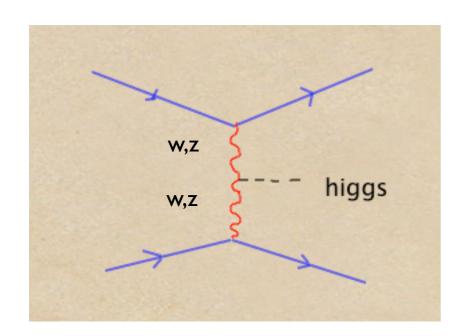
$$\frac{1}{2}(\delta_{ik}\delta_{lj} - \frac{1}{N_c}\delta_{ij}\delta_{lk})\delta_{ki} = \frac{1}{2}\delta_{lj}(N_c - \frac{1}{N_c}) = C_F\delta_{lj}$$
 >0, attractive

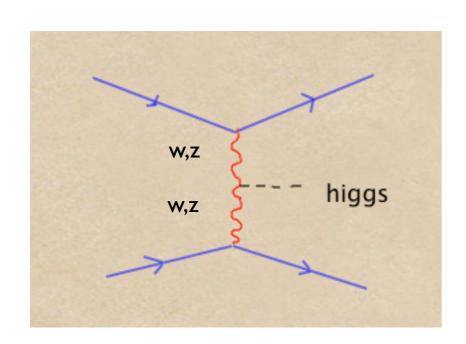


$$\frac{1}{2}(\delta_{ik}\delta_{lj} - \frac{1}{N_c}\delta_{ij}\delta_{lk})t^a_{ki} = -\frac{1}{2N_c}t^a_{lj}$$

<0, repulsive

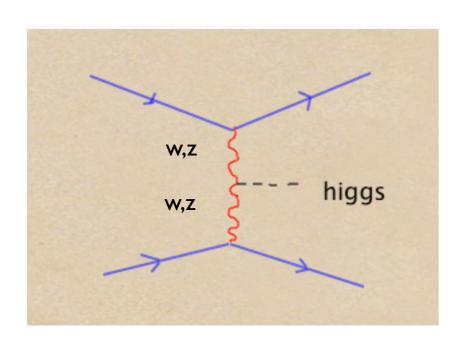




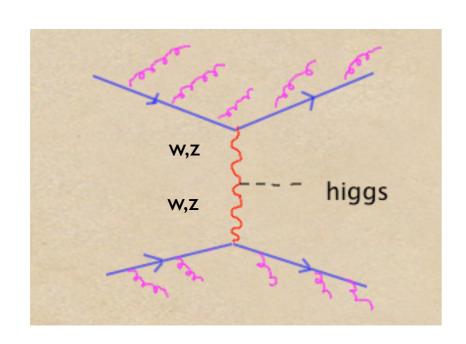


Facts:

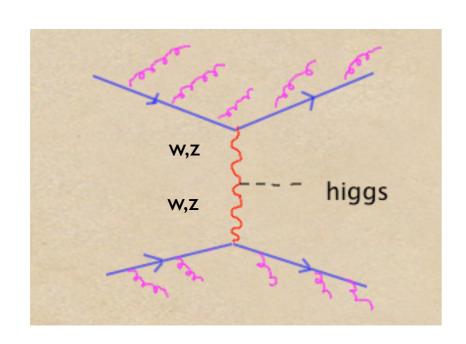
I. Important channel for light Higgs both for discovery and measurement



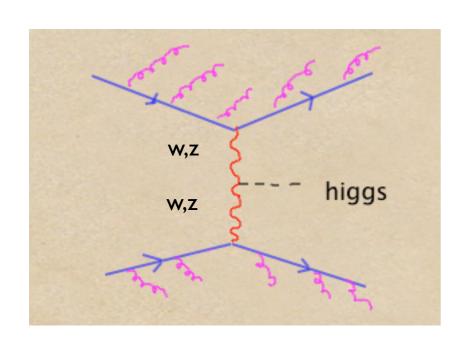
- I. Important channel for light Higgs both for discovery and measurement
- 2. Color singlet exchange in the t-channel

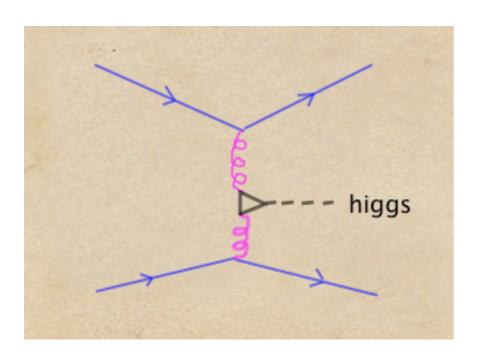


- I. Important channel for light Higgs both for discovery and measurement
- 2. Color singlet exchange in the t-channel

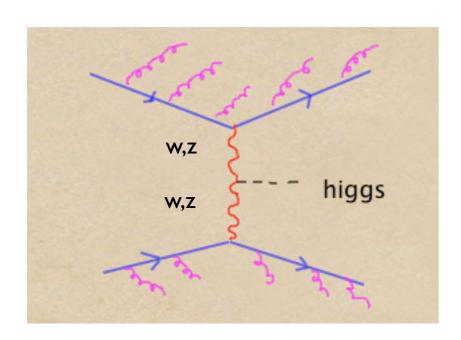


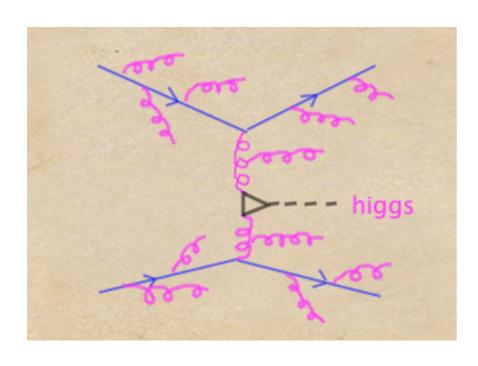
- I. Important channel for light Higgs both for discovery and measurement
- 2. Color singlet exchange in the t-channel
- 3. Characteristic signature: forward-backward jets + RAPIDITY GAP



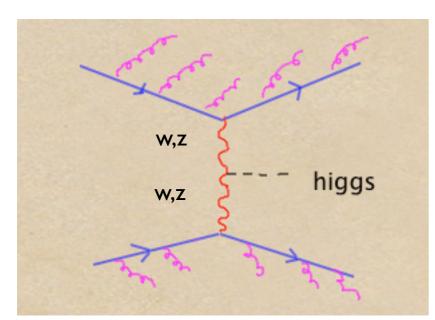


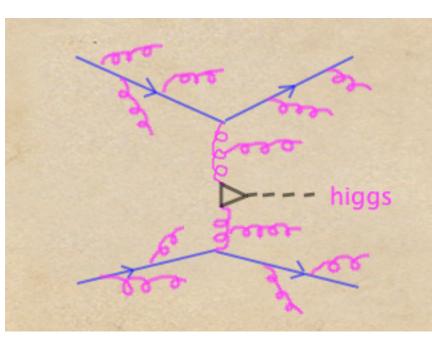
- I. Important channel for light Higgs both for discovery and measurement
- 2. Color singlet exchange in the t-channel
- 3. Characteristic signature: forward-backward jets + RAPIDITY GAP
- 4. QCD production is a background to precise measurements of couplings

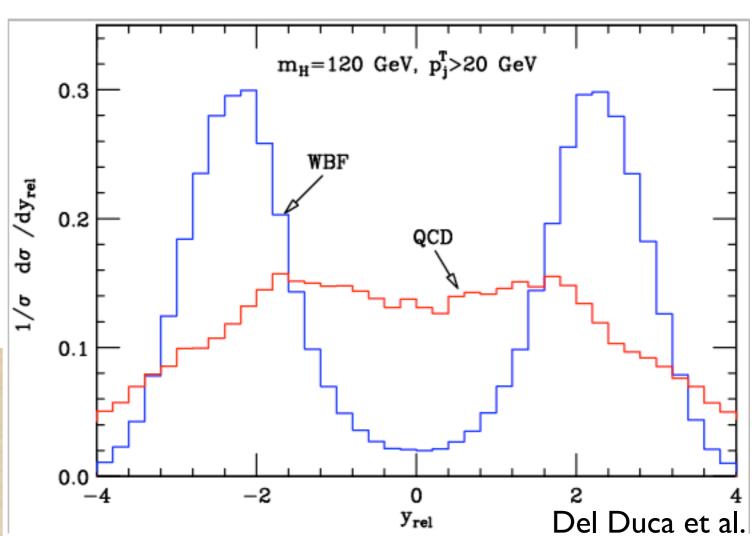




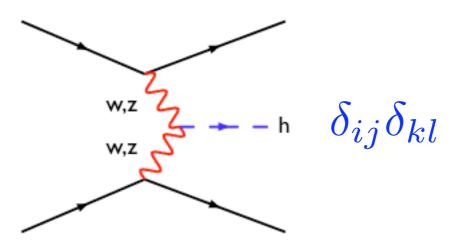
- I. Important channel for light Higgs both for discovery and measurement
- 2. Color singlet exchange in the t-channel
- 3. Characteristic signature: forward-backward jets + RAPIDITY GAP
- 4. QCD production is a background to precise measurements of couplings

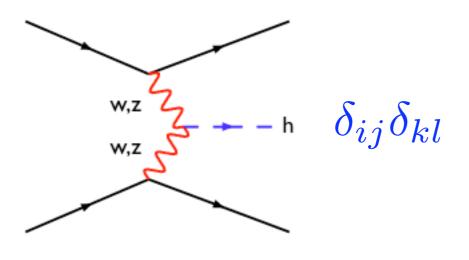


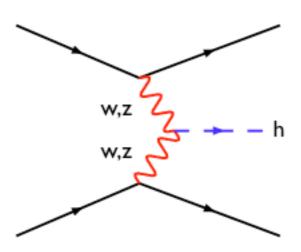


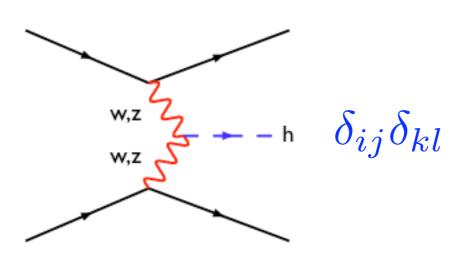


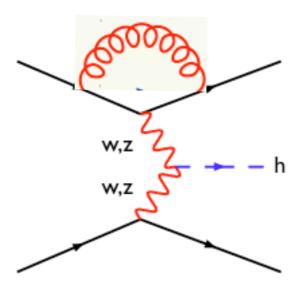
Third jet distribution

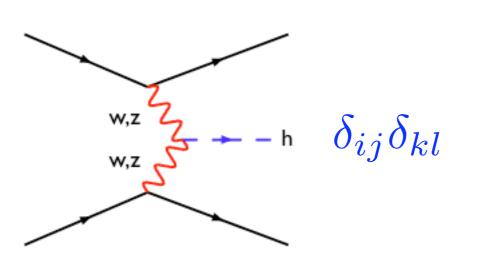


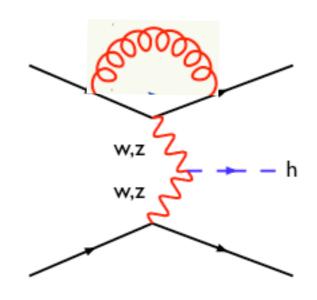






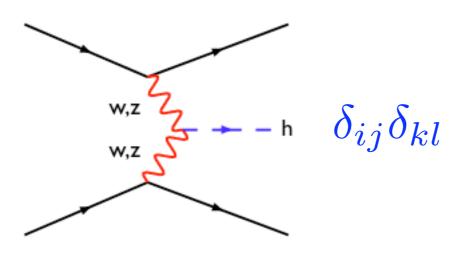


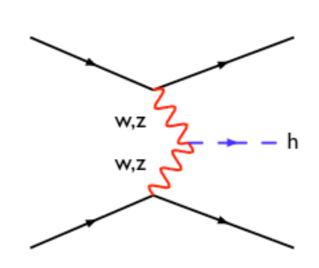




$$C_F \delta_{ij} \delta_{kl} \Rightarrow$$

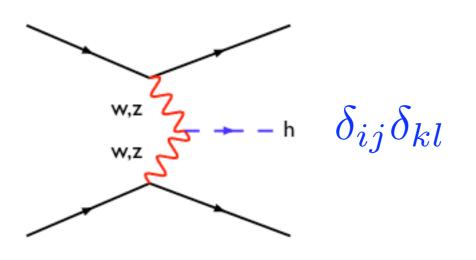
$$M_{\text{tree}} M_{1-\text{loop}}^* = C_F N_c^2 \simeq N_c^3$$

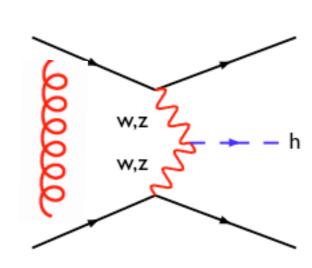




$$C_F \delta_{ij} \delta_{kl} \Rightarrow$$

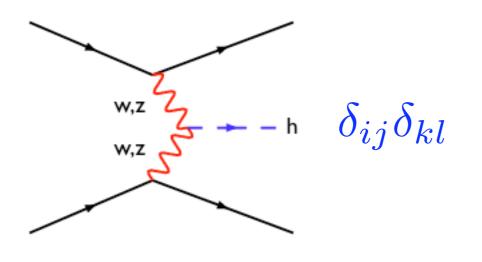
$$M_{\text{tree}} M_{1-\text{loop}}^* = C_F N_c^2 \simeq N_c^3$$

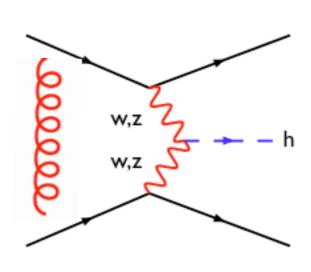




$$C_F \delta_{ij} \delta_{kl} \Rightarrow$$

$$M_{\text{tree}} M_{1-\text{loop}}^* = C_F N_c^2 \simeq N_c^3$$





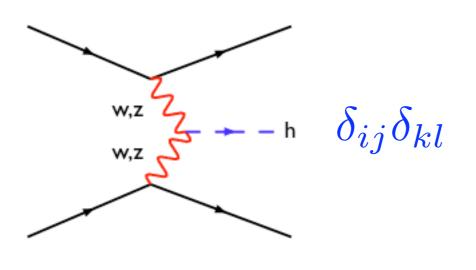
$$C_F \delta_{ij} \delta_{kl} \Rightarrow$$

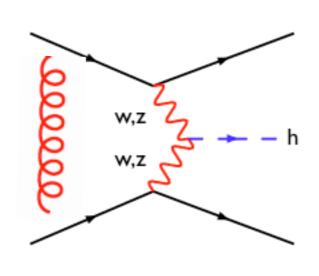
$$M_{\text{tree}} M_{1-\text{loop}}^* = C_F N_c^2 \simeq N_c^3$$

$$\frac{1}{2} (\delta_{ik} \delta_{lj} - \frac{1}{N_c} \delta_{ij} \delta_{kl}) \Rightarrow$$

$$M_{\text{tree}} M_{1-\text{loop}}^* = 0$$

Consider WBF: at LO there is no exchange of color between the quark lines:





$$C_F \delta_{ij} \delta_{kl} \Rightarrow$$

$$M_{\text{tree}} M_{1-\text{loop}}^* = C_F N_c^2 \simeq N_c^3$$

$$\frac{1}{2} (\delta_{ik} \delta_{lj} - \frac{1}{N_c} \delta_{ij} \delta_{kl}) \Rightarrow$$

$$M_{\text{tree}} M_{1-\text{loop}}^* = 0$$

Also at NLO there is no color exchange! With one little exception....

How do we calculate a LO cross section for 3 jets at the LHC?

How do we calculate a LO cross section for 3 jets at the LHC?

I. Identify all subprocesses (gg→ggg, qg→qgg....) in

$$\sigma(pp \to 3j) = \sum_{ijk} \int f_i(x_1) f_j(x_2) \hat{\sigma}(ij \to k_1 k_2 k_3)$$

How do we calculate a LO cross section for 3 jets at the LHC?

I. Identify all subprocesses (gg→ggg, qg→qgg....) in

$$\sigma(pp \to 3j) = \sum_{ijk} \int f_i(x_1) f_j(x_2) \hat{\sigma}(ij \to k_1 k_2 k_3)$$

II. For each one, calculate the amplitude:

$$\mathcal{A}(\{p\},\{h\},\{c\}) = \sum_{i} D_{i}$$

How do we calculate a LO cross section for 3 jets at the LHC?

I. Identify all subprocesses (gg→ggg, qg→qgg....) in

$$\sigma(pp \to 3j) = \sum_{ijk} \int f_i(x_1) f_j(x_2) \hat{\sigma}(ij \to k_1 k_2 k_3)$$

II. For each one, calculate the amplitude:

$$\mathcal{A}(\{p\},\{h\},\{c\}) = \sum_{i} D_{i}$$

III. Square the amplitude, sum over spins & color, integrate over the phase space (D \sim 3n)

$$\hat{\sigma} = \frac{1}{2\hat{s}} \int d\Phi_p \sum_{h,c} |\mathcal{A}|^2$$

How do we calculate a LO cross section for 3 jets at the LHC?

I. Identify all subprocesses (gg→ggg, qg→qgg....) in

$$\sigma(pp \to 3j) = \sum_{ijk} \int f_i(x_1) f_j(x_2) \hat{\sigma}(ij \to k_1 k_2 k_3)$$

easy

II. For each one, calculate the amplitude:

$$\mathcal{A}(\{p\},\{h\},\{c\}) = \sum_{i} D_{i}$$

III. Square the amplitude, sum over spins & color, integrate over the phase space (D \sim 3n)

$$\hat{\sigma} = \frac{1}{2\hat{s}} \int d\Phi_p \sum_{h,c} |\mathcal{A}|^2$$

How do we calculate a LO cross section for 3 jets at the LHC?

I. Identify all subprocesses (gg→ggg, qg→qgg....) in

$$\sigma(pp \to 3j) = \sum_{ijk} \int f_i(x_1) f_j(x_2) \hat{\sigma}(ij \to k_1 k_2 k_3)$$

easy

II. For each one, calculate the amplitude:

$$\mathcal{A}(\{p\},\{h\},\{c\}) = \sum_{i} D_{i}$$

III. Square the amplitude, sum over spins & color, integrate over the phase space (D \sim 3n)

$$\hat{\sigma} = \frac{1}{2\hat{s}} \int d\Phi_p \sum_{h,c} |\mathcal{A}|^2$$

LO: the technical challenges

How do we calculate a LO cross section for 3 jets at the LHC?

I. Identify all subprocesses (gg→ggg, qg→qgg....) in

$$\sigma(pp \to 3j) = \sum_{ijk} \int f_i(x_1) f_j(x_2) \hat{\sigma}(ij \to k_1 k_2 k_3)$$

easy

II. For each one, calculate the amplitude:

$$\mathcal{A}(\{p\},\{h\},\{c\}) = \sum_{i} D_{i}$$

III. Square the amplitude, sum over spins & color, integrate over the phase space (D \sim 3n)

$$\hat{\sigma} = \frac{1}{2\hat{s}} \int d\Phi_p \sum_{h,c} |\mathcal{A}|^2$$

Beware of the factorial growth

n	full Amp	partial Amp	BG
4	4	3	3
5	25	10	10
6	220	36	35
7	2485	133	70
8	34300	501	126
9	559405	1991	210
10	10525900	7335	330
П	224449225	28199	495
12	5348843500	108280	715

(2n)! 3.8^n n^4

Note: one always needs to (MC) sum over colors at the end, something that is intrinsically factorial.

- Complexity of plain vanilla Feynman calculations grows factorially
- "Old techniques" based on calculating simpler guauge invariant objects by a recursive techniques are much more powerful.
- •In any case the calculation through partial amplitudes is not as efficient as the direct calculation of the full amplitude at fixed color through numerical recursive relations [ALPGEN, Moretti, Caravaglios, Mangano, Pittau, 1998; HELAC, Draggiotis, Kleiss, Papadopoulos, 1998], which has only an exponential growth.
- New twistor tree-level BCF or CSW, without or with color, relations don't improve on the "old" Berends-Giele recursive relations.

[Dinsdale, Wernick, Weinzierl, 2006; Duhr, Hoeche, FM, 2006].

from integration to event generation

from integration to event generation

Calculations of cross section or decay widths involve integrations over high-dimension phase space of very peaked functions:

from integration to event generation

Calculations of cross section or decay widths involve integrations over high-dimension phase space of very peaked functions:

$$\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Phi(n)$$

from integration to event generation

Calculations of cross section or decay widths involve integrations over high-dimension phase space of very peaked functions:

$$\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Phi(n)$$

$$Dim[\Phi(n)] \sim 3n$$

from integration to event generation

Calculations of cross section or decay widths involve integrations over high-dimension phase space of very peaked functions:

$$\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Phi(n)$$

$$Dim[\Phi(n)] \sim 3n$$

General and flexible method is needed

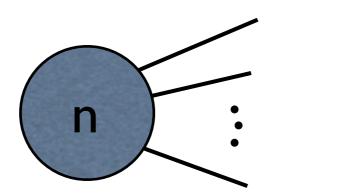
$$d\Phi_n = \left[\prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 (2E_i)} \right] (2\pi)^4 \delta^{(4)} (p_0 - \sum_{i=1}^n p_i)$$

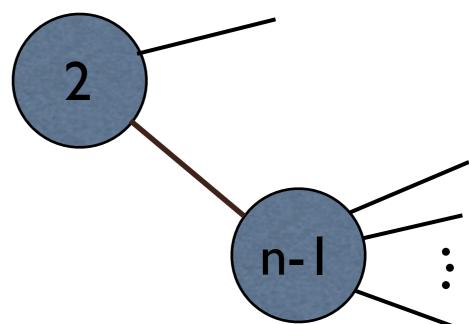
$$d\Phi_n = \left[\prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 (2E_i)} \right] (2\pi)^4 \delta^{(4)} (p_0 - \sum_{i=1}^n p_i)$$

$$d\Phi_2(M) = \frac{1}{8\pi} \frac{2p}{M} \frac{d\Omega}{4\pi}$$

$$d\Phi_n = \left[\prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 (2E_i)} \right] (2\pi)^4 \delta^{(4)} (p_0 - \sum_{i=1}^n p_i)$$

$$d\Phi_2(M) = \frac{1}{8\pi} \frac{2p}{M} \frac{d\Omega}{4\pi}$$





$$d\Phi_n(M) = \frac{1}{2\pi} \int_0^{(M-\mu)^2} d\mu^2 d\Phi_2(M) d\Phi_{n-1}(\mu)$$

$$I = \int_{x_1}^{x_2} f(x) dx$$

$$I = \int_{x_1}^{x_2} f(x) dx \qquad \qquad \blacksquare \qquad \qquad I_N = (x_2 - x_1) \frac{1}{N} \sum_{i=1}^{N} f(x)$$

$$V = (x_2 - x_1) \int_{x_1}^{x_2} [f(x)]^2 dx - I^2 \qquad V_N = (x_2 - x_1)^2 \frac{1}{N} \sum_{i=1}^{N} [f(x)]^2 - I_N^2$$

$$V_N = (x_2 - x_1)^2 \frac{1}{N} \sum_{i=1}^N [f(x)]^2 - I_N^2$$

$$I = \int_{x_1}^{x_2} f(x) dx$$

$$I = \int_{x_1}^{x_2} f(x) dx \qquad \qquad \blacksquare \qquad I_N = (x_2 - x_1) \frac{1}{N} \sum_{i=1}^{N} f(x)$$

$$V = (x_2 - x_1) \int_{x_1}^{x_2} [f(x)]^2 dx - I^2 \qquad V_N = (x_2 - x_1)^2 \frac{1}{N} \sum_{i=1}^{N} [f(x)]^2 - I_N^2$$

$$V_N = (x_2 - x_1)^2 \frac{1}{N} \sum_{i=1}^{N} [f(x)]^2 - I_N^2$$

$$I = I_N \pm \sqrt{V_N/N}$$

$$I = \int_{x_1}^{x_2} f(x) dx$$

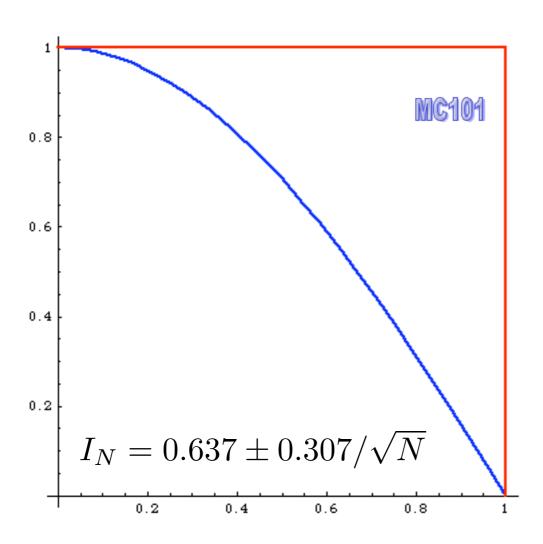
$$I = \int_{x_1}^{x_2} f(x) dx \qquad \qquad \blacksquare \qquad I_N = (x_2 - x_1) \frac{1}{N} \sum_{i=1}^{N} f(x)$$

$$V = (x_2 - x_1) \int_{x_1}^{x_2} [f(x)]^2 dx - I^2 \qquad V_N = (x_2 - x_1)^2 \frac{1}{N} \sum_{i=1}^{N} [f(x)]^2 - I_N^2$$

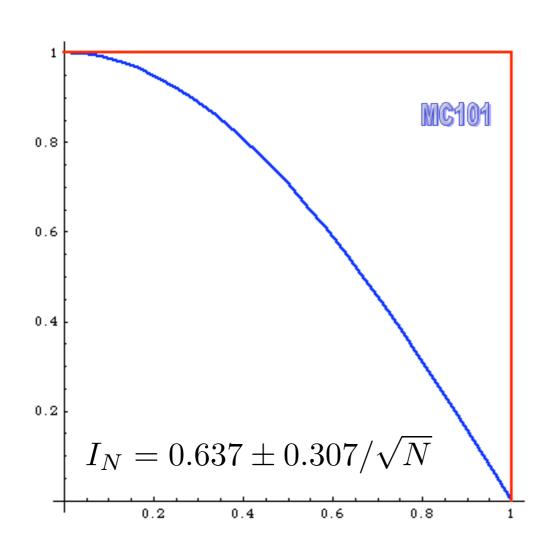
$$V_N = (x_2 - x_1)^2 \frac{1}{N} \sum_{i=1}^N [f(x)]^2 - I_N^2$$

$$I = I_N \pm \sqrt{V_N/N}$$

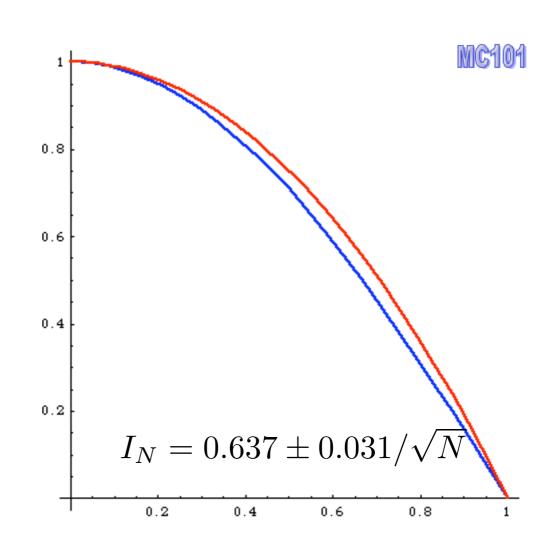
- © Convergence is slow but it can be estimated easily
- Error does not depend on # of dimensions!
- \bigcirc Optimal/Ideal case: $f(x)=C \Rightarrow V_N=0$



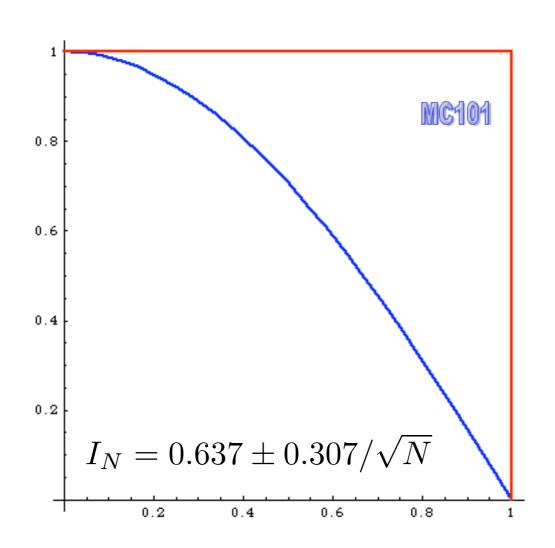
$$I = \int_0^1 dx \cos \frac{\pi}{2} x$$



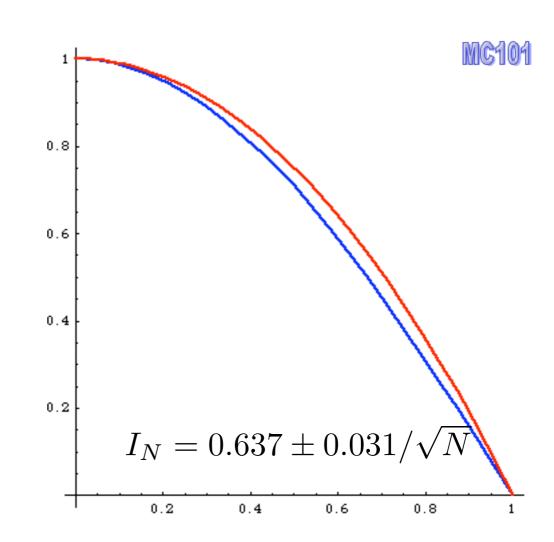
$$I = \int_0^1 dx \cos \frac{\pi}{2} x$$



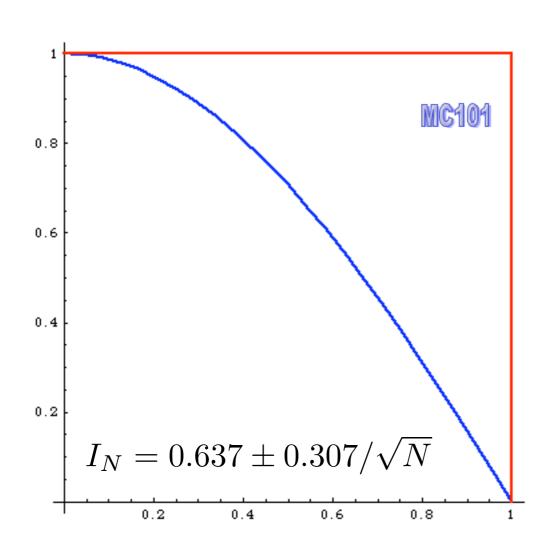
$$I = \int_0^1 dx (1 - x^2) \frac{\cos \frac{\pi}{2} x}{1 - x^2}$$



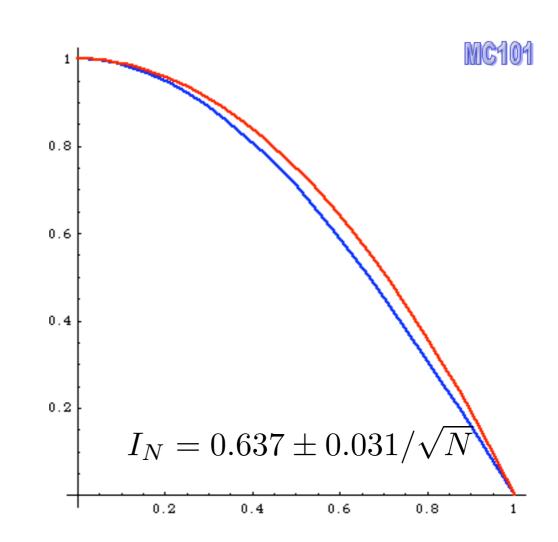
$$I = \int_0^1 dx \cos \frac{\pi}{2} x$$



$$I = \int_0^1 dx (1 - x^2) \frac{\cos \frac{\pi}{2} x}{1 - x^2}$$
$$= \int_{\xi_1}^{\xi_2} d\xi \frac{\cos \frac{\pi}{2} x[\xi]}{1 - x[\xi]^2}$$

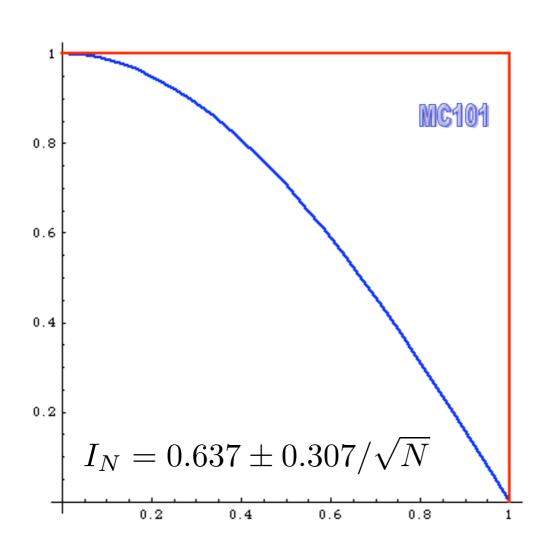


$$I = \int_0^1 dx \cos \frac{\pi}{2} x$$

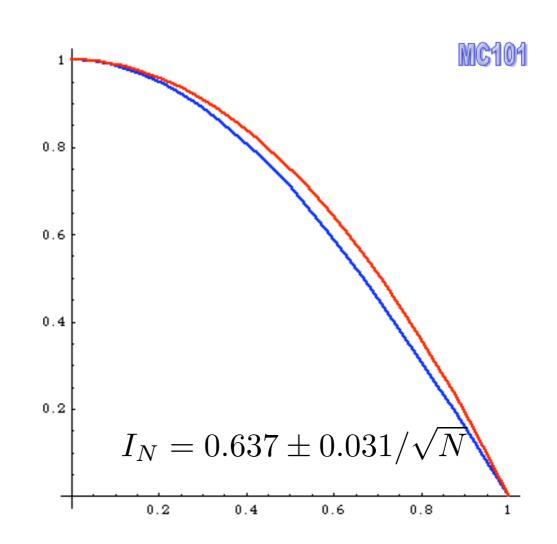


$$I = \int_{0}^{1} dx (1 - x^{2}) \frac{\cos \frac{\pi}{2} x}{1 - x^{2}}$$

$$= \int_{\xi_{1}}^{\xi_{2}} d\xi \frac{\cos \frac{\pi}{2} x[\xi]}{1 - x[\xi]^{2}}$$



$$I = \int_0^1 dx \cos \frac{\pi}{2} x$$



$$I = \int_{0}^{1} dx (1 - x^{2}) \frac{\cos \frac{\pi}{2} x}{1 - x^{2}}$$

$$= \int_{\xi_{1}}^{\xi_{2}} d\xi \frac{\cos \frac{\pi}{2} x[\xi]}{1 - x[\xi]^{2}} \Longrightarrow 1$$

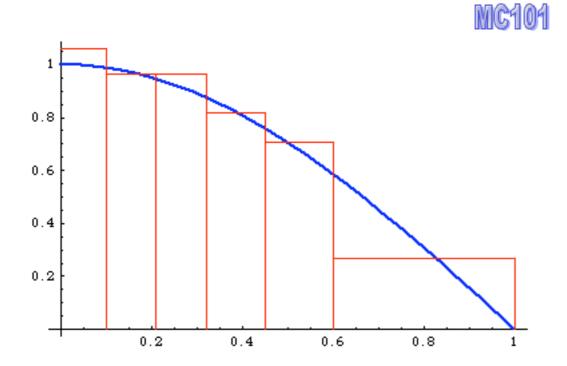
but... you need to know too much about f(x)!

but... you need to know too much about f(x)!

idea: learn during the run and build a step-function approximation p(x) of f(x) VEGAS

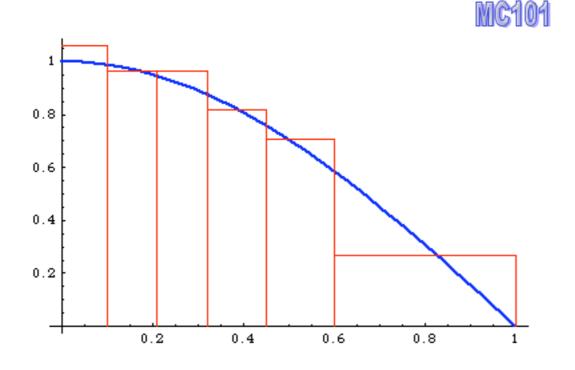
but... you need to know too much about f(x)!

idea: learn during the run and build a step-function approximation p(x) of f(x) VEGAS



but... you need to know too much about f(x)!

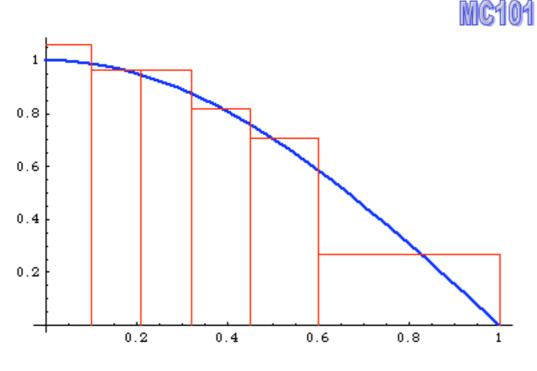
idea: learn during the run and build a step-function approximation p(x) of f(x) VEGAS



many bins where f(x) is large

but... you need to know too much about f(x)!

idea: learn during the run and build a step-function approximation p(x) of f(x) VEGAS



many bins where f(x) is large

$$p(x) = \frac{1}{N_b \Delta x_i}, \quad x_i - \Delta x_i < x < x_i$$

can be generalized to n dimensions:

$$\overrightarrow{p(x)} = p(x) \cdot p(y) \cdot p(z) \dots$$

can be generalized to n dimensions:

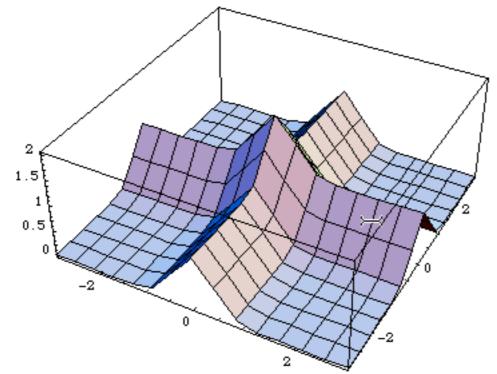
$$\overrightarrow{p(x)} = p(x) \cdot p(y) \cdot p(z) \dots$$

but the peaks of $f(\vec{x})$ need to be "aligned" to the axis!

can be generalized to n dimensions:

$$\overrightarrow{p(x)} = p(x) \cdot p(y) \cdot p(z) \dots$$

but the peaks of $f(\vec{x})$ need to be "aligned" to the axis!

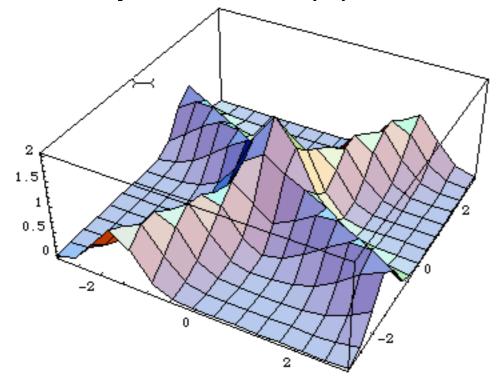


This is ok...

can be generalized to n dimensions:

$$\overrightarrow{p(x)} = p(x) \cdot p(y) \cdot p(z) \dots$$

but the peaks of $f(\vec{x})$ need to be "aligned" to the axis!

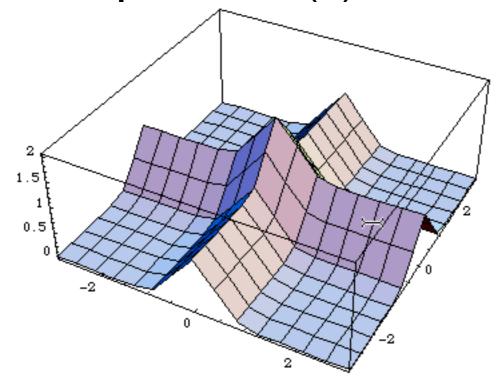


This is not ok...

can be generalized to n dimensions:

$$\overrightarrow{p(x)} = p(x) \cdot p(y) \cdot p(z) \dots$$

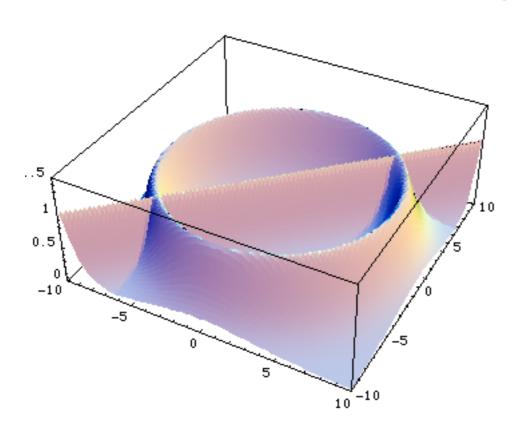
but the peaks of $f(\vec{x})$ need to be "aligned" to the axis!



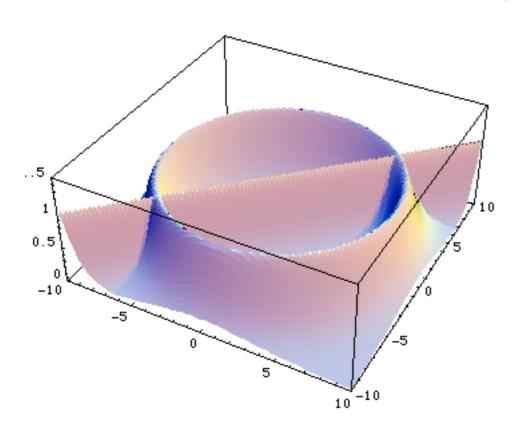
but it is sufficient to make a change of variables!

Multi-channel

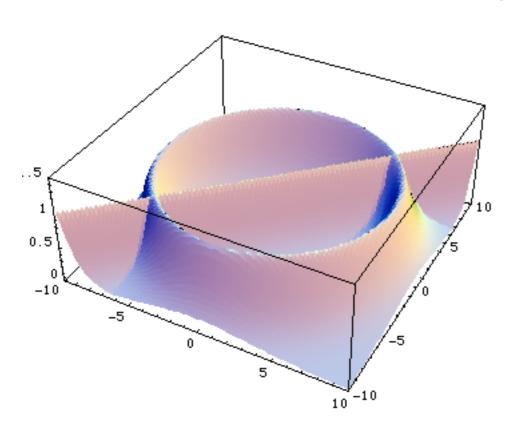
Multi-channel



Multi-channel



In this case there is no unique tranformation: Vegas is bound to fail!

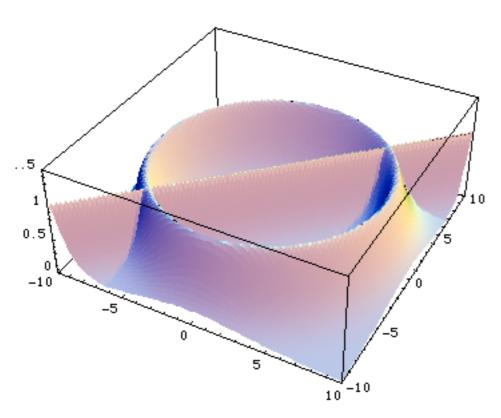


In this case there is no unique tranformation: Vegas is bound to fail!

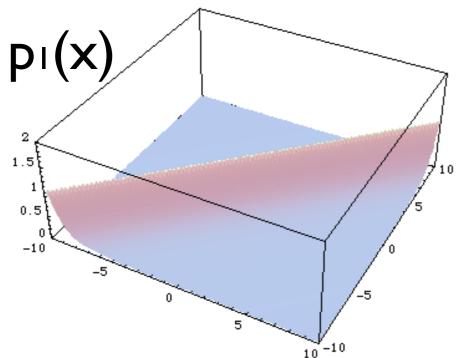
Solution: use different transformations = channels

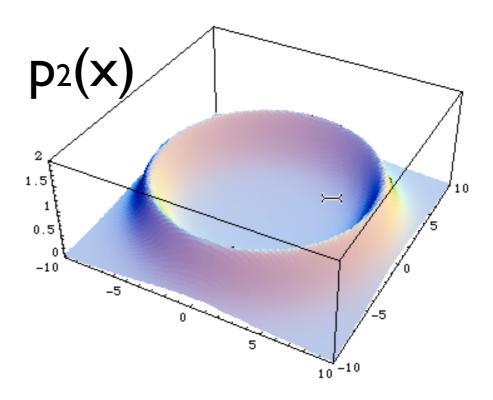
$$p(x) = \sum_{i=1}^{n} \alpha_i p_i(x) \qquad \text{with} \qquad \sum_{i=1}^{n} \alpha_i = 1$$

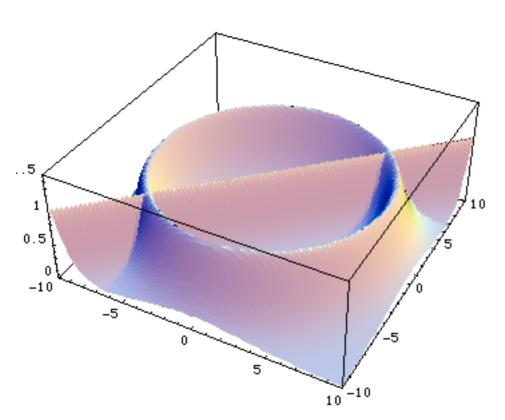
with each pi(x) taking care of one "peak" at the time



In this case there is no unique tranformation: Vegas is bound to fail!







In this case there is no unique tranformation: Vegas is bound to fail!

But if you know where the peaks are (=in which variables) we can use different transformations= channels:

$$p(x)=\sum_{i=1}^n lpha_i p_i(x)$$
 with $\sum_{i=1}^n lpha_i=1$ $I=\int f(x)dx=\sum_{i=1}^n lpha_i\int rac{f(x)}{p(x)}p_i(x)dx$

- Advantages
 - The integral does not depend on the α_i but the variance does and can be minimised by a careful choice
- Drawbacks
 - Need to calculate all gi values for each point
 - Each phase space channel must be invertible
 - N coupled equations for α_i so it might only work for small number of channels

- Advantages
 - The integral does not depend on the α_i but the variance does and can be minimised by a careful choice
- Drawbacks
 - Need to calculate all gi values for each point
 - Each phase space channel must be invertible
 - N coupled equations for α_i so it might only work for small number of channels

Very popular method!

Multi-channel based on single diagrams

Consider the integration of an amplitude |M|^2 at treel level which lots of diagrams contribute to. If there were a basis of functions,

$$f = \sum_{i=1}^{n} f_i$$
 with $f_i \ge 0$, $\forall i$,

such that:

- I. we know how to integrate each one of them,
- 2. they describe all possible peaks,

then the problem would be solved:

$$I = \int d\vec{\Phi} f(\vec{\Phi}) = \sum_{i=1}^{n} \int d\vec{\Phi} g_i(\vec{\Phi}) \frac{f_i(\vec{\Phi})}{g_i(\vec{\Phi})} = \sum_{i=1}^{n} I_i,$$

Multi-channel based on single diagrams

Consider the integration of an amplitude |M|^2 at treel level which lots of diagrams contribute to. If there were a basis of functions,

$$f = \sum_{i=1}^{n} f_i$$
 with $f_i \ge 0$, $\forall i$,

such that:

- I. we know how to integrate each one of them,
- 2. they describe all possible peaks,

then the problem would be solved:

$$I = \int d\vec{\Phi} f(\vec{\Phi}) = \sum_{i=1}^{n} \int d\vec{\Phi} g_i(\vec{\Phi}) \frac{f_i(\vec{\Phi})}{g_i(\vec{\Phi})} = \sum_{i=1}^{n} I_i,$$

Does such a basis exist?

Multi-channel based on single diagrams

Consider the integration of an amplitude |M|^2 at treel level which lots of diagrams contribute to. If there were a basis of functions,

$$f = \sum_{i=1}^{n} f_i$$
 with $f_i \ge 0$, $\forall i$,

such that:

- I. we know how to integrate each one of them,
- 2. they describe all possible peaks,

then the problem would be solved:

$$I = \int d\vec{\Phi} f(\vec{\Phi}) = \sum_{i=1}^{n} \int d\vec{\Phi} g_i(\vec{\Phi}) \frac{f_i(\vec{\Phi})}{g_i(\vec{\Phi})} = \sum_{i=1}^{n} I_i,$$

Does such a basis exist? YES!
$$f_i = \frac{|A_i|^2}{\sum_i |A_i|^2} |A_{\mathrm{tot}}|^2$$

Multi-channel based on single diagrams*

- Key Idea
 - Any single diagram is "easy" to integrate
 - Divide integration into pieces, based on diagrams
- Get N independent integrals
 - Errors add in quadrature so no extra cost
 - No need to calculate "weight" function from other channels.
 - Can optimize # of points for each one independently
 - Parallel in nature
- What about interference?
 - Never creates "new" peaks, so we're OK!

Multi-channel based on single diagrams*

- Key Idea
 - Any single diagram is "easy" to integrate
 - Divide integration into pieces, based on diagrams
- Get N independent integrals
 - Errors add in quadrature so no extra cost
 - No need to calculate "weight" function from other channels.
 - Can optimize # of points for each one independently
 - Parallel in nature
- What about interference?
 - Never creates "new" peaks, so we're OK!

*Method used in MadGraph

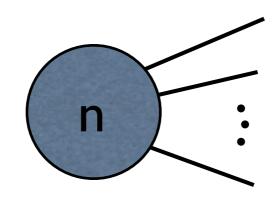
Phase Space

$$d\Phi_n = \left[\prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 (2E_i)} \right] (2\pi)^4 \delta^{(4)} (p_0 - \sum_{i=1}^n p_i)$$

Several methods exist to parametrize the phase space for n final state particles:

I. Basic recursive approach:

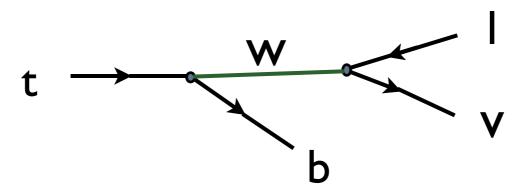
$$d\Phi_2(M) = \frac{1}{8\pi} \frac{2p}{M} \frac{d\Omega}{4\pi}$$



$$d\Phi_n(M) = \frac{1}{2\pi} \int_0^{(M-\mu)^2} d\mu^2 d\Phi_2(M) d\Phi_{n-1}(\mu)$$

t-channel topologies can be added. Suitable for mapping to general Feynman diagrams. Used in most of the multipurpose MC's. [Bycling and Kajante, 1973]

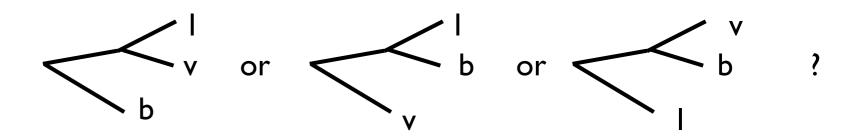
Exercise: top decay



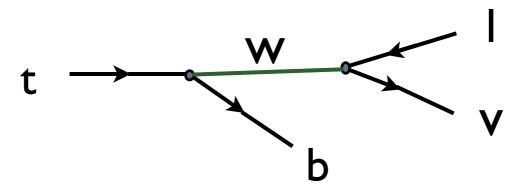
- Easy but non-trivial
- Breit-Wigner peak "flattened :

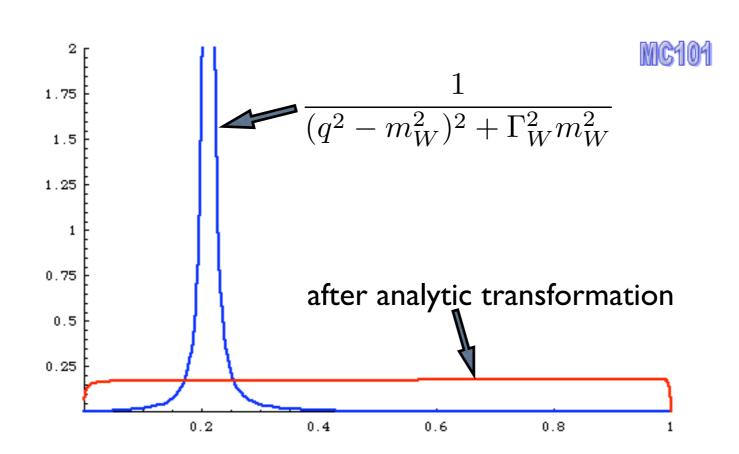
$$rac{1}{(q^2-m_W^2)^2+\Gamma_W^2m_W^2}$$
 be

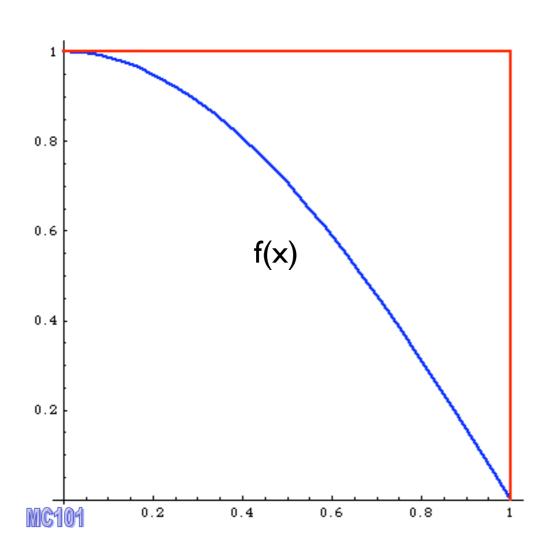
Choose the right "channel" for the phase space

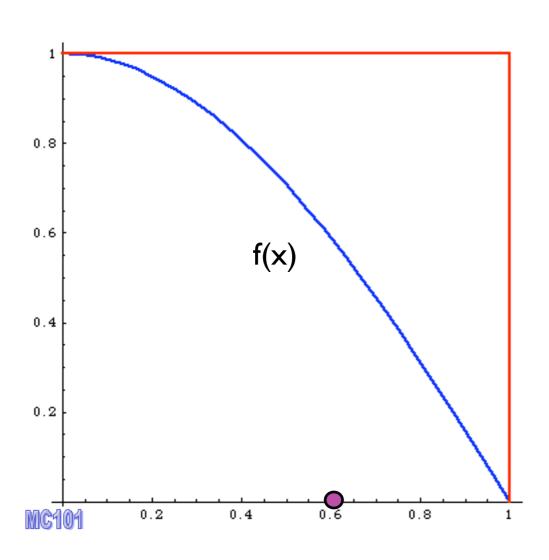


Exercise: top decay



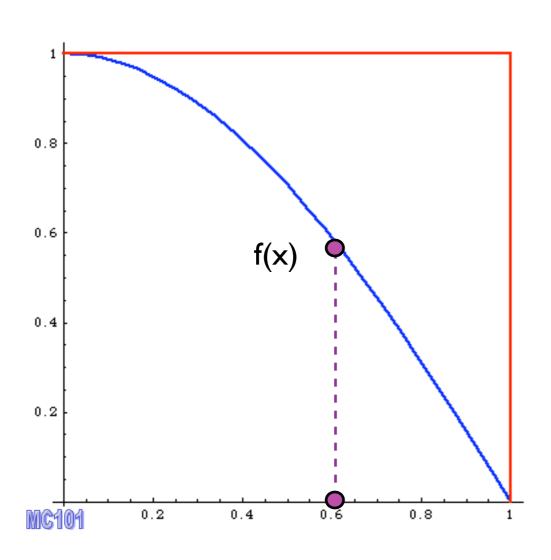




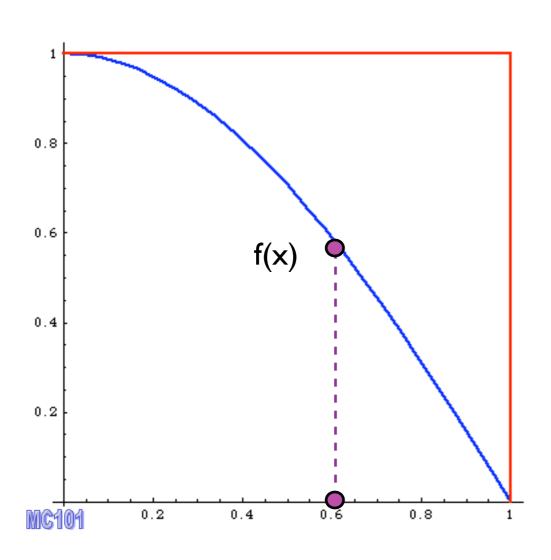


Alternative way

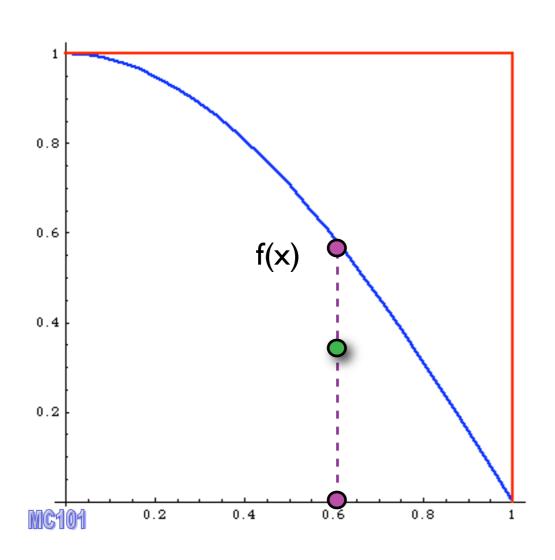
I. pick x



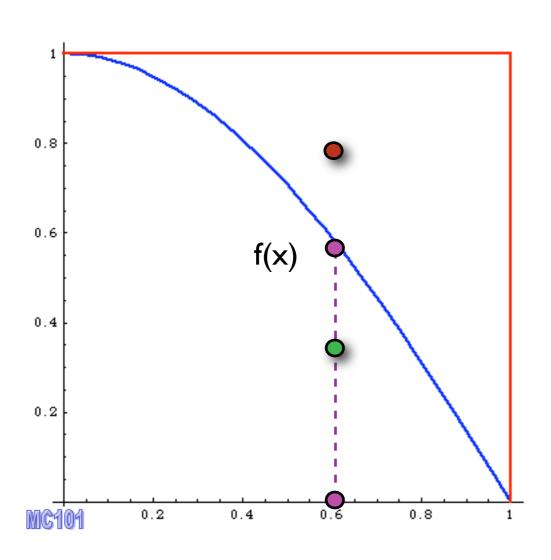
- I. pick x
- 2. calculate f(x)



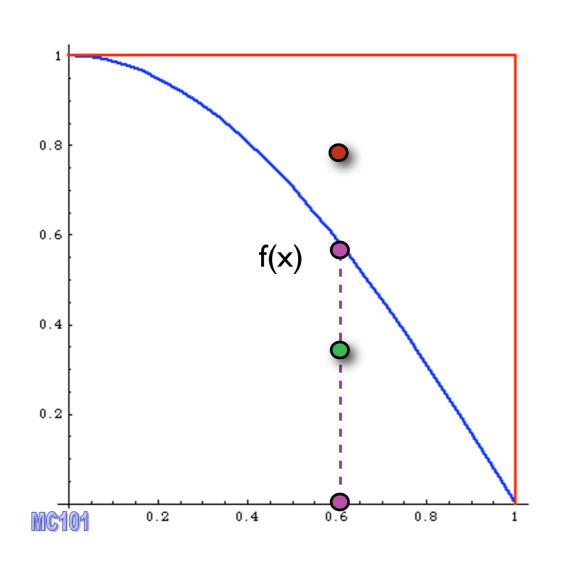
- I. pick x
- 2. calculate f(x)
- 3. pick 0<y<fmax



- I. pick x
- 2. calculate f(x)
- 3. pick 0<y<fmax
- 4. Compare:
 if f(x)>y accept event,



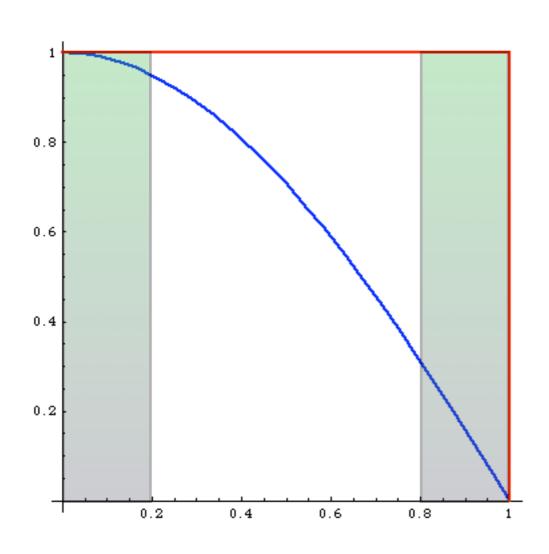
- I. pick x
- 2. calculate f(x)
- 3. pick 0<y<fmax
- 4. Compare:
 if f(x)>y accept event,
 else reject it.



Alternative way

- I. pick x
- 2. calculate f(x)
- 3. pick 0<y<fmax
- 4. Compare:
 if f(x)>y accept event,

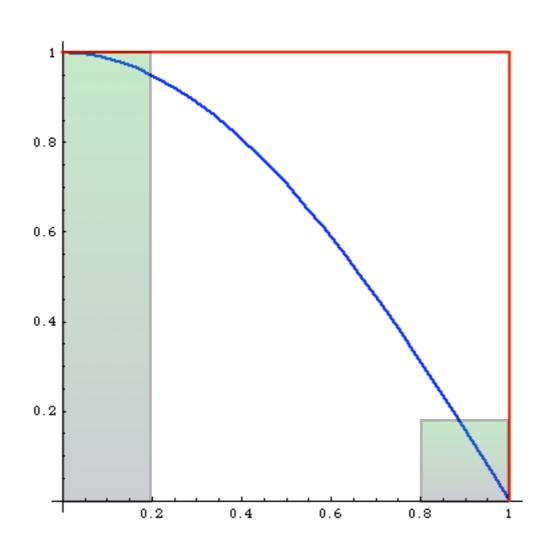
else reject it.



What's the difference?

before:

same # of events in areas of phase space with very different probabilities: events must have different weights

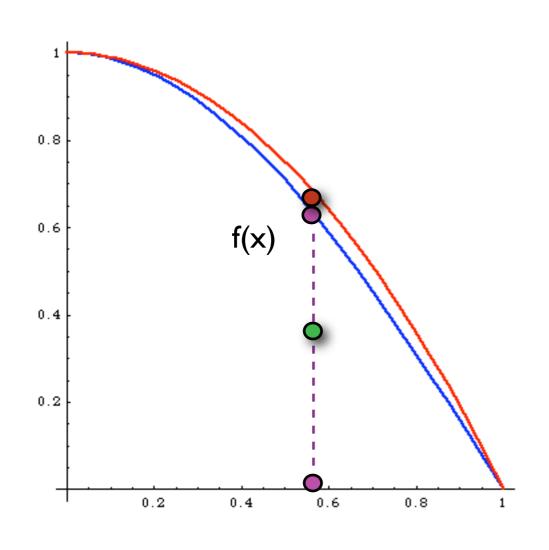


What's the difference?

after:

events is proportional to the probability of areas of phase space: events have all the same weight ("unweighted")

Events distributed as in Nature



Improved

- I. pick x distributed as p(x)
- 2. calculate f(x) and p(x)
- 3. pick 0<y<1
- 4. Compare:
 if f(x)>y p(x) accept event,

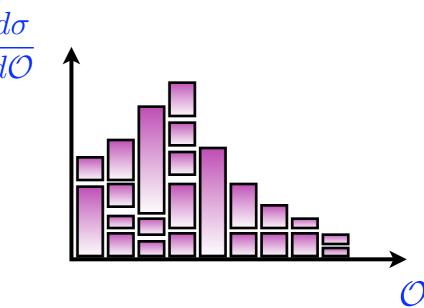
else reject it.

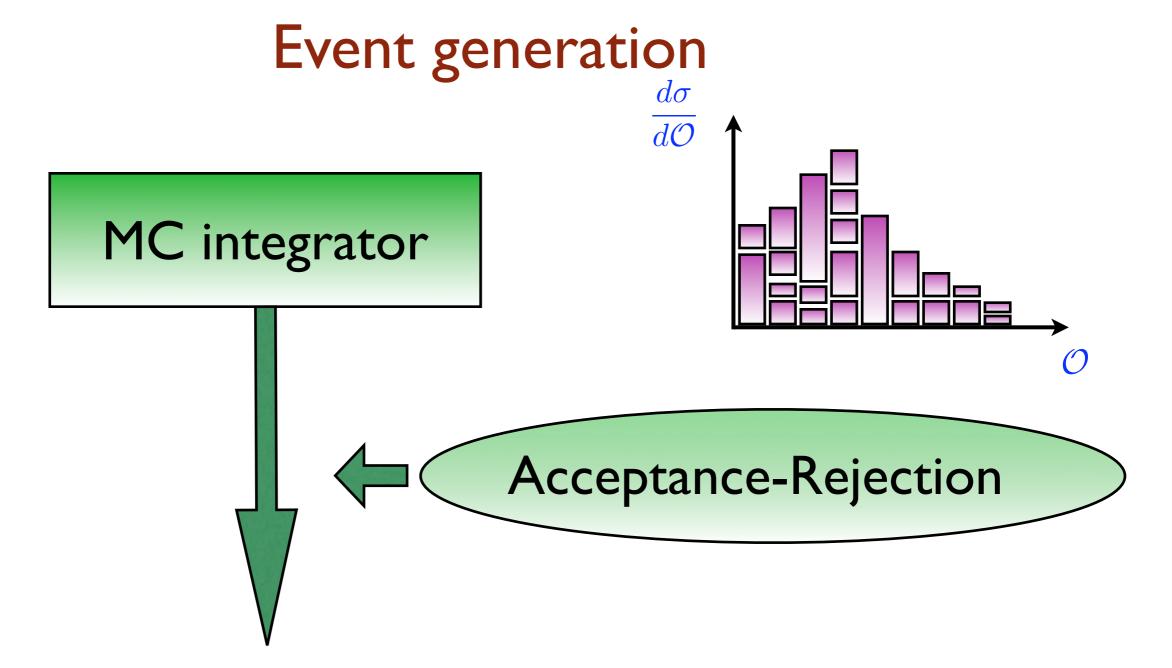
much better efficiency!!!

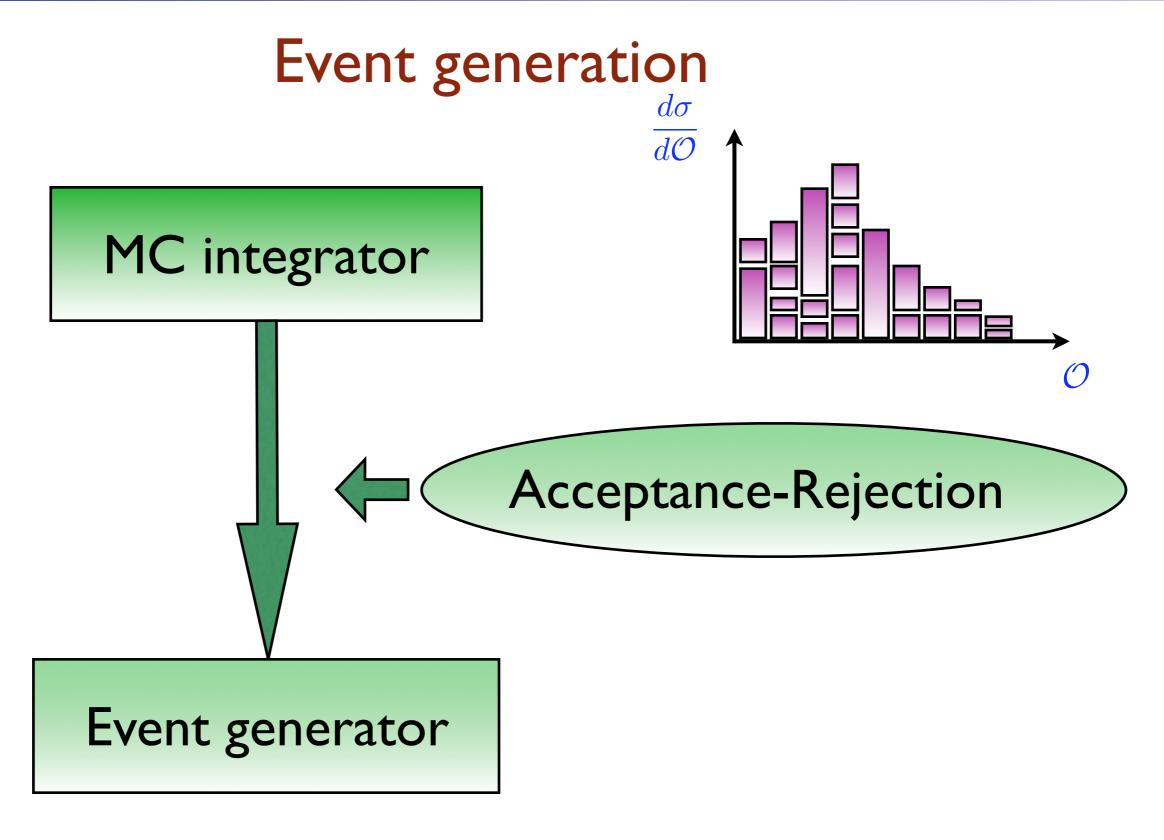
MC integrator

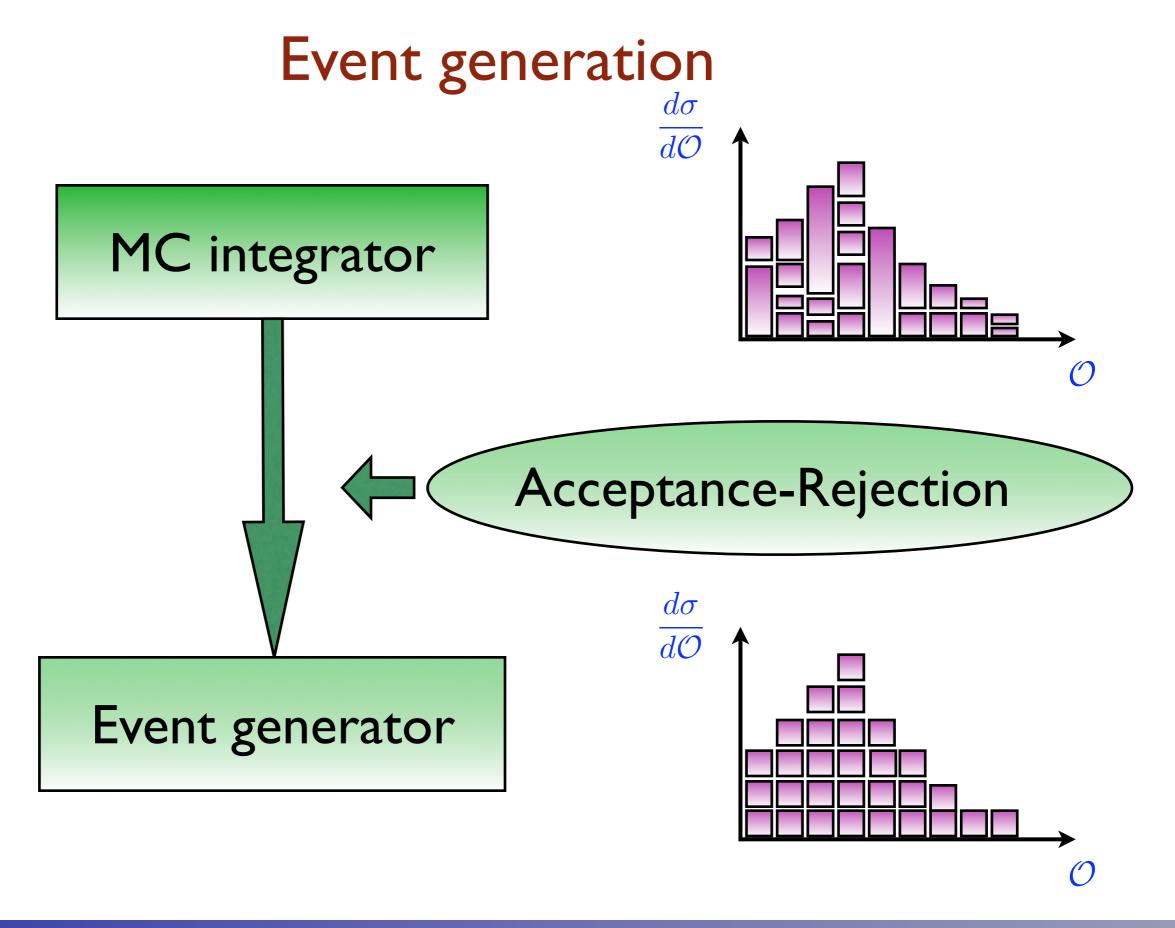
Event generation $\frac{d\sigma}{d\mathcal{O}}$

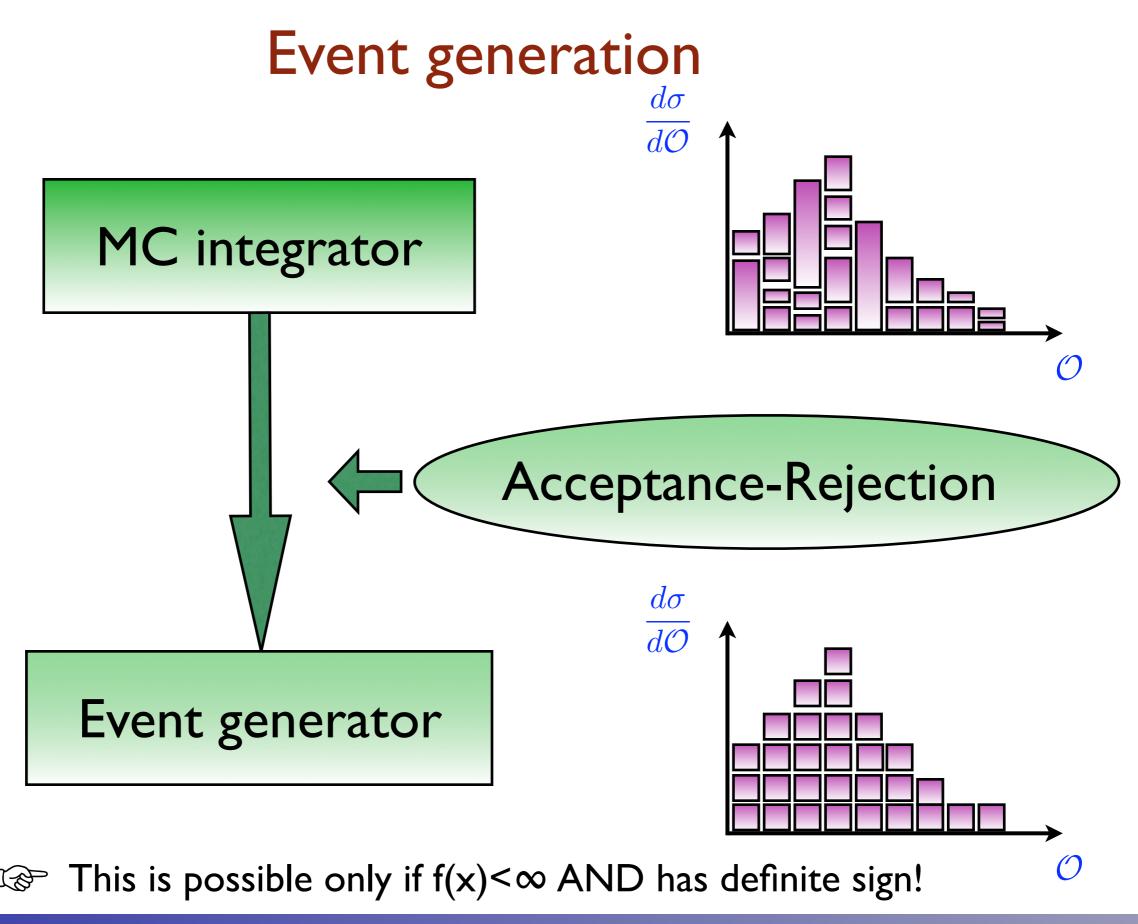
MC integrator











#1

A MC generator produces "unweighted" events, i.e., events distributed as in Nature.

#1

A MC generator produces "unweighted" events, i.e., events distributed as in Nature.

Monte Carlo Event Generator: definiton

At the most basic level a Monte Carlo event generator is a program which produces particle physics events with the same probability as they occur in nature (virtual collider).

In practice it performs a large number of (sometimes very difficult) integrals and then unweights to give the four momenta of the particles that interact with the detector (simulation).

Note that, at least among theorists, the definition of a "Monte Carlo program" also includes codes which don't provide a fully exclusive information on the final state but only cross sections or distributions at the parton level, even when no unweighting can be performed. I will refer to these kind of codes as "MC integrators".

A simple plan

- Physics challenges at the LHC
- Basics : QCD and MC's methods
- The new generation of MC tools
- New simulations for New Physics

A simple plan

- Physics challenges at the LHC
- Basics : QCD and MC's methods
- The new generation of MC tools
- New simulations for New Physics

LO: the technical challenges

How do we calculate a LO cross section for 3 jets at the LHC?

I. Identify all subprocesses (gg→ggg, qg→qgg....) in

$$\sigma(pp \to 3j) = \sum_{ijk} \int f_i(x_1) f_j(x_2) \hat{\sigma}(ij \to k_1 k_2 k_3)$$

easy

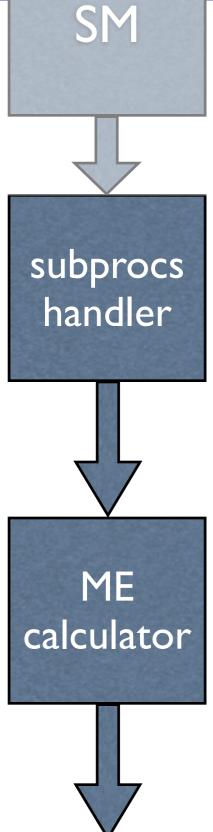
II. For each one, calculate the amplitude:

$$\mathcal{A}(\{p\},\{h\},\{c\}) = \sum_{i} D_{i}$$

III. Square the amplitude, sum over spins & color, integrate over the phase space (D \sim 3n)

$$\hat{\sigma} = \frac{1}{2\hat{s}} \int d\Phi_p \sum_{h,c} |\mathcal{A}|^2$$

General structure



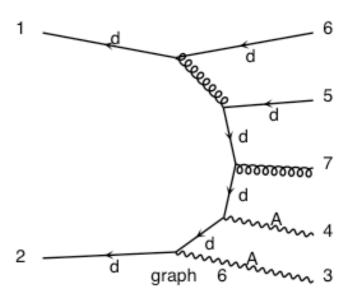
Includes all possible subprocess leading to a given multi-jet final state automatically or manually (done once for all)

$$d \sim d \rightarrow a \ a \ u \ u \sim g$$

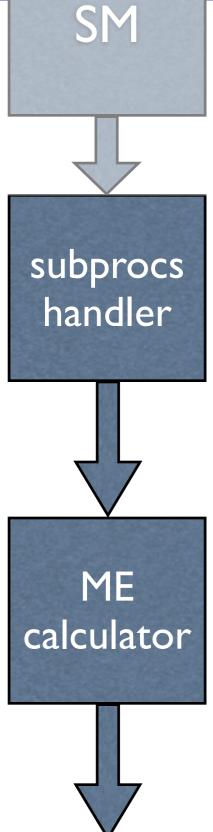
 $d \sim d \rightarrow a \ a \ c \ c \sim g$
 $s \sim s \rightarrow a \ a \ u \ u \sim g$
 $s \sim s \rightarrow a \ a \ c \ c \sim g$

"Automatically" generates a code to calculate |M|^2 for arbitrary processes with many partons in the final state.

Most use Feynman diagrams w/ tricks to reduce the factorial growth, others have recursive relations to reduce the complexity to exponential. ©



General structure



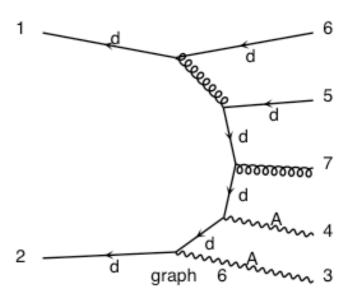
Includes all possible subprocess leading to a given multi-jet final state automatically or manually (done once for all)

$$d \sim d \rightarrow a \ a \ u \ u \sim g$$

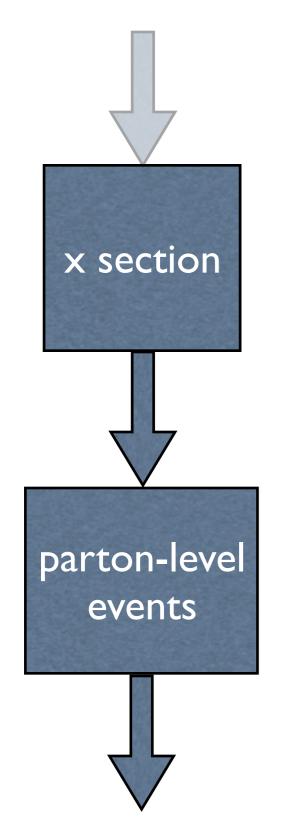
 $d \sim d \rightarrow a \ a \ c \ c \sim g$
 $s \sim s \rightarrow a \ a \ u \ u \sim g$
 $s \sim s \rightarrow a \ a \ c \ c \sim g$

"Automatically" generates a code to calculate |M|^2 for arbitrary processes with many partons in the final state.

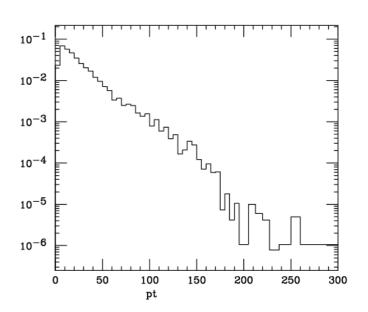
Most use Feynman diagrams w/ tricks to reduce the factorial growth, others have recursive relations to reduce the complexity to exponential. ©



General structure



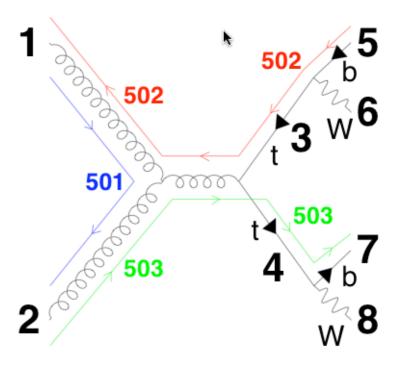
Integrate the matrix element over the phase space using a multi-channel technique and using parton-level cuts.



Events are obtained by unweighting.

These are at the parton-level.

Information on particle id, momenta, spin, color is given in the Les Houches format.



Monte Carlo's and Event generators for the LHC

Fabio Maltoni

Center for Particle Physics and Phenomenology (CP3)
Université Catholique de Louvain

Parton level computation at LO

$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \times \hat{\sigma}_{ab \to X}(x_1, x_2, \alpha_S(\mu_R^2), \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2})$$

- Matrix element calculators provide our first estimation of rates for inclusive final states.
- Extra radiation is included: it is described by the PDF's in the initial state and by the definition of a final state parton, which at LO represents all possible final state evolutions.
- Due to the above approximations a cross section at LO can strongly depend on the factorization and renormalization scales.
- Any tree-level calculation for a final state F can be promoted to the exclusive F + X through a shower. More on this soon...

Master QCD formula

$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \times \hat{\sigma}_{ab \to X}(x_1, x_2, \alpha_S(\mu_R^2), \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2})$$

Two ingredients necessary:

- I. Parton Distribution functions (from exp, but evolution from th).
- 2. Short distance coefficients as an expansion in α_S (from th).

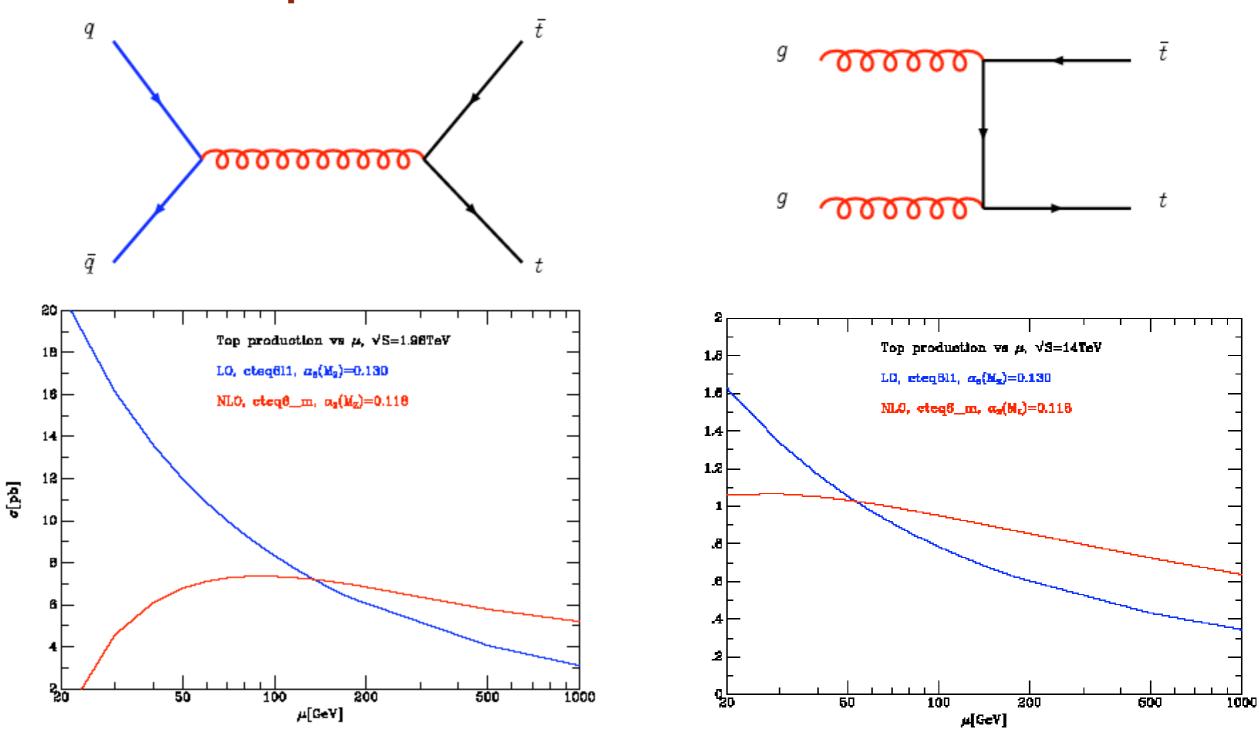
$$\hat{\sigma}_{ab\to X} = \sigma_0 + \alpha_S \sigma_1 + \alpha_S^2 \sigma_2 + \dots$$

Leading order

Next-to-leading order

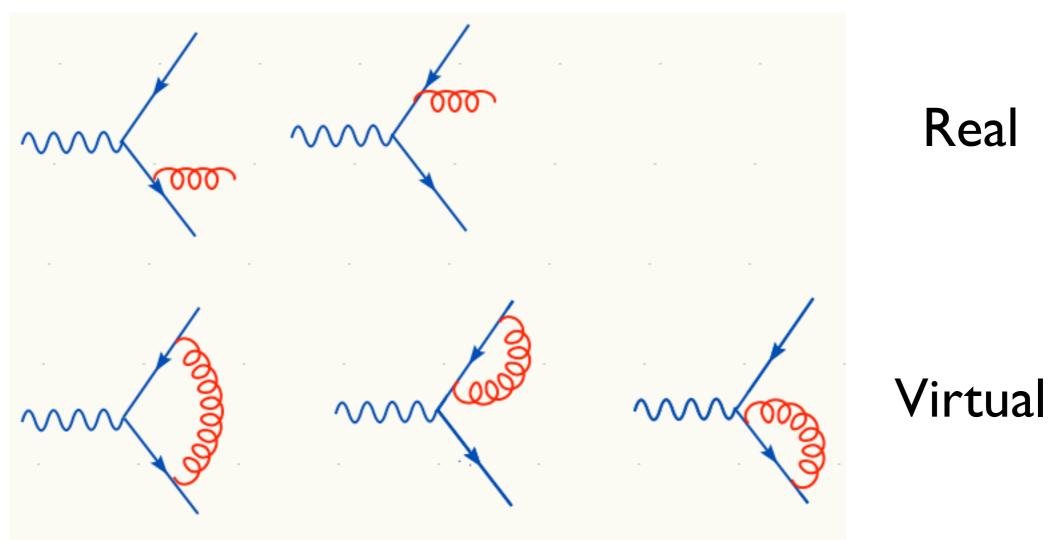
Next-to-next-to-leading order

Top Production from LO to NLO



Inclusion of higher order corrections leads to a stabilization of the prediction. At the LHC scale dependence is more difficult to estimate.

The elements of NLO calculation



The KLN theorem states that divergences appear because some of the final state are physically degenerate but we treated them as different. A final state with a soft gluon is nearly degenerate with a final state with no gluon at all (virtual).

$$\sigma^{\text{NLO}} = \int_{R} |M_{real}|^{2} d\Phi_{3} + \int_{V} 2Re \left(M_{0} M_{virt}^{*}\right) d\Phi_{2} = \text{finite!}$$

Infrared-safe quantities

DEFINITION: quantities are that are insensitive to soft and collinear branching.

For these quantities, an extension of the general theorem (KLN) exists which proves that infrared divergences cancel between real and virtual or are simply removed by kinematic factors.

Such quantities are determined primarly by hard, short-distance physics. Long-distance effects give power corrections, suppressed by the inverse power of a large momentum scale (which must be present in the first place to justify the use of PT).

EXAMPLES: total rates & cross sections, jet distrubutions, shape variables...

NLO codes calculate IR safe quantities and return histograms (calculators)

Calling a code "a NLO code" is an abuse of language and can be confusing.

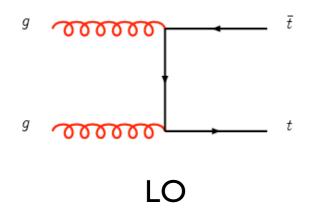
A NLO calculation always refers to an IR-safe observable.

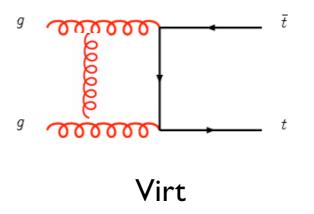
An NLO code will, in general, be able to produce results for several quantities and distributions, only some of which will be at NLO accuracy.

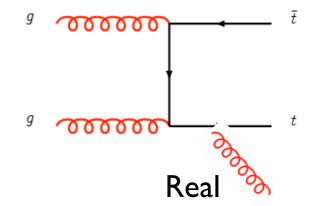
Calling a code "a NLO code" is an abuse of language and can be confusing.

A NLO calculation always refers to an IR-safe observable.

An NLO code will, in general, be able to produce results for several quantities and distributions, only some of which will be at NLO accuracy.



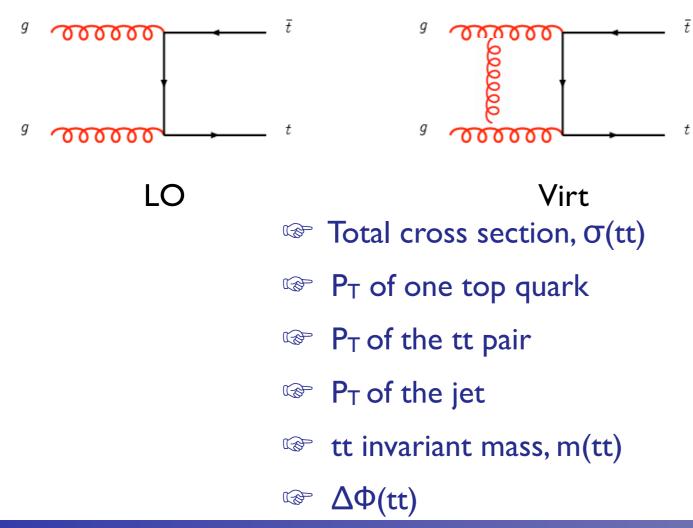


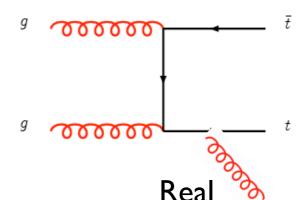


Calling a code "a NLO code" is an abuse of language and can be confusing.

A NLO calculation always refers to an IR-safe observable.

An NLO code will, in general, be able to produce results for several quantities and distributions, only some of which will be at NLO accuracy.

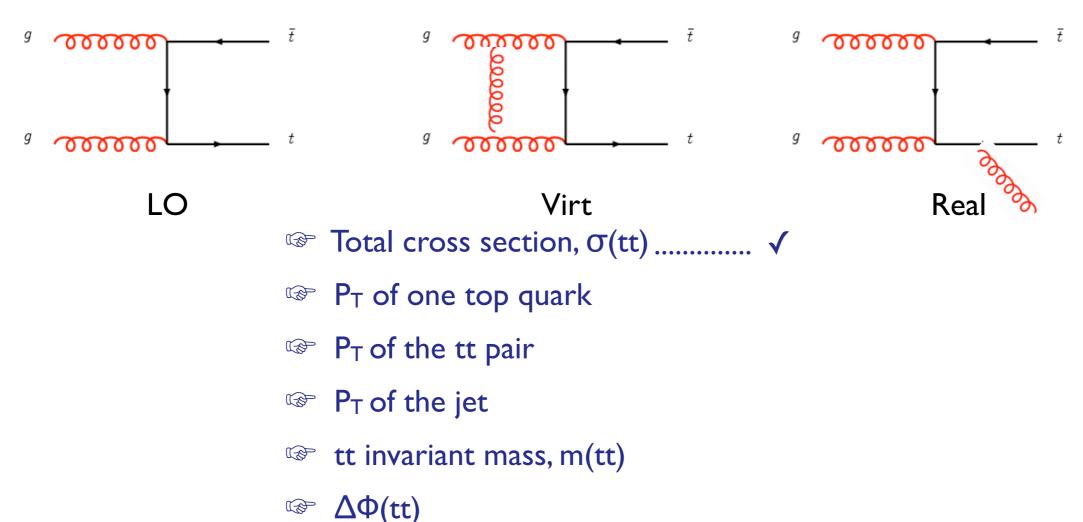




Calling a code "a NLO code" is an abuse of language and can be confusing.

A NLO calculation always refers to an IR-safe observable.

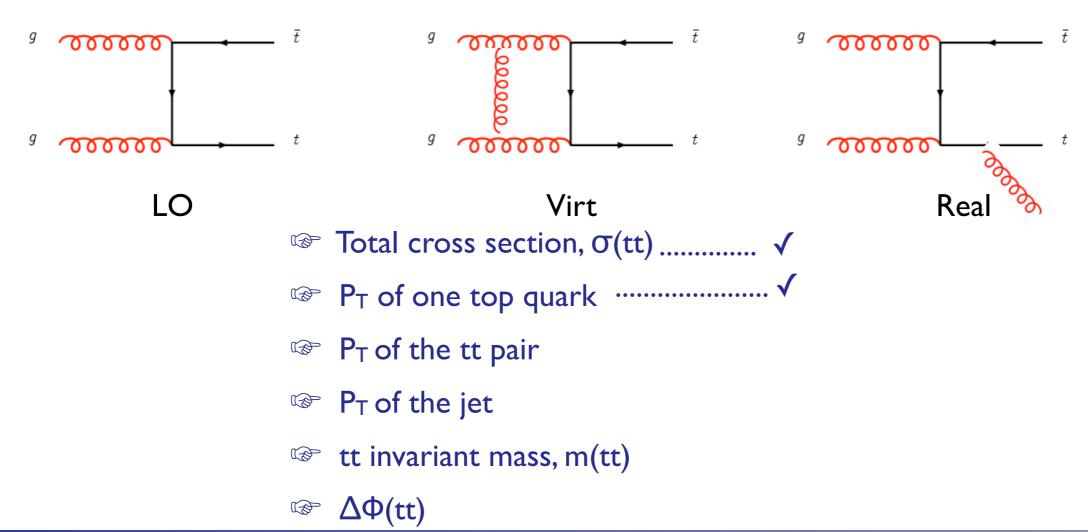
An NLO code will, in general, be able to produce results for several quantities and distributions, only some of which will be at NLO accuracy.



Calling a code "a NLO code" is an abuse of language and can be confusing.

A NLO calculation always refers to an IR-safe observable.

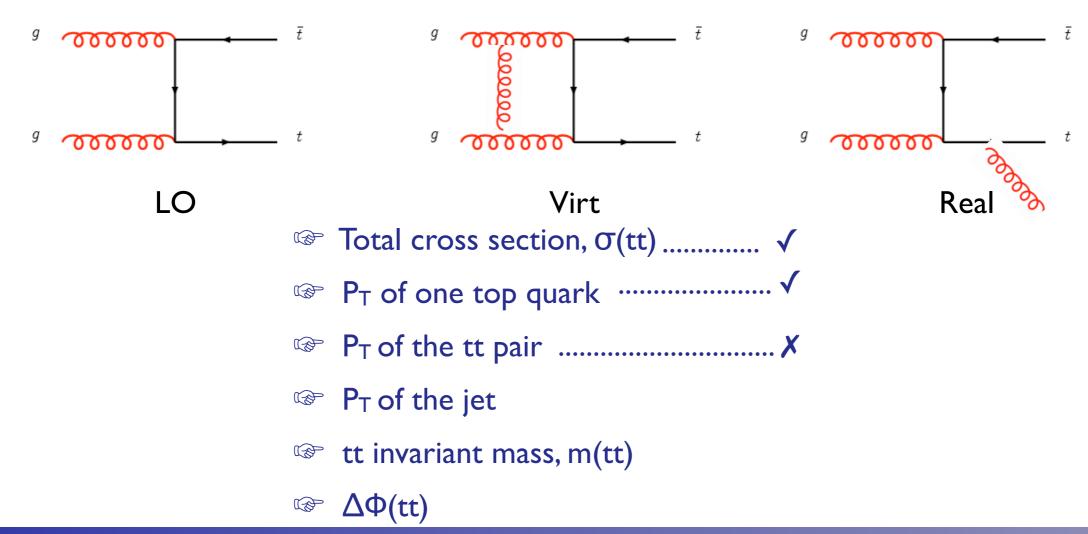
An NLO code will, in general, be able to produce results for several quantities and distributions, only some of which will be at NLO accuracy.



Calling a code "a NLO code" is an abuse of language and can be confusing.

A NLO calculation always refers to an IR-safe observable.

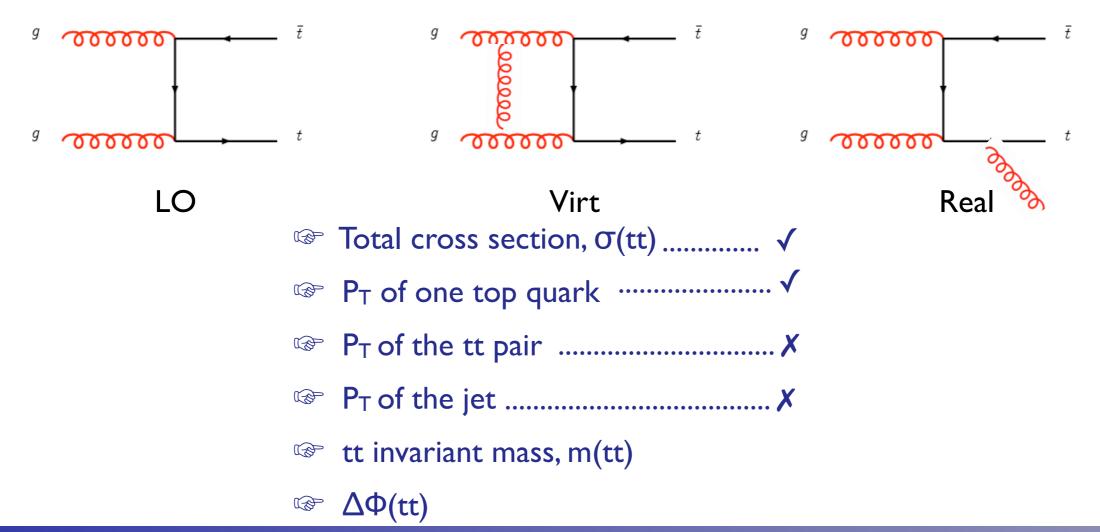
An NLO code will, in general, be able to produce results for several quantities and distributions, only some of which will be at NLO accuracy.



Calling a code "a NLO code" is an abuse of language and can be confusing.

A NLO calculation always refers to an IR-safe observable.

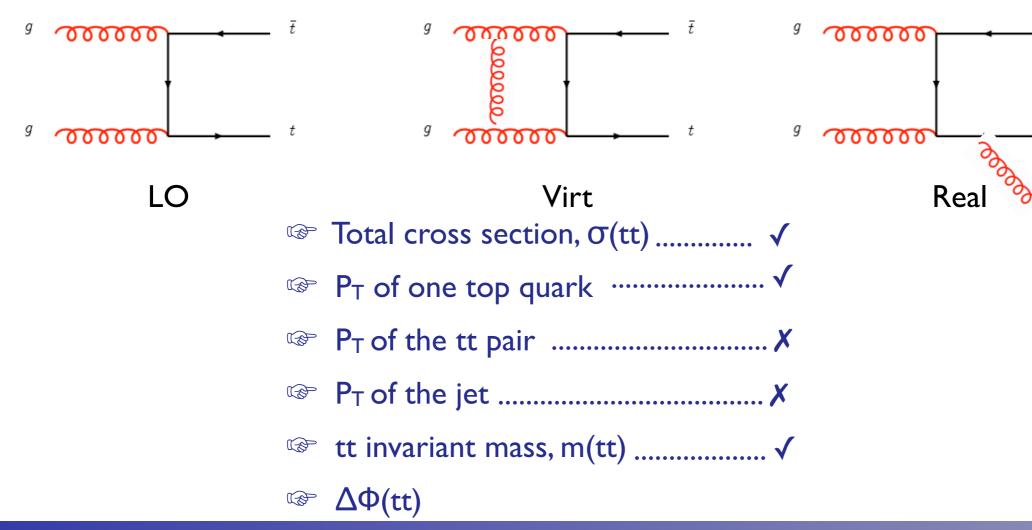
An NLO code will, in general, be able to produce results for several quantities and distributions, only some of which will be at NLO accuracy.



Calling a code "a NLO code" is an abuse of language and can be confusing.

A NLO calculation always refers to an IR-safe observable.

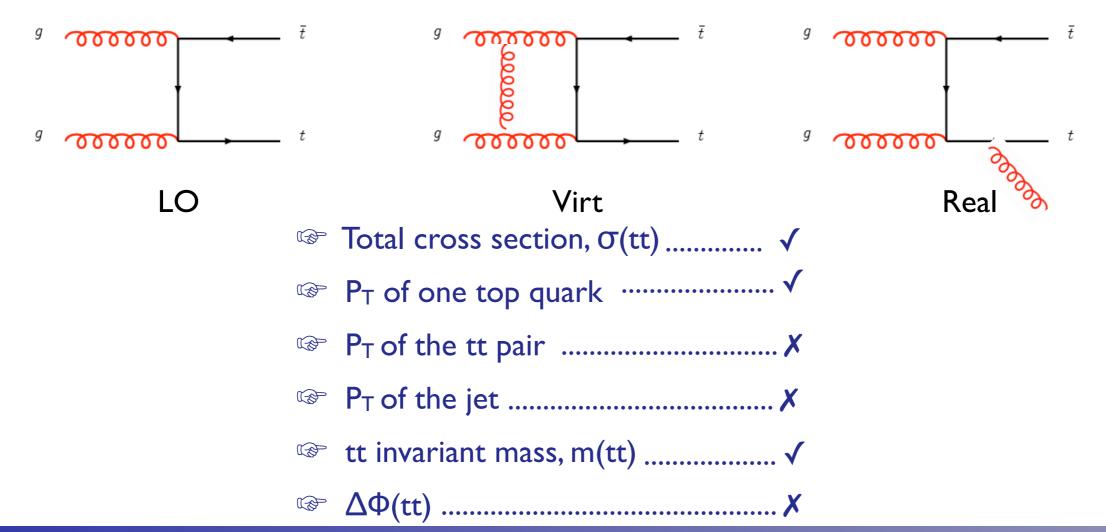
An NLO code will, in general, be able to produce results for several quantities and distributions, only some of which will be at NLO accuracy.



Calling a code "a NLO code" is an abuse of language and can be confusing.

A NLO calculation always refers to an IR-safe observable.

An NLO code will, in general, be able to produce results for several quantities and distributions, only some of which will be at NLO accuracy.



#4

A calculations/code at NLO for a process provides NLO predictions for any IR safe observable.

#4

A calculations/code at NLO for a process provides NLO predictions for any IR safe observable.

• Codes that compute IR-safe quantities (cross sections, jet rates, ...) at the parton level, at NLO and NNLO.

- Codes that compute IR-safe quantities (cross sections, jet rates, ...) at the parton level, at NLO and NNLO.
- These are NOT event generators!!

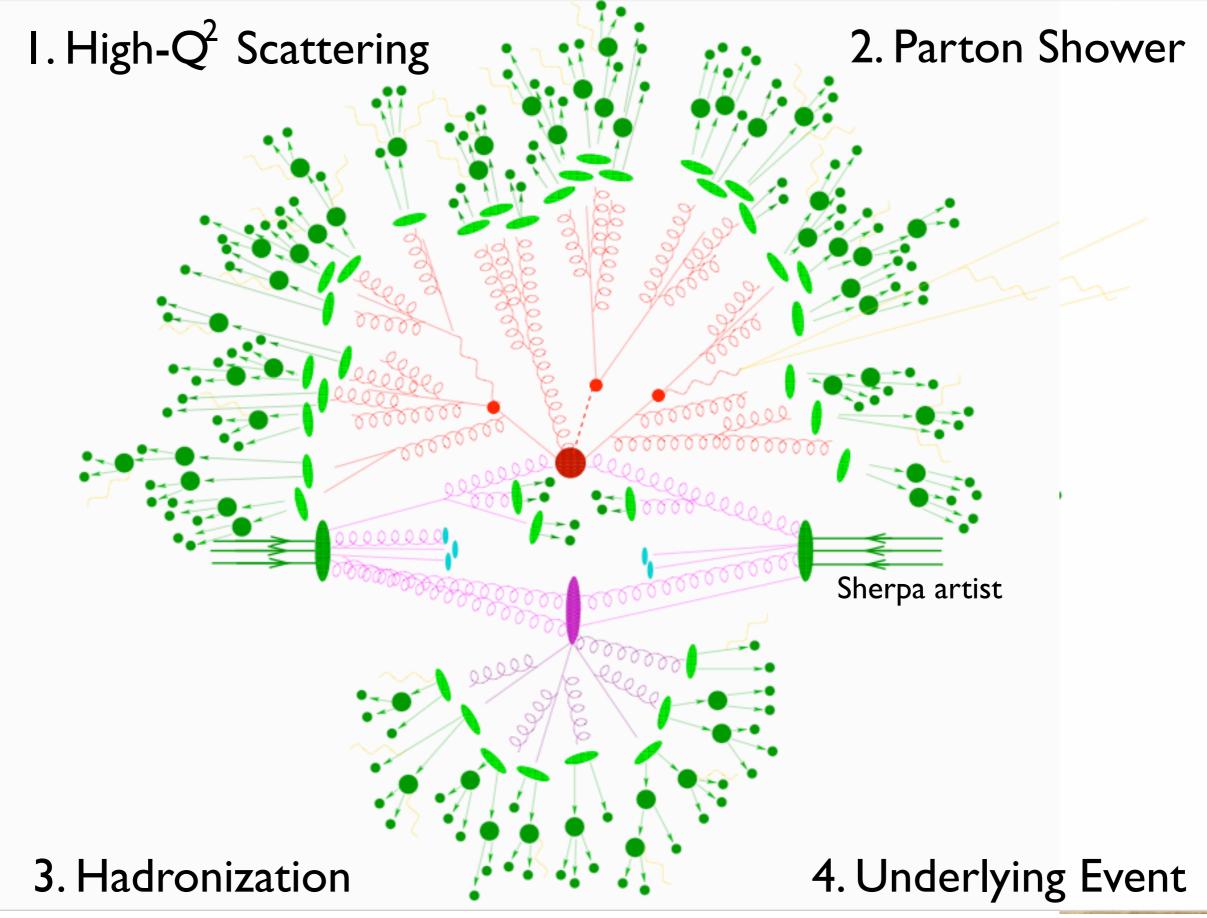
- Codes that compute IR-safe quantities (cross sections, jet rates, ...) at the parton level, at NLO and NNLO.
- These are NOT event generators!!
- Dedicated codes or families of codes available.

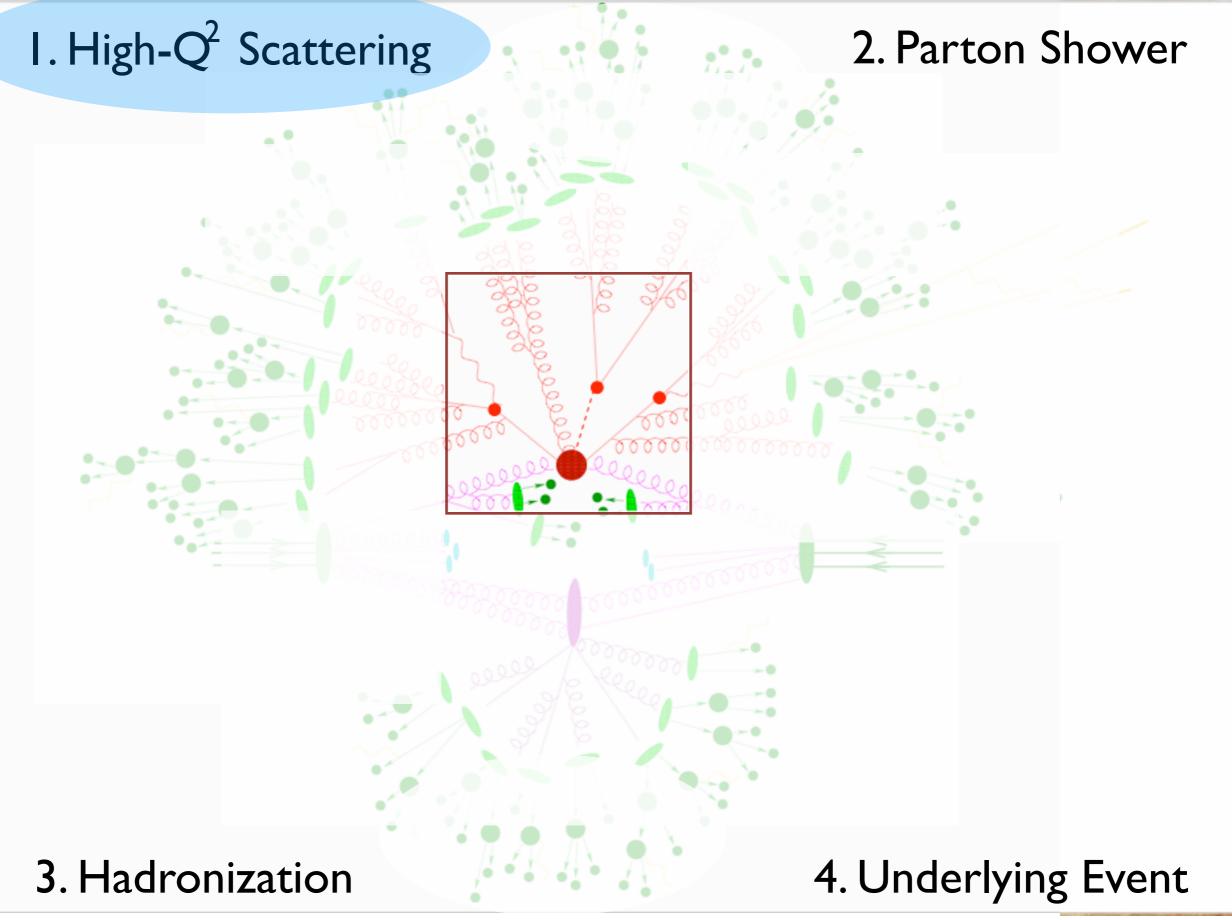
Example:MCFM

Downloadable general purpose NLO code (Campbell & Ellis)

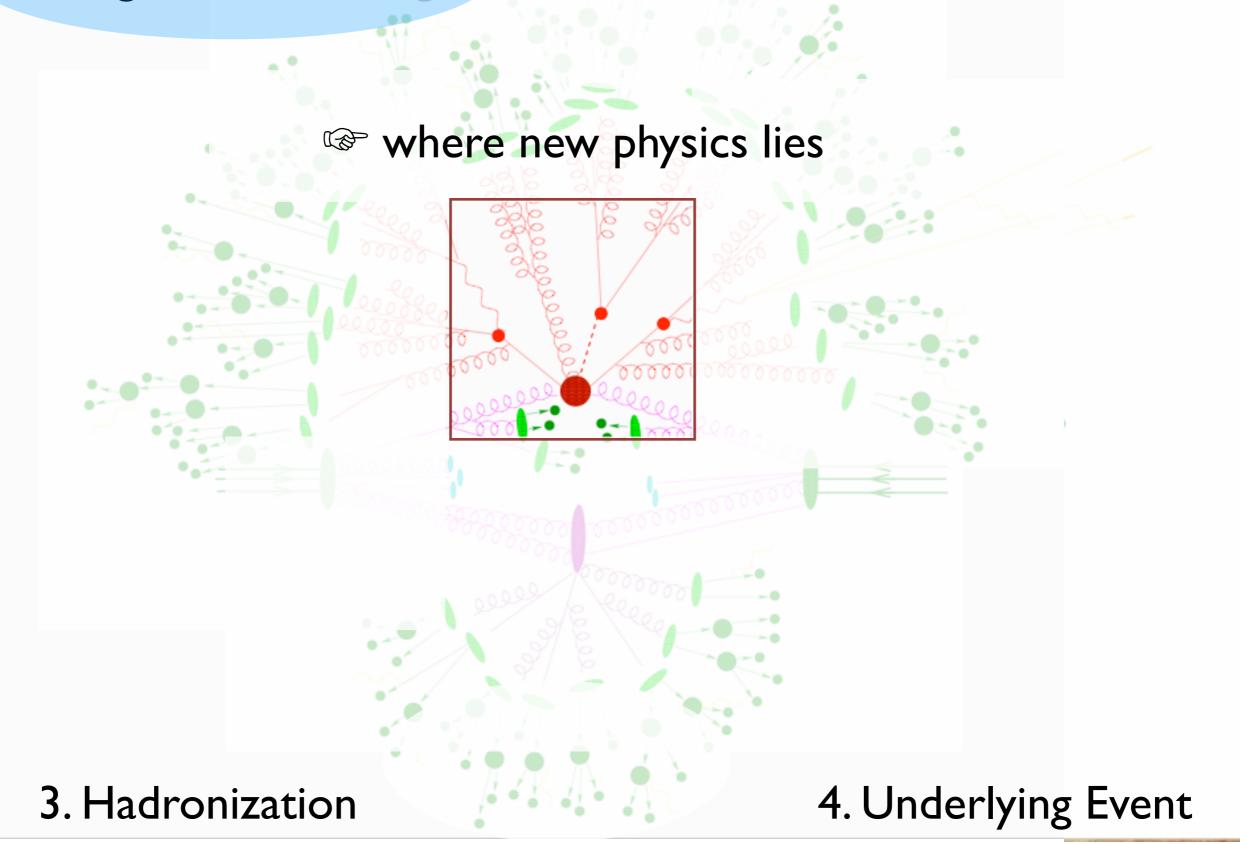
- Plus all single-top channels, Wc, WQJ, ZQJ,...
- Extendable/sizeable library of processes, relevant for signal and background studies, including spin correlations.
- Cross sections and distributions at NLO are provided
- Easy and flexible choice of parameters/cuts (input card).

- Codes that compute IR-safe quantities (cross sections, jet rates, ...) at the parton level, at NLO and NNLO.
- These are NOT event generators!!
- Dedicated codes or families of codes available.
- Automatization in sight.

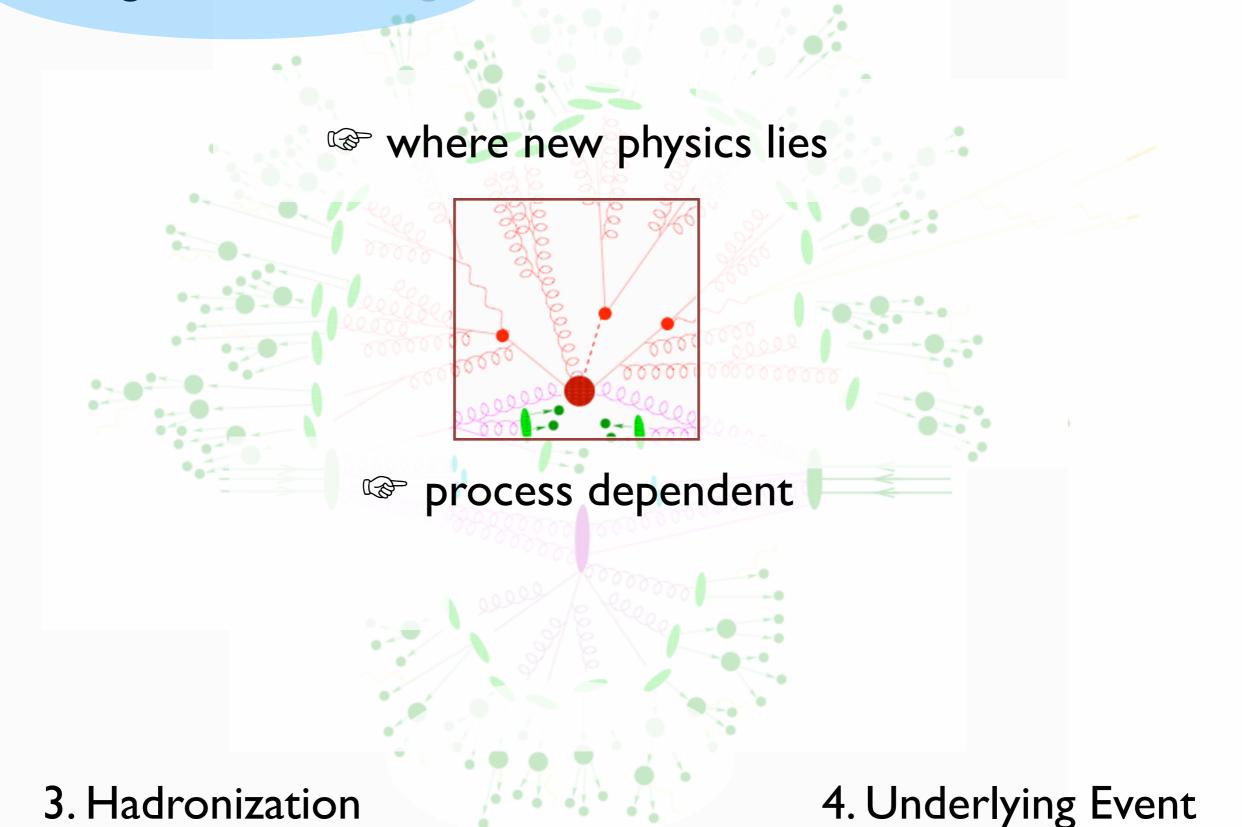




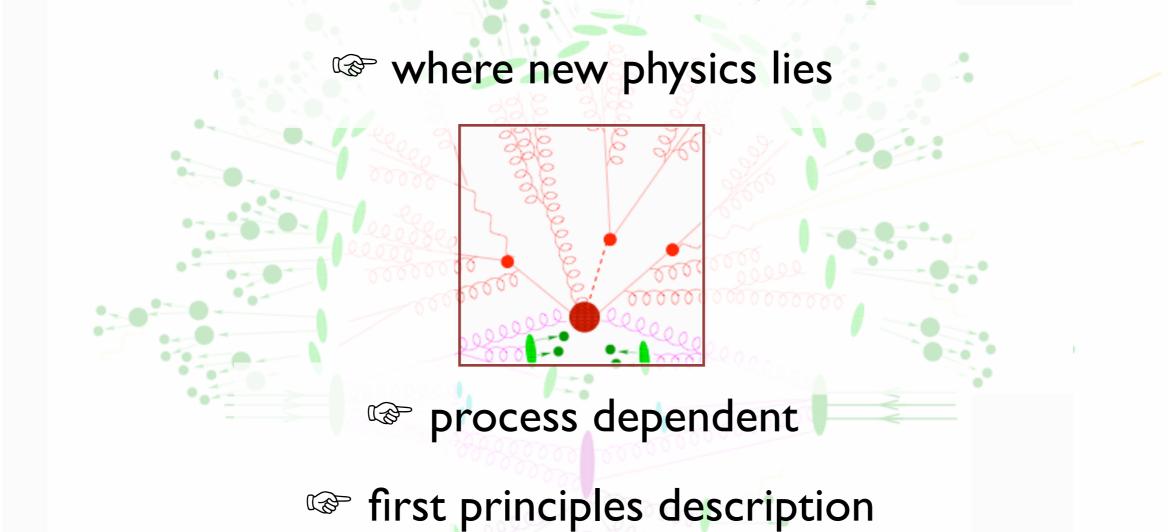
2. Parton Shower



2. Parton Shower

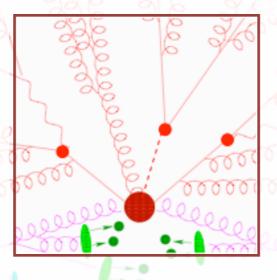


2. Parton Shower



3. Hadronization

2. Parton Shower

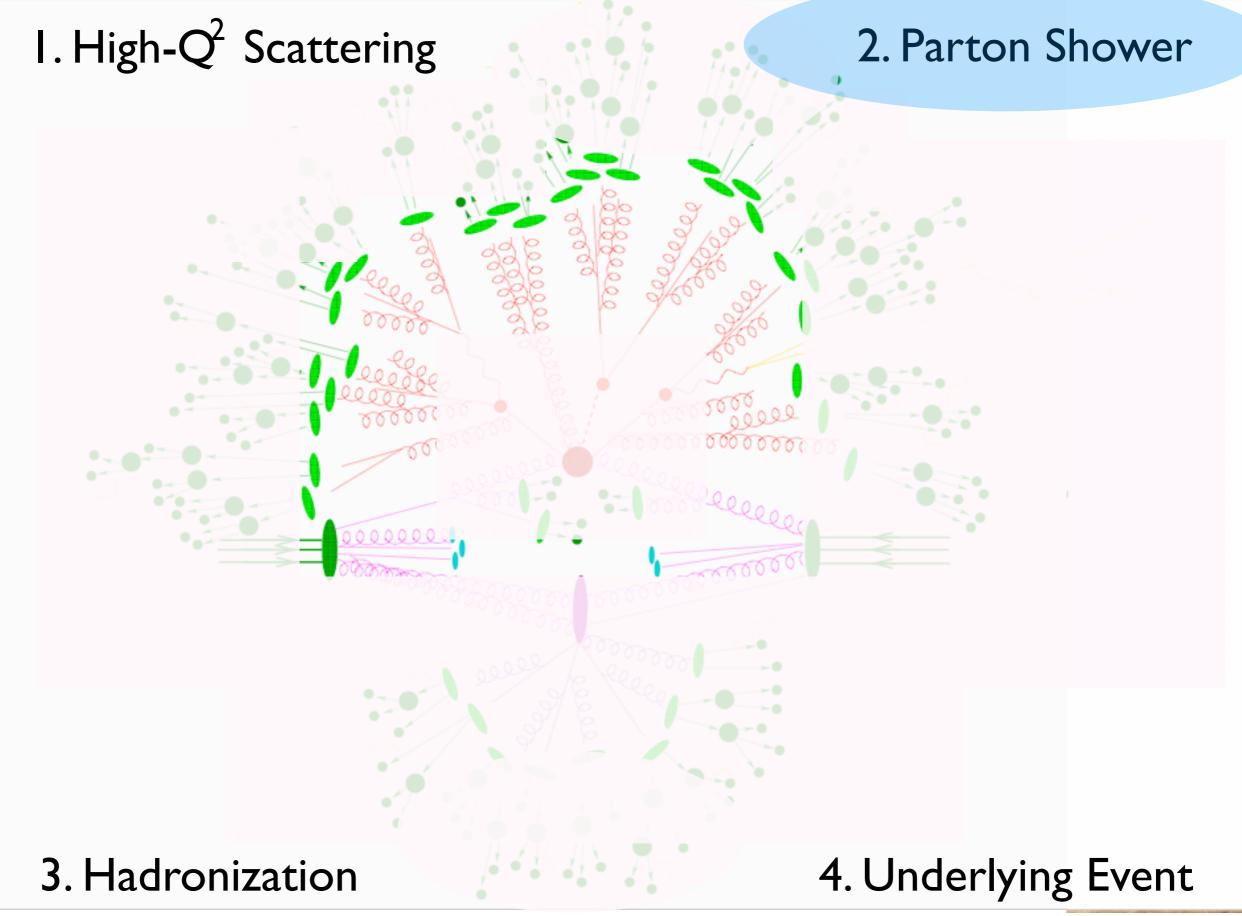


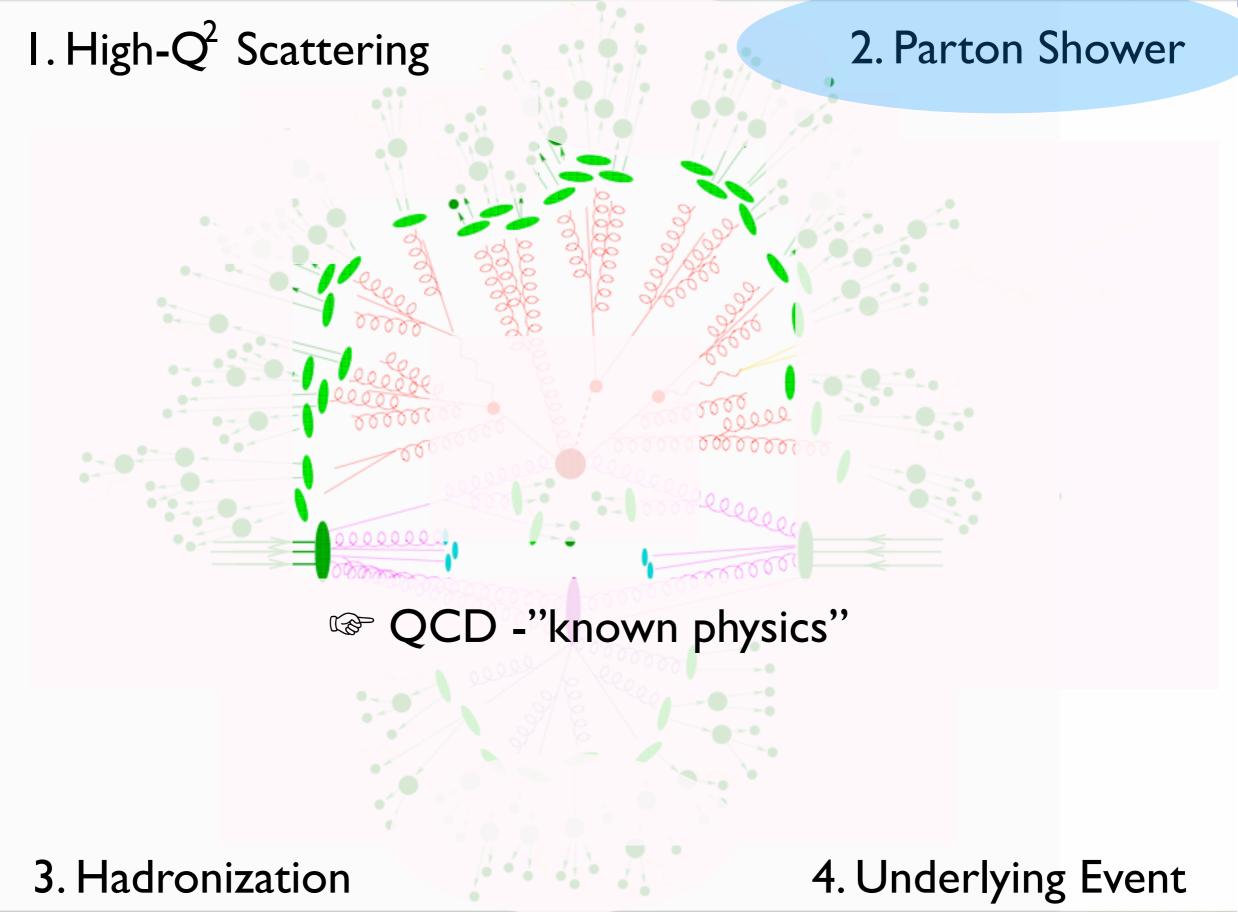
process dependent

first principles description

it can be systematically improved

3. Hadronization





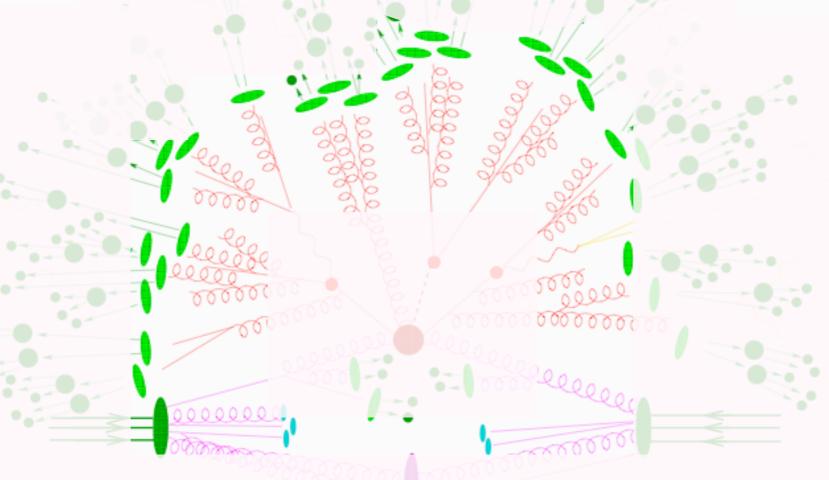
2. Parton Shower

QCD -"known physics"

universal/ process independent

3. Hadronization

2. Parton Shower

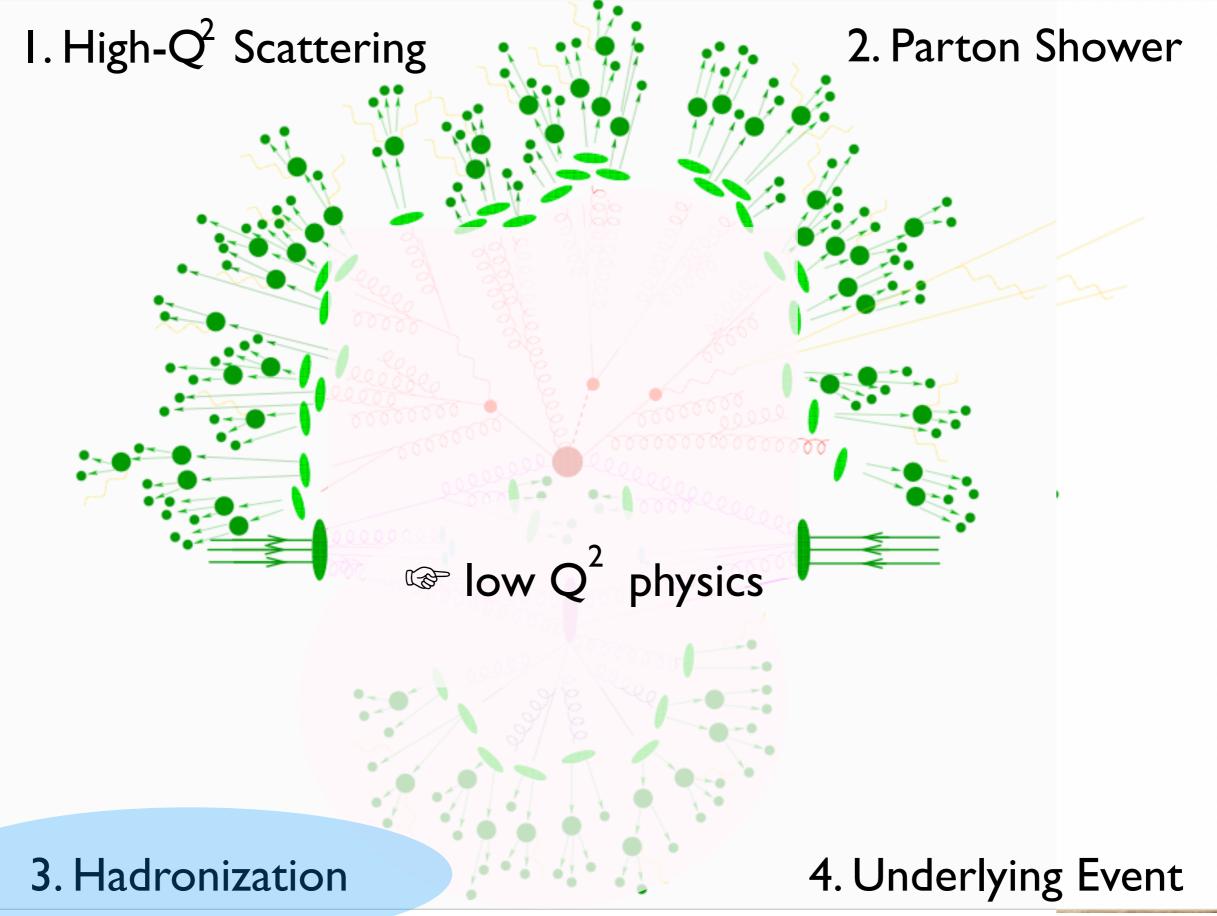


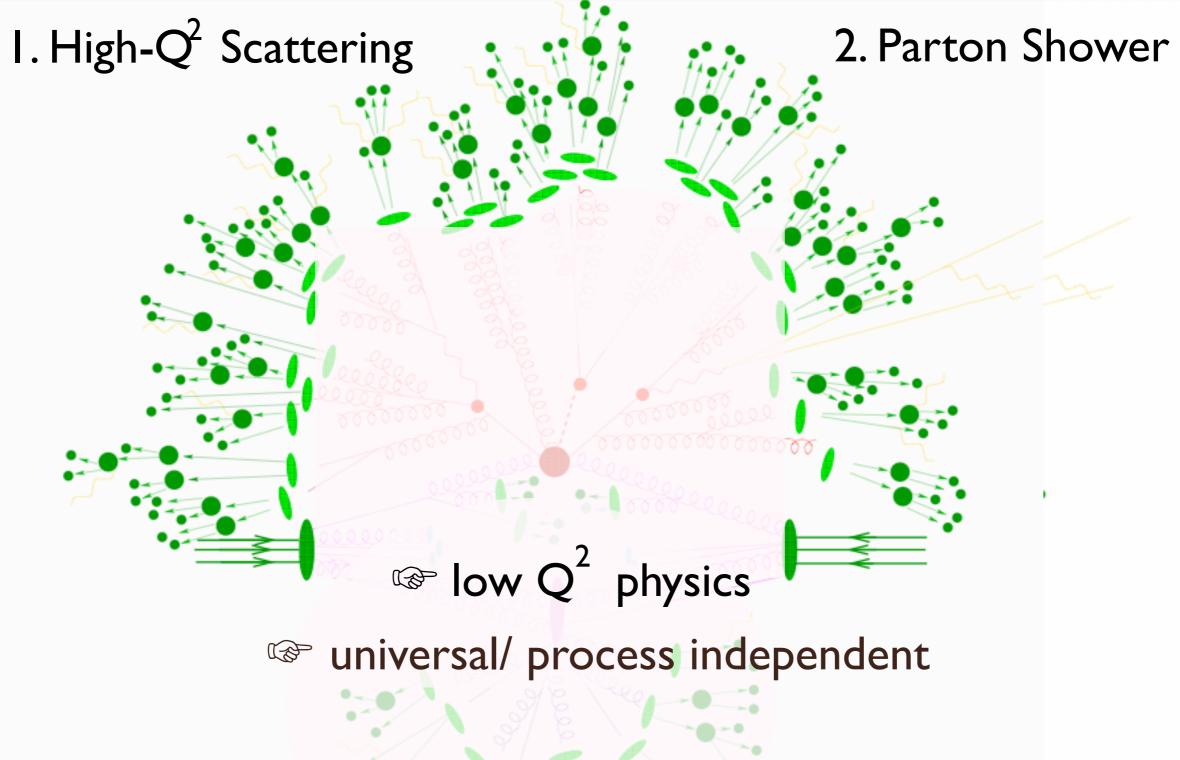
QCD -"known physics"

universal/ process independent

first principles description

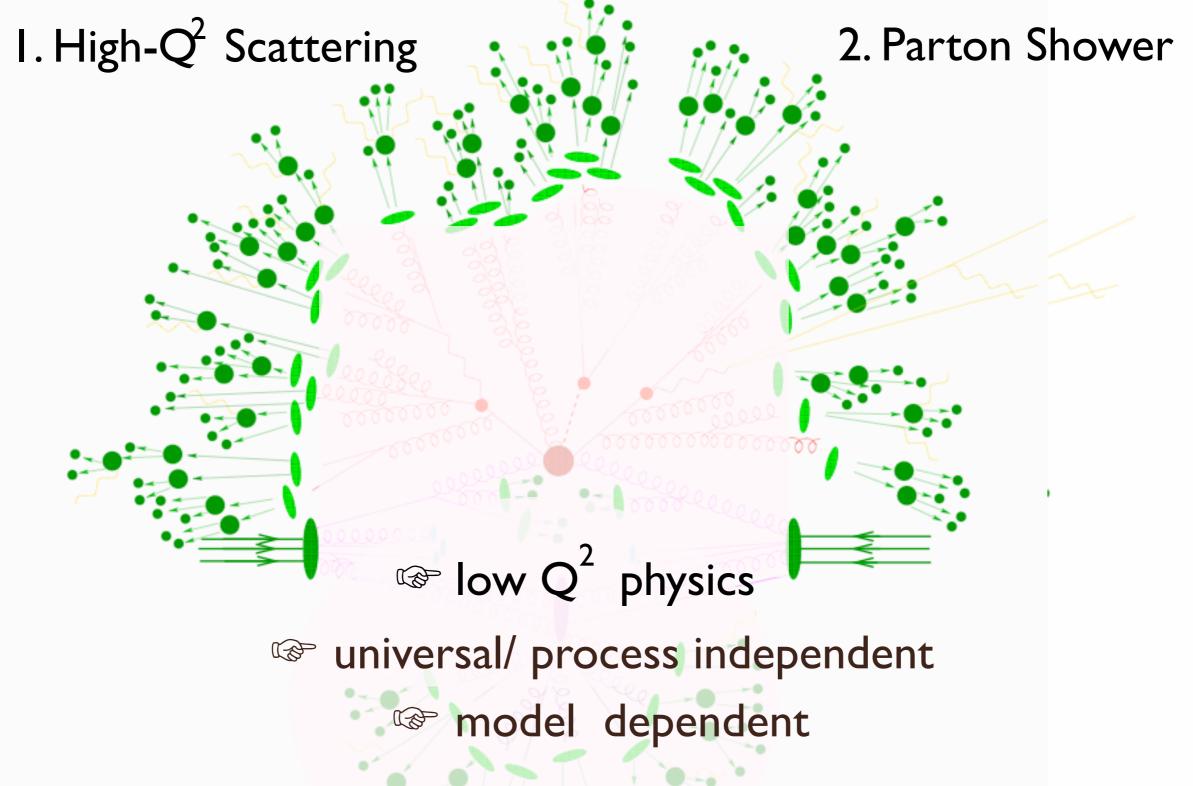
3. Hadronization





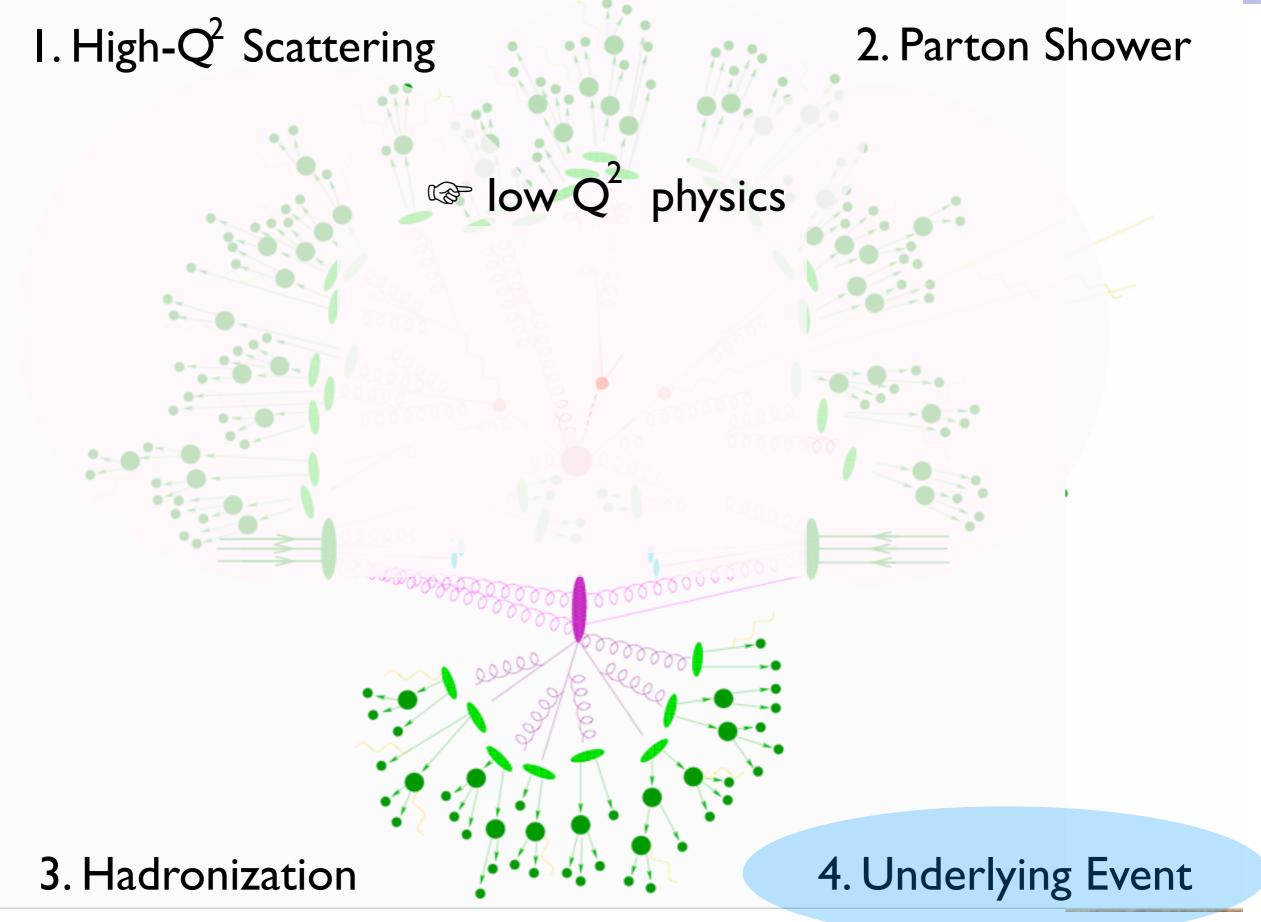
3. Hadronization

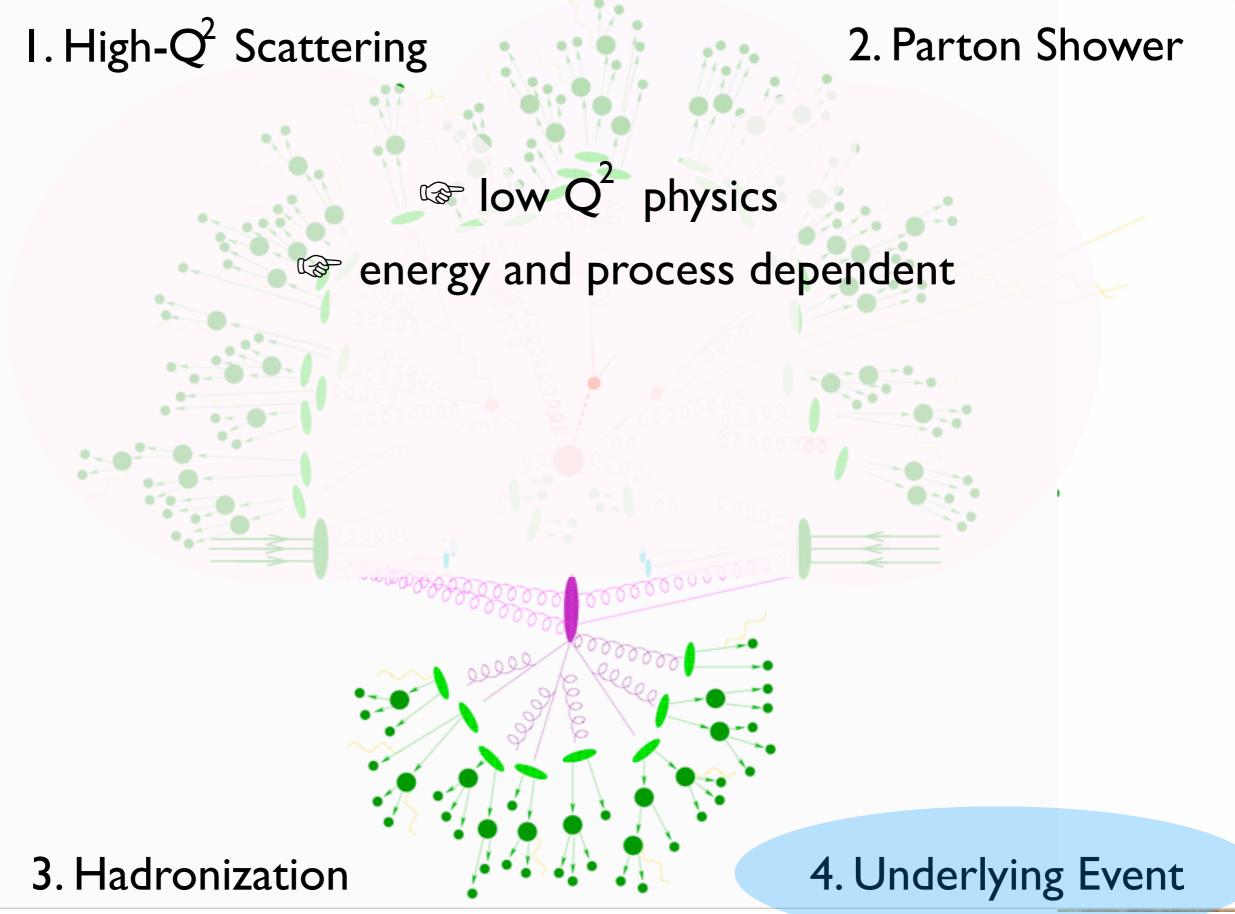
4. Underlying Event



3. Hadronization

4. Underlying Event





2. Parton Shower

low Q² physics

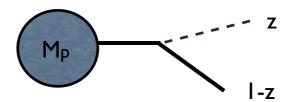
energy and process dependent

model dependent

4. Underlying Event

ME involving $q \rightarrow q g$ (or $g \rightarrow gg$) are strongly enhanced when they are close in the phase space:

$$\frac{1}{(p_q + p_g)^2} \simeq \frac{1}{2E_q E_g (1 - \cos \theta)}$$



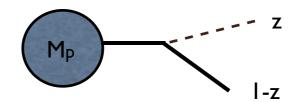
Collinear factorization:

$$|M_{p+1}|^2 d\Phi_{p+1} \simeq |M_p|^2 d\Phi_p \frac{dt}{t} \frac{\alpha_S}{2\pi} P(z) dz d\phi$$

- I.Allows for a parton shower (Markov process) evolution
- 2. The evolution resums the dominant leading-log contributions
- 3. By adding angular ordering the main quantum (interference) effects are also included

ME involving $q \rightarrow q g$ (or $g \rightarrow gg$) are strongly enhanced when they are close in the phase space:

$$\frac{1}{(p_q + p_g)^2} \simeq \frac{1}{2E_q E_g (1 - \cos \theta)}$$



Both soft

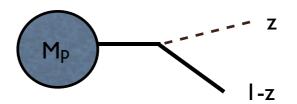
Collinear factorization:

$$|M_{p+1}|^2 d\Phi_{p+1} \simeq |M_p|^2 d\Phi_p \frac{dt}{t} \frac{\alpha_S}{2\pi} P(z) dz d\phi$$

- 1. Allows for a parton shower (Markov process) evolution
- 2. The evolution resums the dominant leading-log contributions
- 3. By adding angular ordering the main quantum (interference) effects are also included

ME involving $q \rightarrow q g$ (or $g \rightarrow gg$) are strongly enhanced when they are close in the phase space:

$$\frac{1}{(p_q + p_g)^2} \simeq \frac{1}{2E_q E_g (1 - \cos \theta)}$$



Both soft and collinear divergences: very different nature!

Collinear factorization:

$$|M_{p+1}|^2 d\Phi_{p+1} \simeq |M_p|^2 d\Phi_p \frac{dt}{t} \frac{\alpha_S}{2\pi} P(z) dz d\phi$$

- I.Allows for a parton shower (Markov process) evolution
- 2. The evolution resums the dominant leading-log contributions
- 3. By adding angular ordering the main quantum (interference) effects are also included

Parton branching

The spin averaged (unregulated) splitting functions for the various types of branching are:

$$\hat{P}_{qq}(z) = C_F \left[\frac{1+z^2}{(1-z)} \right],$$

$$\hat{P}_{gq}(z) = C_F \left[\frac{1+(1-z)^2}{z} \right],$$

$$\hat{P}_{qg}(z) = T_R \left[z^2 + (1-z)^2 \right],$$

$$\hat{P}_{gg}(z) = C_A \left[\frac{z}{(1-z)} + \frac{1-z}{z} + z (1-z) \right].$$

$$C_F = \frac{4}{3}, C_A = 3, T_R = \frac{1}{2}.$$

Comments:

- * Gluons radiate the most
- *There soft divergences in z=1 and z=0.
- * P_{qg} has no soft divergences.

Parton branching

Following a given line in a branching tree, it is clear that contributions coming from the strongly-ordered region will be leading

$$Q^{2} \gg t_{1} \gg t_{2} \gg \dots t_{N} \gg Q_{0}^{2}$$

$$\sigma_{N} \propto \sigma_{0} \alpha_{s}^{N} \int_{Q_{0}^{2}}^{Q^{2}} \frac{dt_{1}}{t_{1}} \int_{Q_{0}^{2}}^{t_{1}} \frac{dt_{2}}{t_{2}} \dots \int_{Q_{0}^{2}}^{t_{N-1}} \frac{dt_{N}}{t_{N}} = \sigma_{0} \frac{\alpha_{s}^{N}}{N!} \left(\log \frac{Q^{2}}{Q_{0}^{2}} \right)^{N}$$

Denote by

$$\Phi_a[E,Q^2]$$

the ensemble of parton cascades initiated by a parton a of energy E and emerging from a hard process with scale Q² (Generating functional). Also, define

$$\Delta(Q_1^2, Q_2^2)$$

as the probability that a does not branch for virtualities $Q_1^2>t>Q_2^2$

Evolution equation and Sudakov

With this, it easy to write a formula that takes into account all the branches associated to a parton a:

$$\Phi_{a}[E,Q^{2}] = \Delta_{a}(Q^{2},Q_{0}^{2})\Phi_{a}[E,Q_{0}^{2}]
+ \int_{Q_{0}^{2}}^{Q^{2}} \frac{dt}{t} \Delta_{a}(Q^{2},t) \sum_{b} \int dz \frac{\alpha_{s}}{2\pi} P_{ba}(z) \Phi_{b}[zE,t] \Phi_{c}[(1-z)E,t]$$

Simple interpretation. First term describes the evolution to Q_0 , where no branching has occurred. The second term is the contribution coming from evolving with no branching up to a given t and then branching there.

Now conservation of probability imposes that:

$$1 = \Delta_a(Q^2, Q_0^2) + \int_{Q_0^2}^{Q^2} \frac{dt}{t} \Delta_a(Q^2, t) \sum_b \int dz \frac{\alpha_s}{2\pi} P_{ba}(z)$$

Which can be solved to give an explicit expression for Δ .

Evolution equation and Sudakov

$$\Delta_a(Q^2, Q_0^2) = \exp\left(-\int_{Q_0^2}^{Q^2} \frac{dt}{t} \sum_b \int dz \frac{\alpha_s}{2\pi} P_{ba}(z)\right)$$

Proof:

derive the conservation of probability equation

$$0 = \frac{d\Delta_a}{dQ_0^2}(Q^2, Q_0^2) - \frac{\mathcal{P}_a}{Q_0^2}\Delta_a(Q^2, Q_0^2), \qquad \mathcal{P}_a = \sum_b \int dz \frac{\alpha_s}{2\pi} P_{ba}(z)$$

and impose the initial condition

$$\Delta_a(Q^2, Q^2) = 1$$

Note that
$$\Delta_a(Q^2,t) = \frac{\Delta_a(Q^2,Q_0^2)}{\Delta_a(t,Q_0^2)}$$

and therefore sometimes the second argument is not used.

#3

The "Sudakov form factor" directly quantifies how likely is for a parton to undergo branching.

#3

The "Sudakov form factor" directly quantifies how likely is for a parton to undergo branching.

Evolution equation and Sudakov

Note that we can define the following quantities with mass squared dimensions

$$Q^{2} = z(1-z)\theta^{2}E^{2}$$

$$p_{T}^{2} = z^{2}(1-z)^{2}\theta^{2}E^{2}$$

$$\tilde{t} = \theta^{2}E^{2}$$

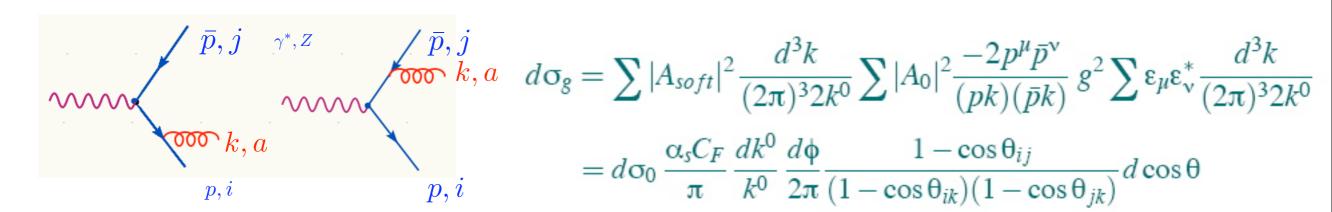
and obtain

$$\frac{d\theta^2}{\theta^2} = \frac{dQ^2}{Q^2} = \frac{dp_T^2}{p_T^2} = \frac{d\tilde{t}}{\tilde{t}}$$

This fact has an important consequence: the evolution parameter of the shower is not uniquely defined. This is because the scales chosen above have all the same angular behaviour, provided that z is not too close to 0 or 1.

Differences stem from the SOFT region.

Angular ordering



You can easily prove that:

$$=\frac{2}{2}$$

$$\frac{2}{2}$$

$$\frac{2}{2}$$

$$\frac{2}{2}$$

$$\frac{2}{2}$$

$$\frac{2}{2}$$

$$\frac{2}{2}$$

$$\frac{2}{2}$$

$$\frac{2}{2}$$

$$\frac{2}{2}$$

Radiation happens only for angles smaller than the color connected (antenna) opening angle!

#2

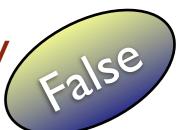
MC's are based on a classical approximation (Markov Chain), QM effects are not properly described.

Quantum effects are included:

- I. Exactly in the hard scattering matrix element.
- 2. Approximately by the angular-ordering of the shower

#2

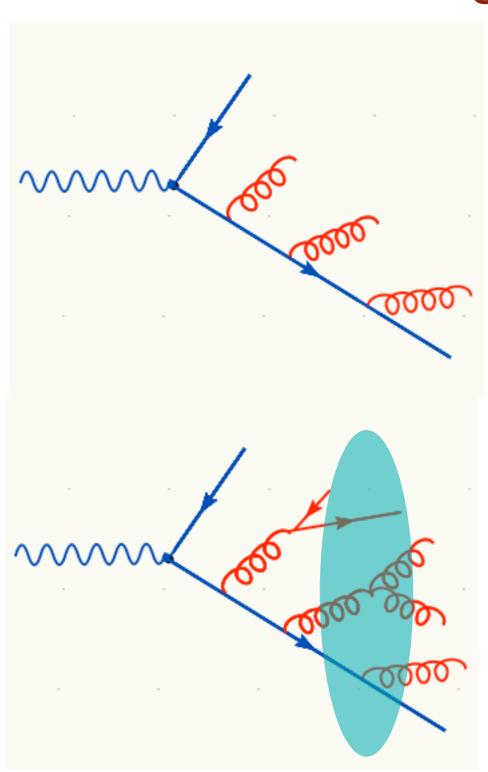
MC's are based on a classical approximation (Markov Chain), QM effects are not properly described.



Quantum effects are included:

- I. Exactly in the hard scattering matrix element.
- 2. Approximately by the angular-ordering of the shower

Angular ordering



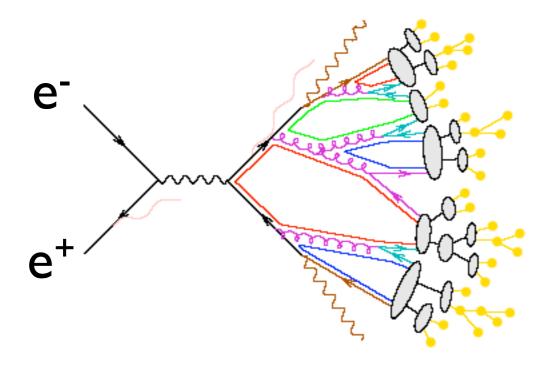
The construction can be iterated to the next emission, with the result that the emission angles keep getting smaller and smaller.

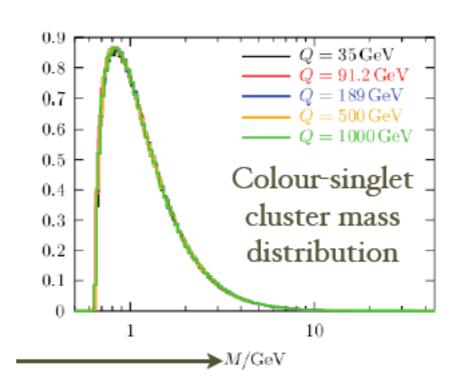
In fact one can generalize the treatment before to a generic parton of color charge Q_k splitting into two partons i and j , $Q_{k}=Q_i+Q_j$. The result is that inside the cones i and j emit as independent charges, and outside their angular-order cones the emission is coherent and can be treated as if it was directly from color charge Q_k .

This has an effect on the multiplicity of hadrons in jets (INTRAjet radiation), since the radiation is more suppressed with respect to the total phase space available, which one would get from an incoherent radiation. Color ordering enforces coherence and leads to the proper evolution with energy of particle multiplicities.

Monte Carlo approach to PS

The structure of the perturbative evolution, including angular ordering, leads naturally to the clustering in phase-space of color-singlet parton pairs (preconfinement). Long-range correlations are strongly suppressed. Hadronization will only act locally, on low-mass color singlet clusters.





- General-purpose tools
- Always the first exp choice
- Complete exclusive description of the events: hard scattering, showering & hadronization, underlying event
- Reliable and well tuned tools.

most famous: PYTHIA, HERWIG, SHERPA

 Significant and intense progress in the development of new showering algorithms with the final aim to go at NLO in QCD [Nagy, Soper, 2005; Giele, Kosower, Skands, 2007; Krauss, Schumman, 2007]

A simple plan

- Physics challenges at the LHC
- Basics : QCD and MC's methods
- The new generation of MC tools
- New simulations for New Physics

A simple plan

- Physics challenges at the LHC
- Basics : QCD and MC's methods
- The new generation of MC tools
- New simulations for New Physics

How we (used to) make predictions?

First way:

 For low multiplicity include higher order terms in our fixedorder calculations (LO→NLO→NNLO...)

$$\Rightarrow \hat{\sigma}_{ab\to X} = \sigma_0 + \alpha_S \sigma_1 + \alpha_S^2 \sigma_2 + \dots$$

For high multeplicity use the tree-level results

Comments:

- 1. The theoretical errors systematically decrease.
- 2. Pure theoretical point of view.
- 3. A lot of new techniques and universal algorithms are developed.
- 4. Final description only in terms of partons and calculation of IR safe observables ⇒ not directly useful for simulations

How we (used to) make predictions?

Second way:

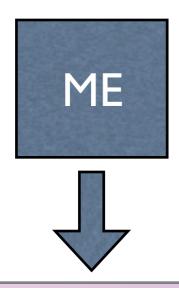
 Describe final states with high multiplicities starting from 2 → I or 2 → 2 procs, using parton showers, and then an hadronization model.

Comments:

- I. Fully exclusive final state description for detector simulations
- 2. Normalization is very uncertain
- 3. Very crude kinematic distributions for multi-parton final states
- 4. Improvements are only at the model level.

ME vs PS

[Mangano]
[Catani, Krauss, Kuhn, Webber]
[Frixione, Nason, Webber]



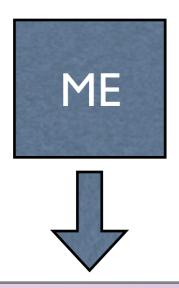
- I. parton-level description
- 2. fixed order calculation
- 3. quantum interference exact
- 4. valid when partons are hard and well separated
- 5. needed for multi-jet description

- I. hadron-level description
- 2. resums large logs
- 3. quantum interference through angular ordering
- 4. valid when partons are collinear and/or soft
- 5. nedeed for realistic studies

Difficulty: avoid double counting

ME vs PS

[Mangano]
[Catani, Krauss, Kuhn, Webber]
[Frixione, Nason, Webber]



- I. parton-level description
- 2. fixed order calculation
- 3. quantum interference exact
- 4. valid when partons are hard and well separated
- 5. needed for multi-jet description

- I. hadron-level description
- 2. resums large logs
- 3. quantum interference through angular ordering
- 4. valid when partons are collinear and/or soft
- 5. nedeed for realistic studies

Approaches are complementary: merge them!

Difficulty: avoid double counting

How to improve our predictions?

New trend:

Match fixed-order calculations and parton showers to obtain the most accurate predictions in a detector simulation friendly way!

Two directions:

I. Get fully exclusive description of many parton events correct at LO (LL) in all the phase space.

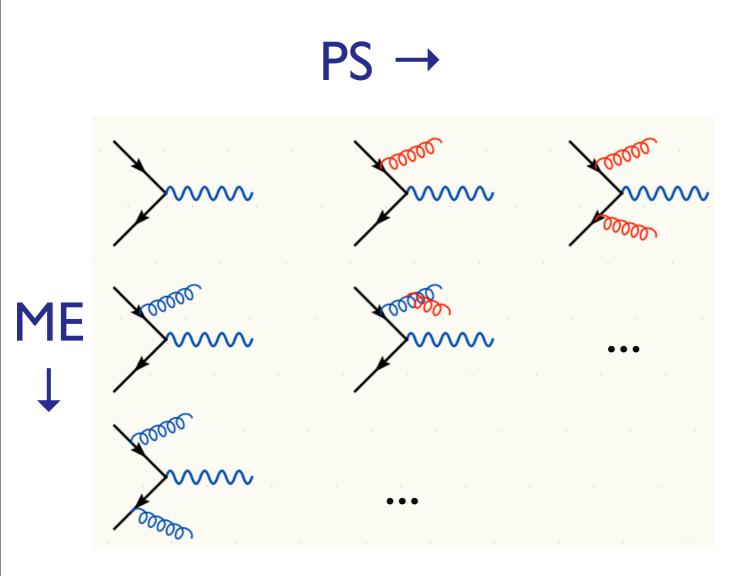
ME+PS

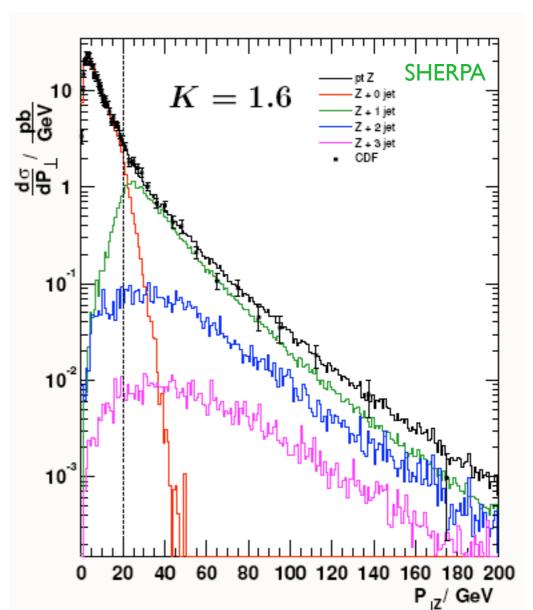
2. Get fully exclusive description of events correct at NLO in the normalization and distributions.

NLOwPS

Merging fixed order with PS

[Mangano] [Catani, Krauss, Kuhn, Webber]



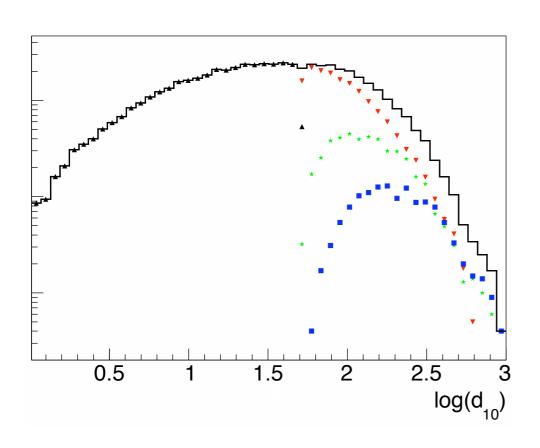


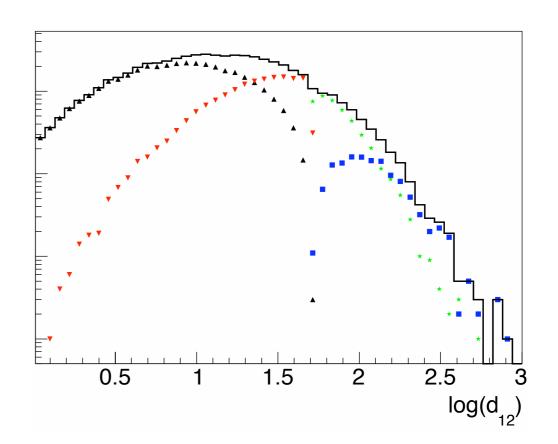
Double counting of configurations that can be obtained in different ways (histories). All the matching algorithms (CKKW, MLM,...) apply criteria to select only one possibility based on the hardness of the partons. As the result events are exclusive and can be added together into an inclusive sample. Distributions are accurate but overall normalization still "arbitrary".

The MLM matching algorithm

- Generate events with the ME, using hard partonic cut, e.g., $p_T > p_{Tmin}$, $\Delta R_{jj} > \Delta R_{MIN}$, (Alpgen) or with a k_T algorithm (MadEvent).
- Reweight the event to optimize scale choices.
- Shower the event and jet-cluster it (with the same algorithm).
- Require the original partons to be one-to-one associated to the jets.

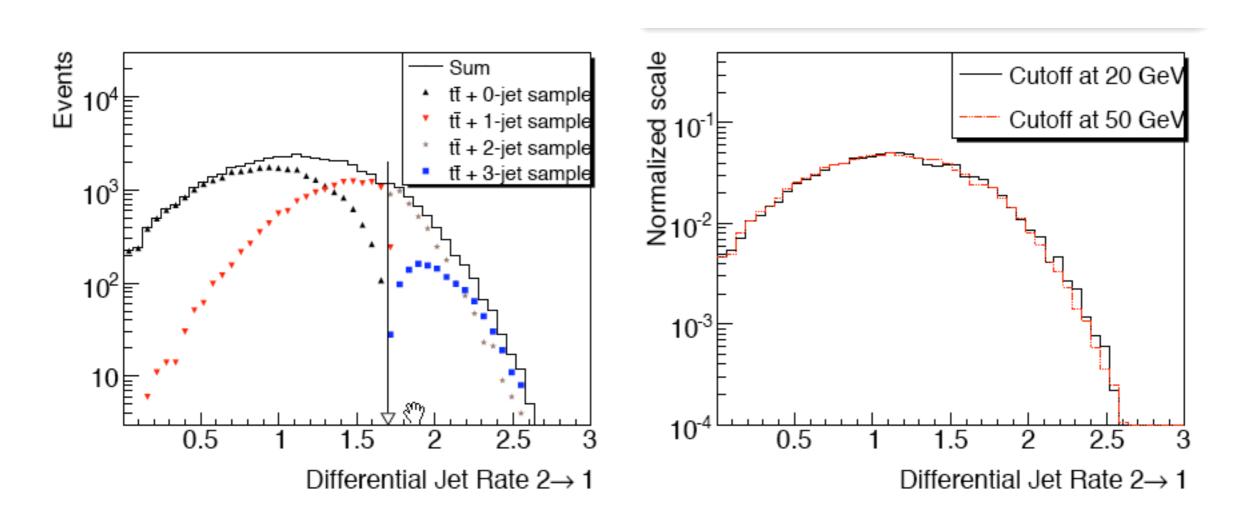
Sanity checks: differential jet rates





Jet rates are smooth at the cutoff scale

Sanity checks: differential jet rates

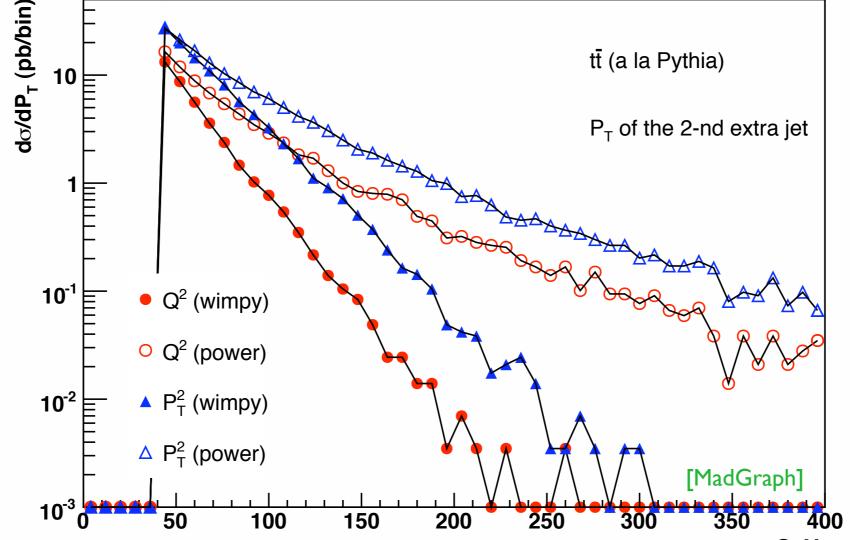


Jet rates are independent of the cutoff scale

PS alone vs matched samples

A MC Shower like Pythia produces inclusive samples covering all phase space. However, there are regions of the phase space (ex. high pt tails) which cannot be described well by the log enhanced (shower) terms in the QCD expansion and lead to ambiguities. Consider for instance the high-pt

distribution of the second jet in ttbar events:

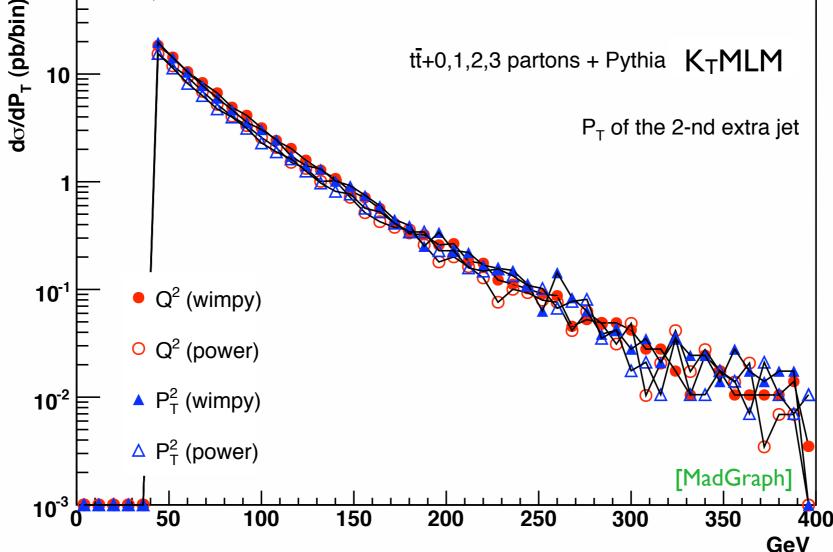


Changing some choices/parameters leads to huge differences \Rightarrow self diagnosis. Trying to tune the log terms to make up for it is not a good idea \Rightarrow mess up other regions/shapes, process dependence.

PS alone vs matched samples

A MC Shower like Pythia produces inclusive samples covering all phase space. However, there are regions of the phase space (ex. high pt tails) which cannot be described well by the log enhanced (shower) terms in the QCD expansion and lead to ambiguities. Consider for instance the high-pt

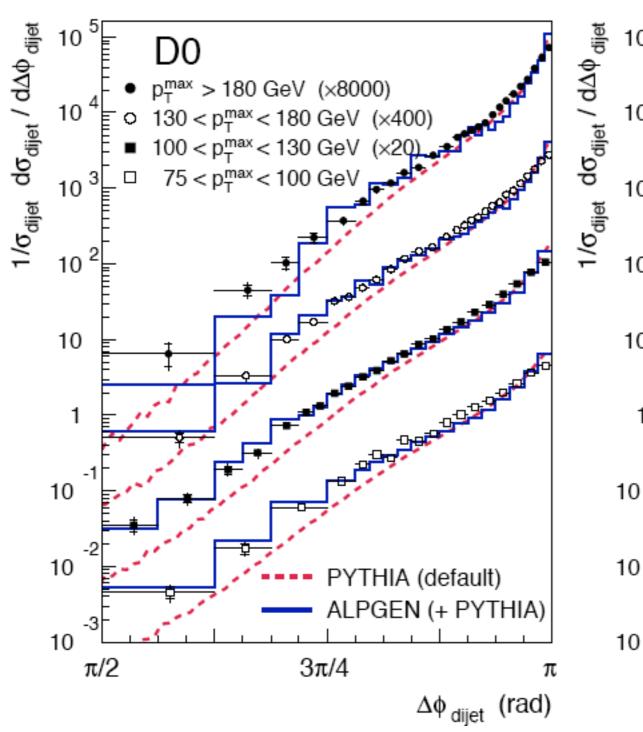
distribution of the second jet in ttbar events:

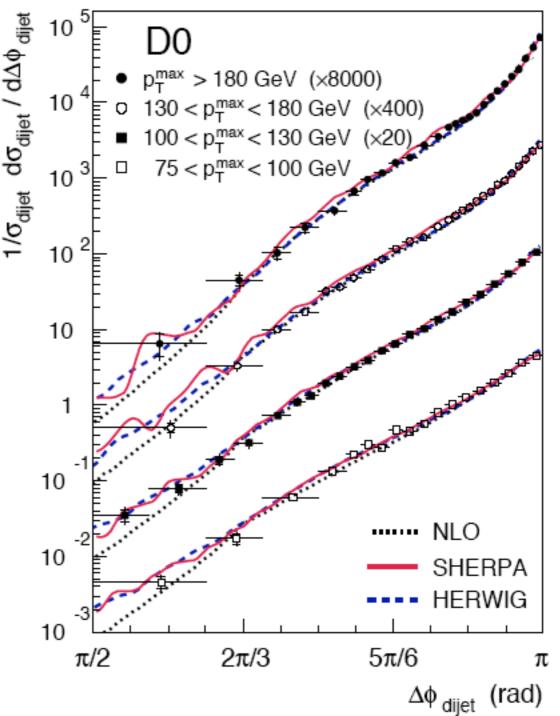


In a matched sample these differences are irrelevant since the behaviour at high pt is dominated by the matrix element. LO+LL is more reliable. (Matching uncertaintes not shown.)

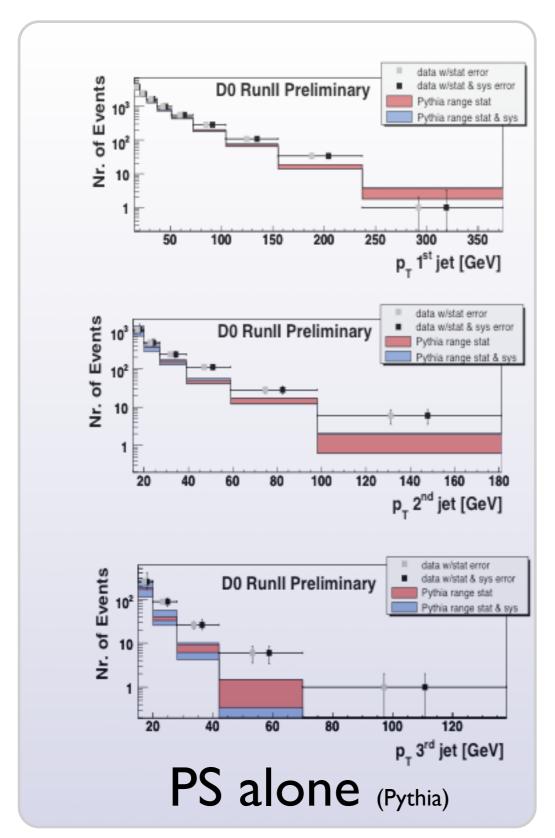
jet

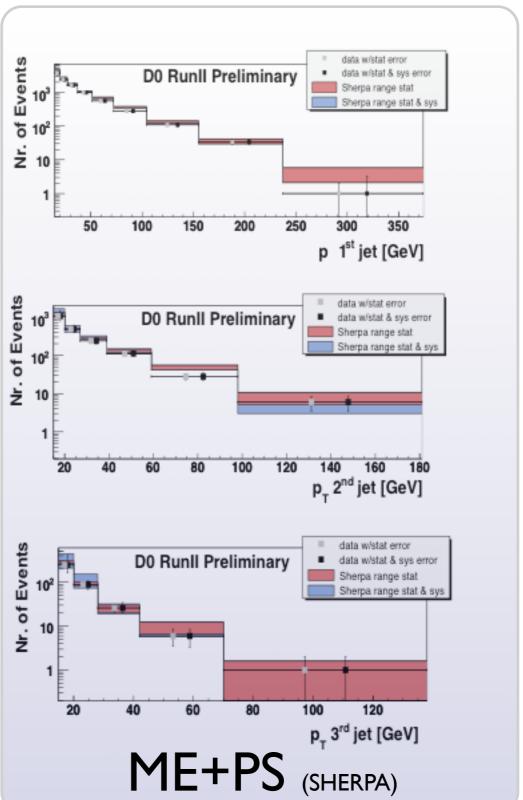
Angular decorrelations pp→2j events



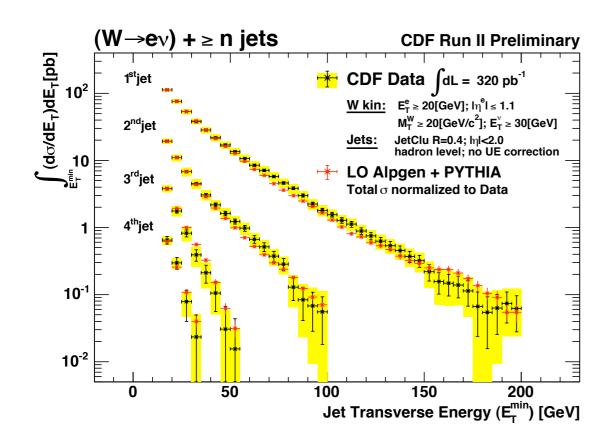


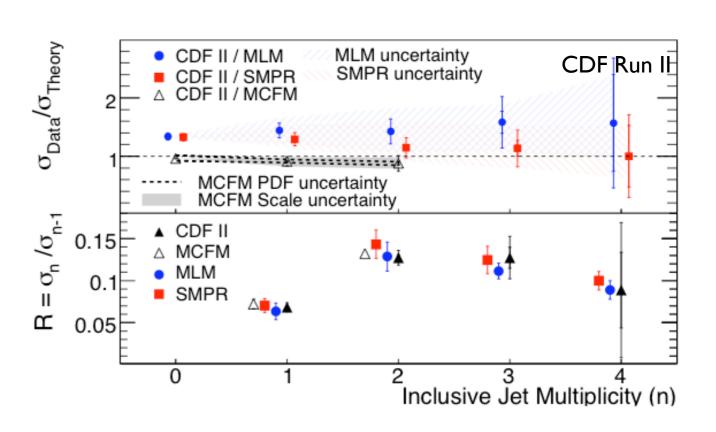
PS alone vs matched samples : Z+jets at D0





W+jets at CDF





- *Very good agreement in shapes (left) and in relative normalization (right).
- * NLO rates in outstanding agreement with data.
- * Matched samples obtained via different matching schemes (MLM and CKKW) consistent within the expected uncertaintes. Differences might arise in more exclusive quantities.

• The matching (à la CKKW) has been rigorously proved in e+e-collisions and it is believed to be true also in pp collisions. The MLM matching is problematic in e+e- and just a prescription in pp, where, however, seem to work really well.

- The matching (à la CKKW) has been rigorously proved in e+e-collisions and it is believed to be true also in pp collisions. The MLM matching is problematic in e+e- and just a prescription in pp, where, however, seem to work really well.
- It provides an algorithm to generate multi-jet inclusive samples, that are accurate in all the areas of the phase space avoiding double-counting.

- The matching (à la CKKW) has been rigorously proved in e+e-collisions and it is believed to be true also in pp collisions. The MLM matching is problematic in e+e- and just a prescription in pp, where, however, seem to work really well.
- It provides an algorithm to generate multi-jet inclusive samples, that are accurate in all the areas of the phase space avoiding double-counting.
- Since no exact virtual contribution is included the normalization of the cross section is uncertain and it has to be obtained from a NLO calculation.

- The matching (à la CKKW) has been rigorously proved in e+e-collisions and it is believed to be true also in pp collisions. The MLM matching is problematic in e+e- and just a prescription in pp, where, however, seem to work really well.
- It provides an algorithm to generate multi-jet inclusive samples, that are accurate in all the areas of the phase space avoiding double-counting.
- Since no exact virtual contribution is included the normalization of the cross section is uncertain and it has to be obtained from a NLO calculation.
- On the other hand, shapes (and often even normalizations) are (so far) in very good agreement with NLO.

NLOwPS

Problem of double counting becomes even more severe at NLO

- * Real emission from NLO and PS has to be counted once
- *Virtual contributions in the NLO and Sudakov should not overlap

Current available (and working) solutions:

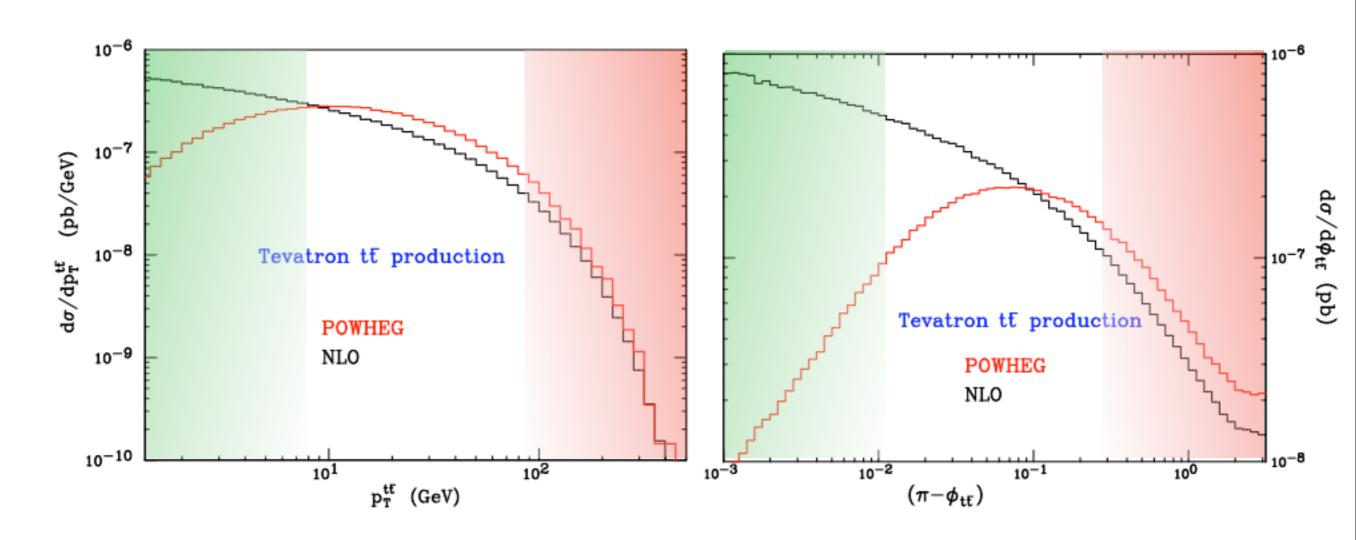
MC@NLO [Frixione, Webber, 2003; Frixione, Nason, Webber, 2003]

- Matches NLO to HERWIG angular-ordered PS.
- "Some" work to interface an NLO calculation to HERWIG. Uses only FKS subtraction scheme.
- Some events have negative weights.
- Sizable library of procs now.

POWHEG [Nason 2004; Frixione, Nason, Oleari, 2007]

- Is independent from the PS. It can be interfaced to PYTHIA or HERWIG.
- Can use existing NLO results.
- Generates only positive unit weights.
- For top only ttbar (with spin correlations) is available so far.

ttbar: NLOwPS vs NLO



- * Soft/Collinear resummation of the $p_T(tt) \rightarrow 0$ region.
- * At high p_T(tt) it approaches the tt+parton (tree-level) result.
- *When $\Phi(tt) \rightarrow 0$ ($\Phi(tt) \rightarrow \pi$) the emitted radiation is hard (soft).
- * Normalization is FIXED and non trivial!!

NLOwPS

"Best" tools when NLO calculation is available (i.e. low jet multiplicity).

- * Main points:
 - * NLOwPS provide a consistent to include K-factors into MC's
 - * Scale dependence is meaningful
 - * Allows a correct estimates of the PDF errors.
 - * Non-trivial dynamics beyond LO included for the first time.

N.B.: The above is true for observables which are at NLO to start with!!!

- * Current limitations:
 - * Considerable manual work for the implementation of a new process.
 - * Only SM.
 - * Only available for low multiplicity.

Leading Order:

- * fully automatized + matching algorithms
- * Continuously improved : new ideas for showers, better hadronization/underlying events), better matrix element generators, new matching schemes.
- * Several fully working frameworks available.

Leading Order:

- * fully automatized + matching algorithms
- * Continuously improved : new ideas for showers, better hadronization/underlying events), better matrix element generators, new matching schemes.
- * Several fully working frameworks available.

Basics covered, room for improvement

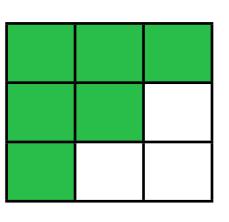
Leading Order:

- * fully automatized + matching algorithms
- * Continuously improved : new ideas for showers, better hadronization/underlying events), better matrix element generators, new matching schemes.
- * Several fully working frameworks available.

Basics covered, room for improvement

Next-to-leading Order:

- * Automatic generation of reals + counterterms available
- * General framework for interfacing to the shower (POWHEG)
- * Impressive results in automatic I-loop computations [BlackHat, Rocket, Cuttools]



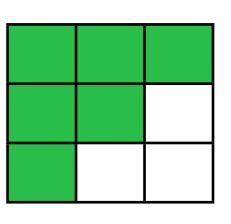
Leading Order:

- * fully automatized + matching algorithms
- * Continuously improved : new ideas for showers, better hadronization/underlying events), better matrix element generators, new matching schemes.
- * Several fully working frameworks available.

Basics covered, room for improvement

Next-to-leading Order:

- * Automatic generation of reals + counterterms available
- * General framework for interfacing to the shower (POWHEG)
- * Impressive results in automatic I-loop computations [BlackHat, Rocket, Cuttools]



Fully automatized NLOwPS in sight

Tools

New generation of integrated/interfaced tools:

•Example I: SHERPA, Matrix Element generator + PS with CKKW

•Example II:

AlpGen + Pythia or Herwig, ME + PS with MLM (or CKKW) MadGraph + Pythia or Herwig, ME + PS with MLM (or CKKW)

•Example III:

MC@NLO, NLO + HERWIG with Frixione-Webber method. POWHEG tools, NLO + PS with Nason et al. method (POWHEG). HERWIG++, NLO + new HERWIG with POWHEG method.

More tools/techniques for merging under continuous development: VINCIA, GENEVA, Dipole Showers, CKKW-NLO,....

#5

Tree-level based MC's are less accurate than those at NLO.

#5

Tree-level based MC's are less accurate than those at NLO.

Again, it depends on the observable. A NLO code can only provide some observable at NLO, and in particular not those with extra-jets.

Example: t tbar in NLOwPS vs t tbar + jets matched.

Overall normalization: better t that at NLO

pt of the first jet : the same accuracy

pt of the 2nd jet : better the t tbar matched sample

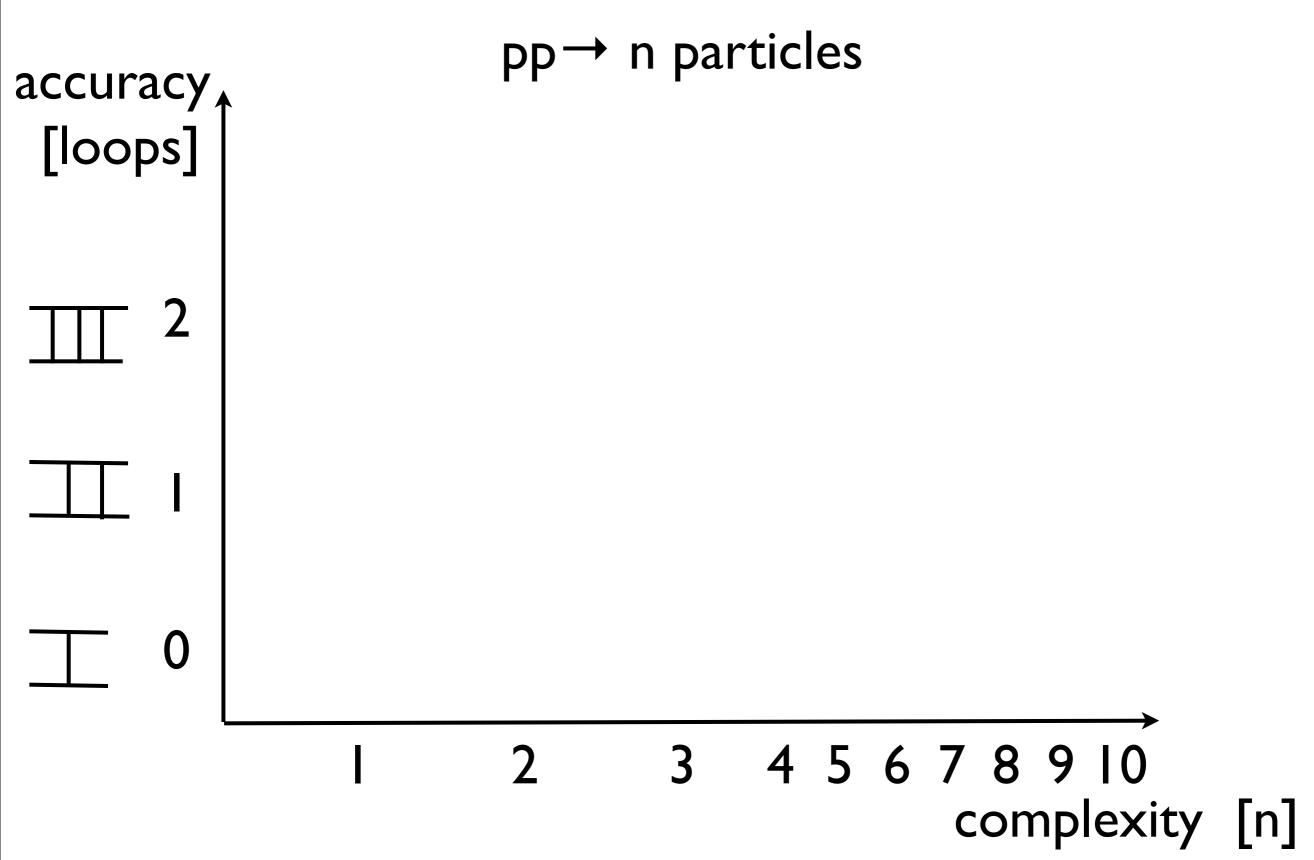
So, if I am considering ttbar as a signal, most probably NLOwPS is the best tool.

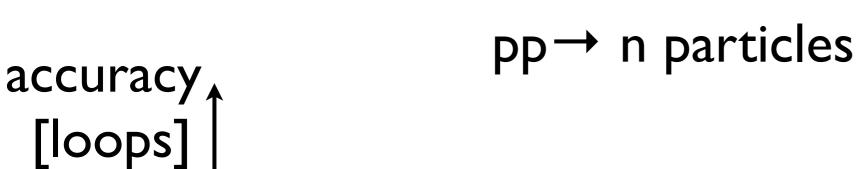
While if I am considering ttbar as a background to SUSY or to tt h with h->b bbar, the matched sample is a better approximation.

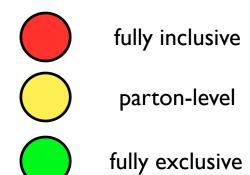
pp→ n particles

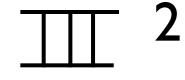
pp→ n particles

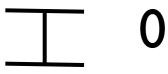
1 2 3 4 5 6 7 8 9 10 complexity [n]

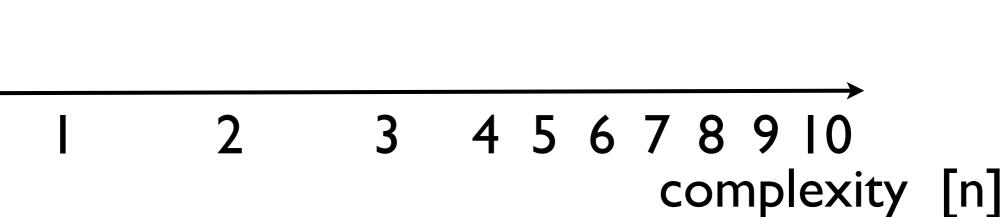


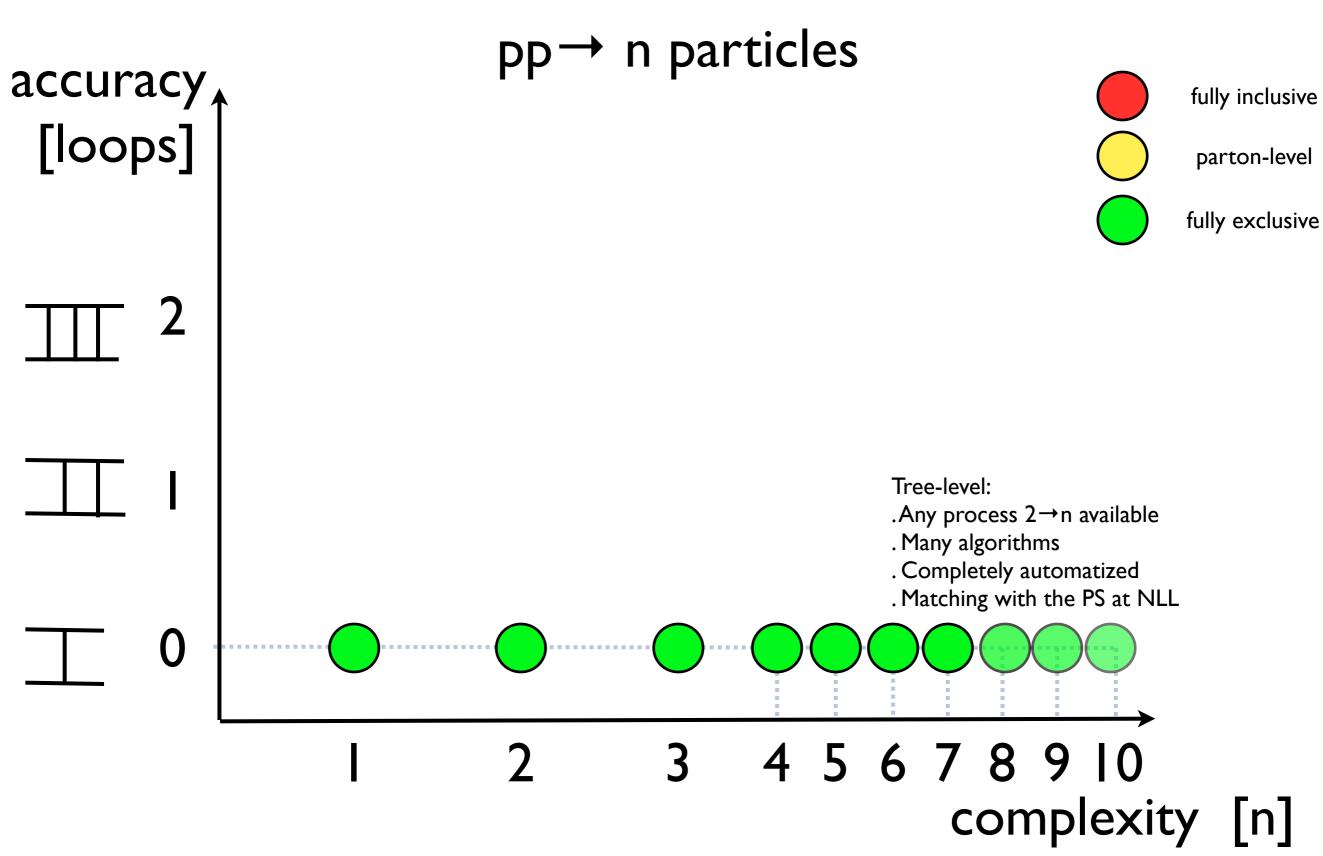


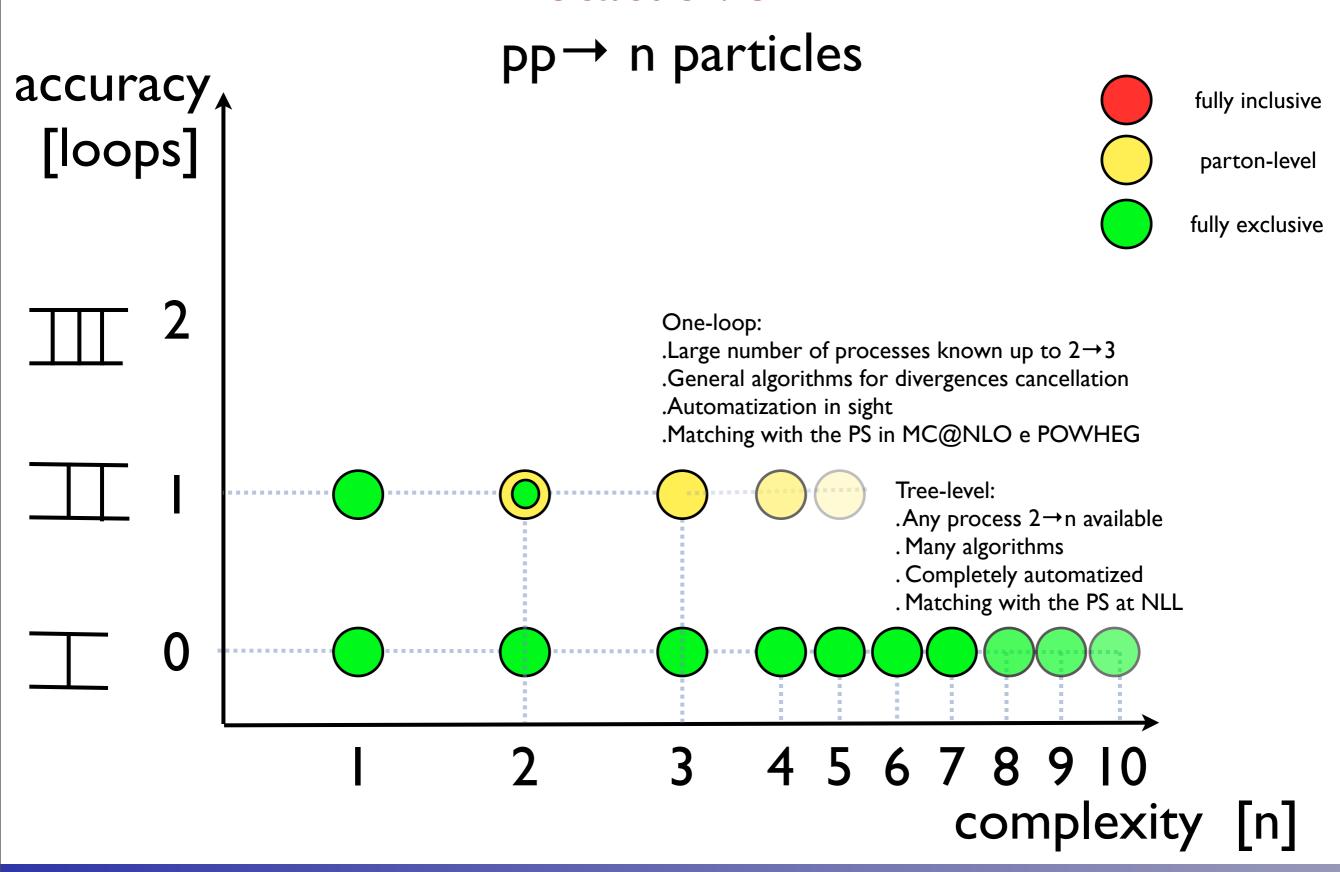


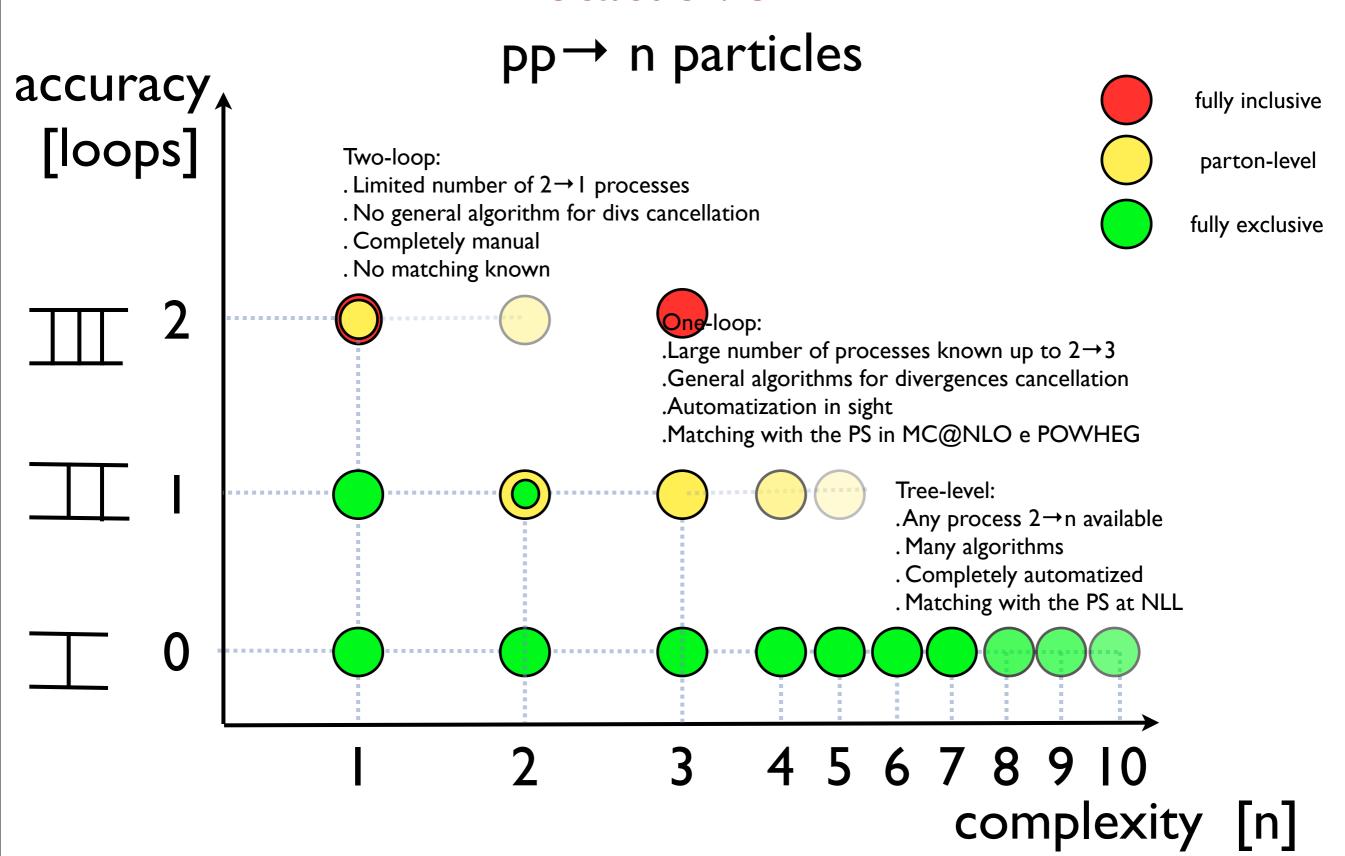












A simple plan

- Physics challenges at the LHC
- Basics : QCD and MC's methods
- The new generation of MC tools
- New simulations for New Physics

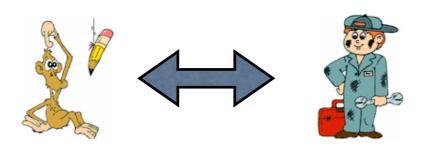
A simple plan

- Physics challenges at the LHC
- Basics : QCD and MC's methods
- The new generation of MC tools
- New simulations for New Physics

What about BSM?

Two main (related) issues:

I. A plethora of BSM proposals exist to be compared with data. It will be essential to have an efficient, validated MC framework for theorists to communicate with experimentalits their idea (and viceversa).

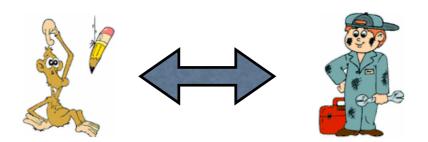


2. Once models are available in multipurpose MC's, new detailed studies are possible that allow to bring to the BSM signatures the same level of sophistication achieved for the SM.

What about BSM?

Two main (related) issues:

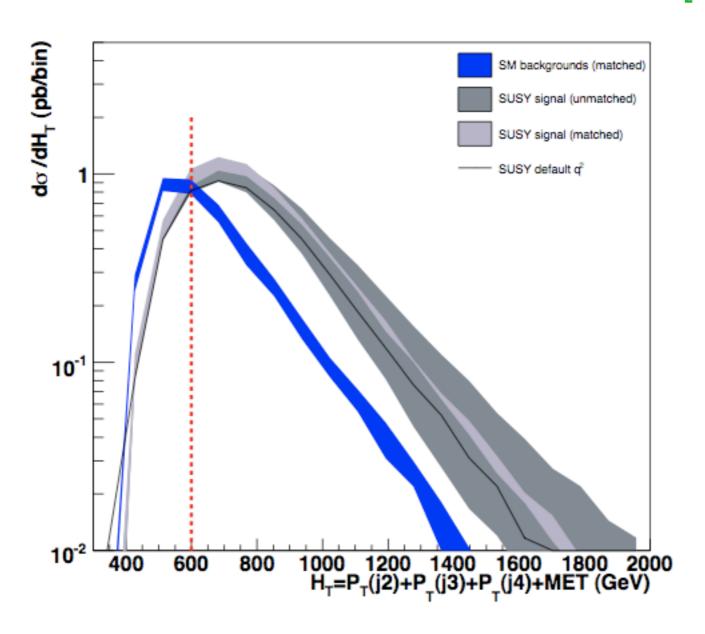
I. A plethora of BSM proposals exist to be compared with data. It will be essential to have an efficient, validated MC framework for theorists to communicate with experimentalits their idea (and viceversa).



2. Once models are available in multipurpose MC's, new detailed studies are possible that allow to bring to the BSM signatures the same level of sophistication achieved for the SM.

BSM @ LHC: present

[Alwall, de Visscher, FM, 2009]



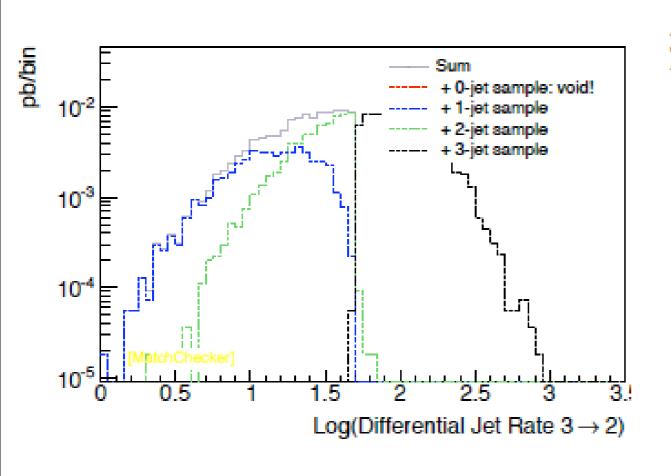
Both signal and background matched!

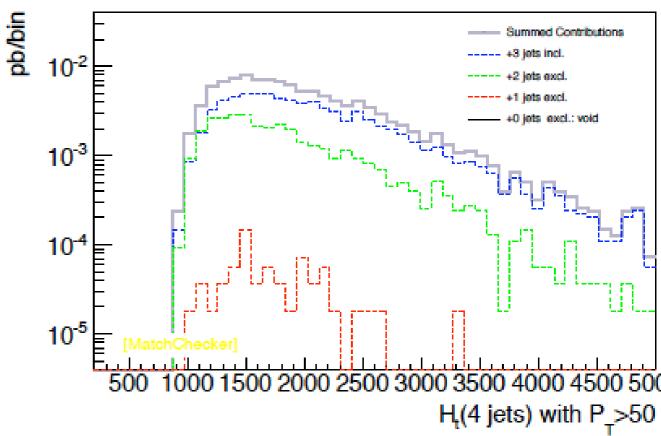
Sizable reduction of the uncertainties. Overall picture unchanged for SPS1a.

Gravitons

[K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, 2009] [P. de Aquino, K. Hagiwara, Q. Li, F. M.]

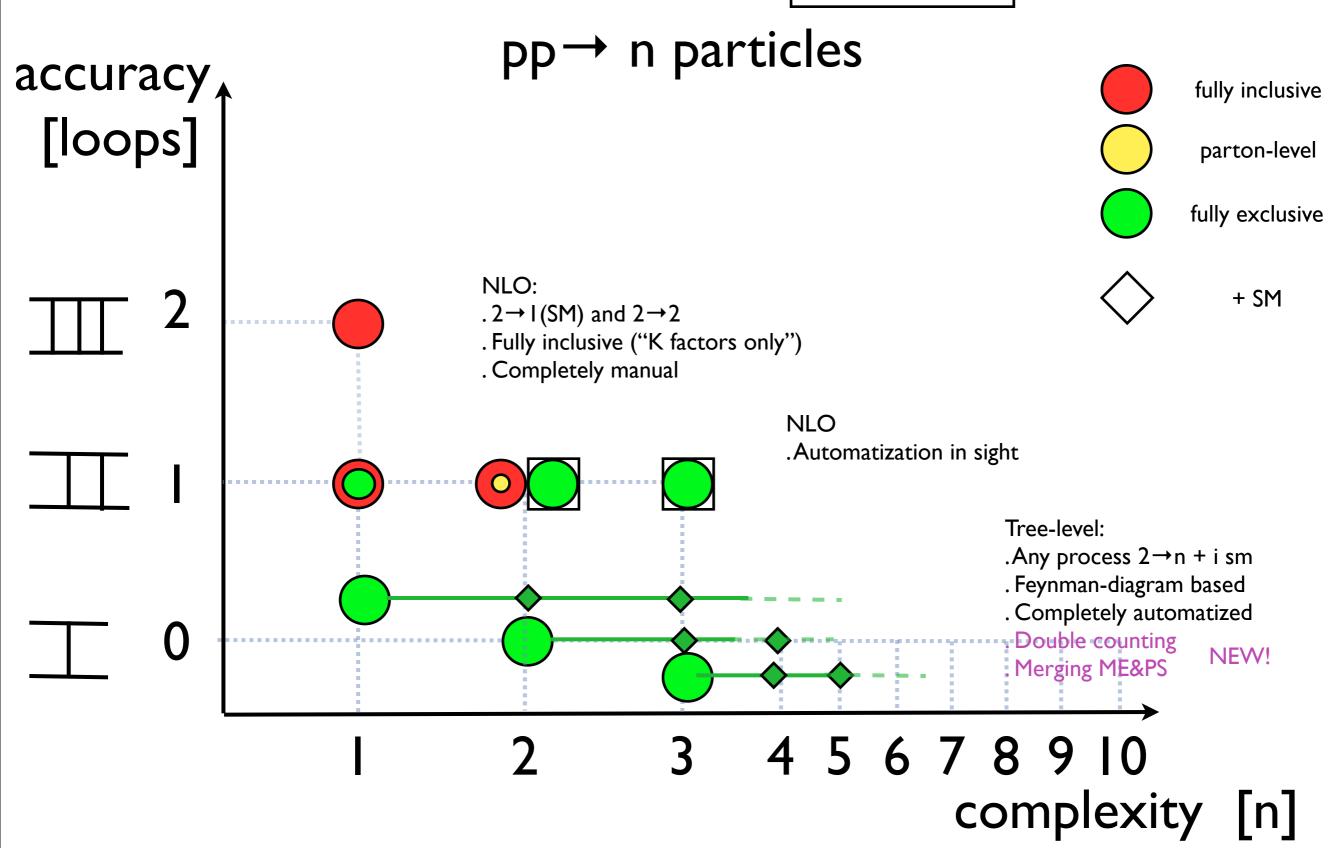
- Fixed mass gravitons (RS and also mG=0)
- ADD gravitons also available : challenging due peculiar "propagator" : this is automatically handled in MG now.





Works out of the box..

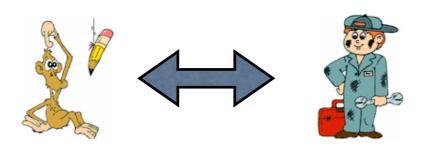
BSM: status and outlook



What about BSM?

Two main (related) issues:

I. A plethora of BSM proposals exist to be compared with data. It will be essential to have an efficient, validated MC framework for theorists to communicate with experimentalits their idea (and viceversa).

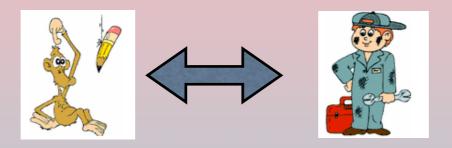


2. Once models are available in multipurpose MC's, new detailed studies are possible that allow to bring to the BSM signatures the same level of sophistication achieved for the SM.

What about BSM?

Two main (related) issues:

I. A plethora of BSM proposals exist to be compared with data. It will be essential to have an efficient, validated MC framework for theorists to communicate with experimentalits their idea (and viceversa).



2. Once models are available in multipurpose MC's, new detailed studies are possible that allow to bring to the BSM signatures the same level of sophistication achieved for the SM.

A Roadmap (with roadblocks) for BSM @ the LHC

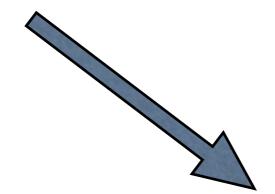
TH EXP

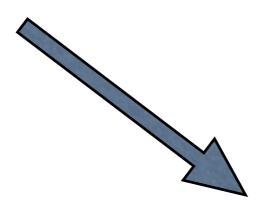
Idea

Data

TH EXP

Idea





Data

TH

Idea

TH

Idea

Lagrangian

Feyn. Rules

Amplitudes

x secs

Paper

TH PHENO

Idea

Lagrangian

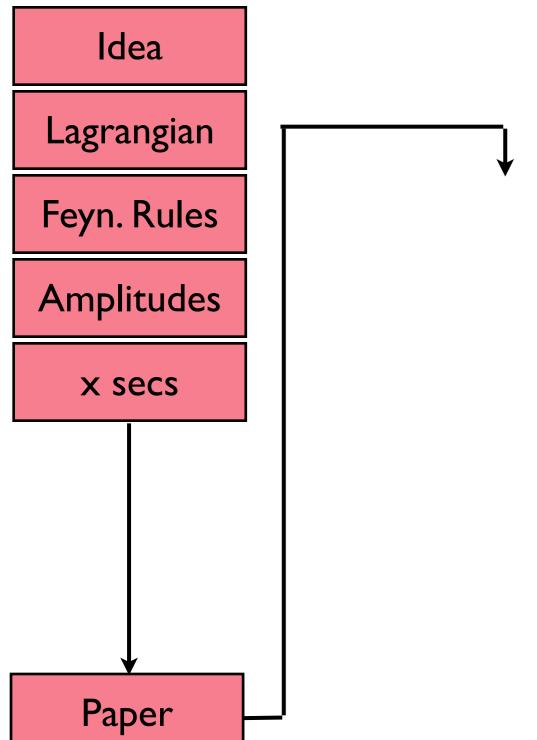
Feyn. Rules

Amplitudes

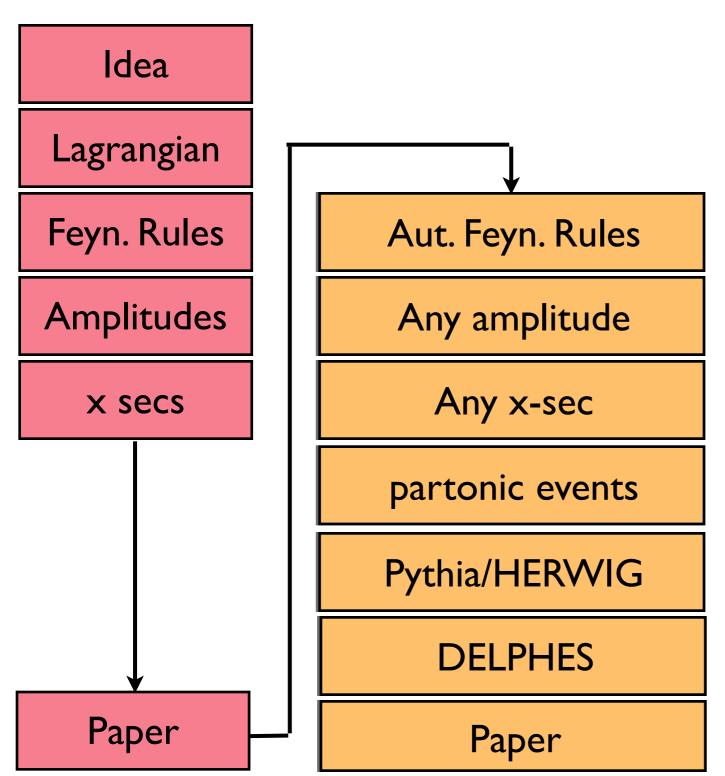
x secs

Paper

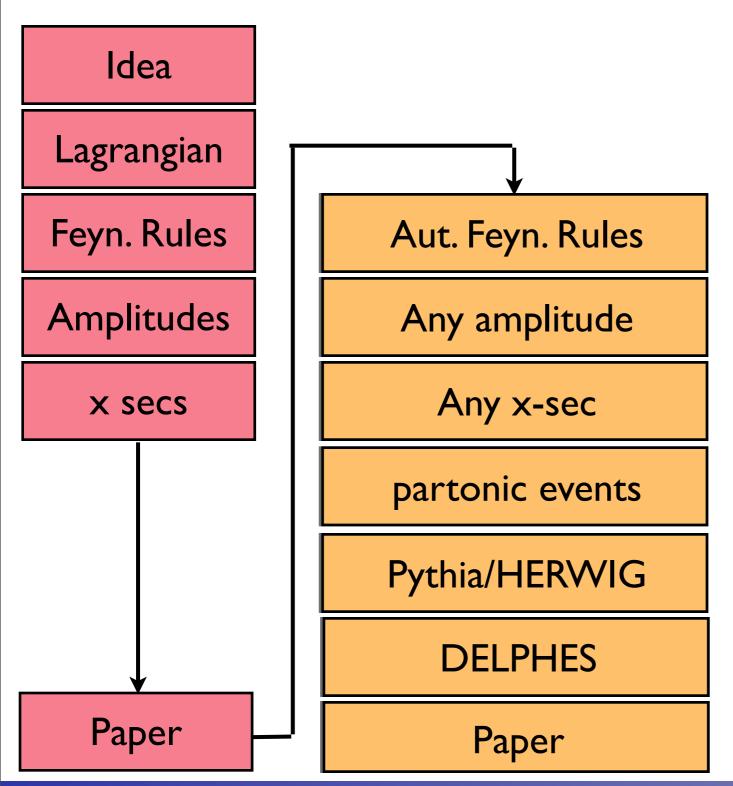
TH PHENO



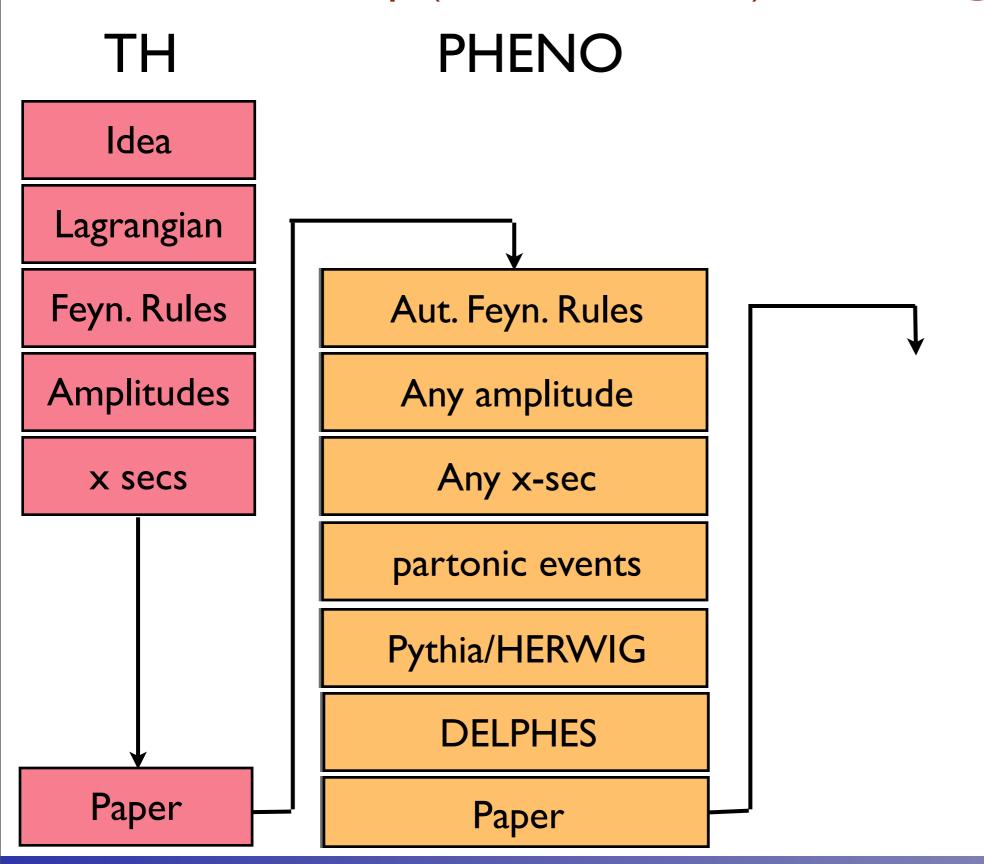
TH PHENO



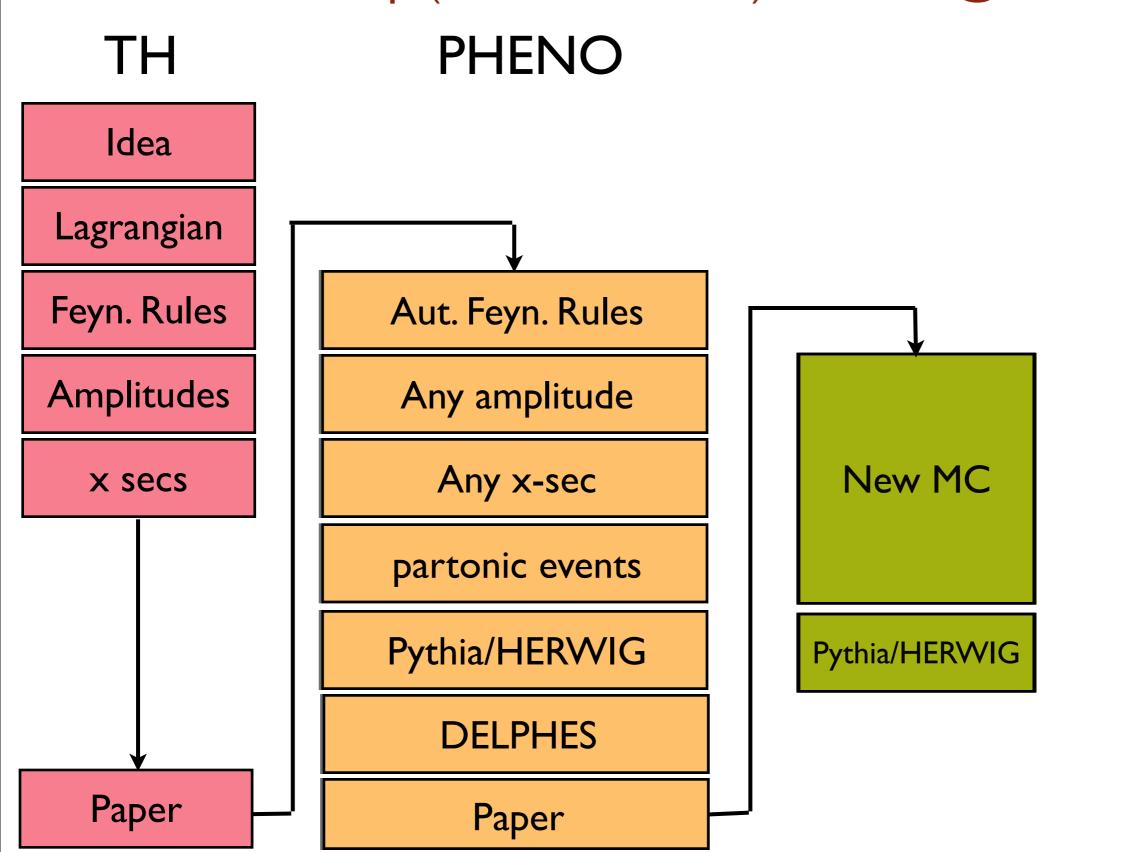
TH PHENO EXP

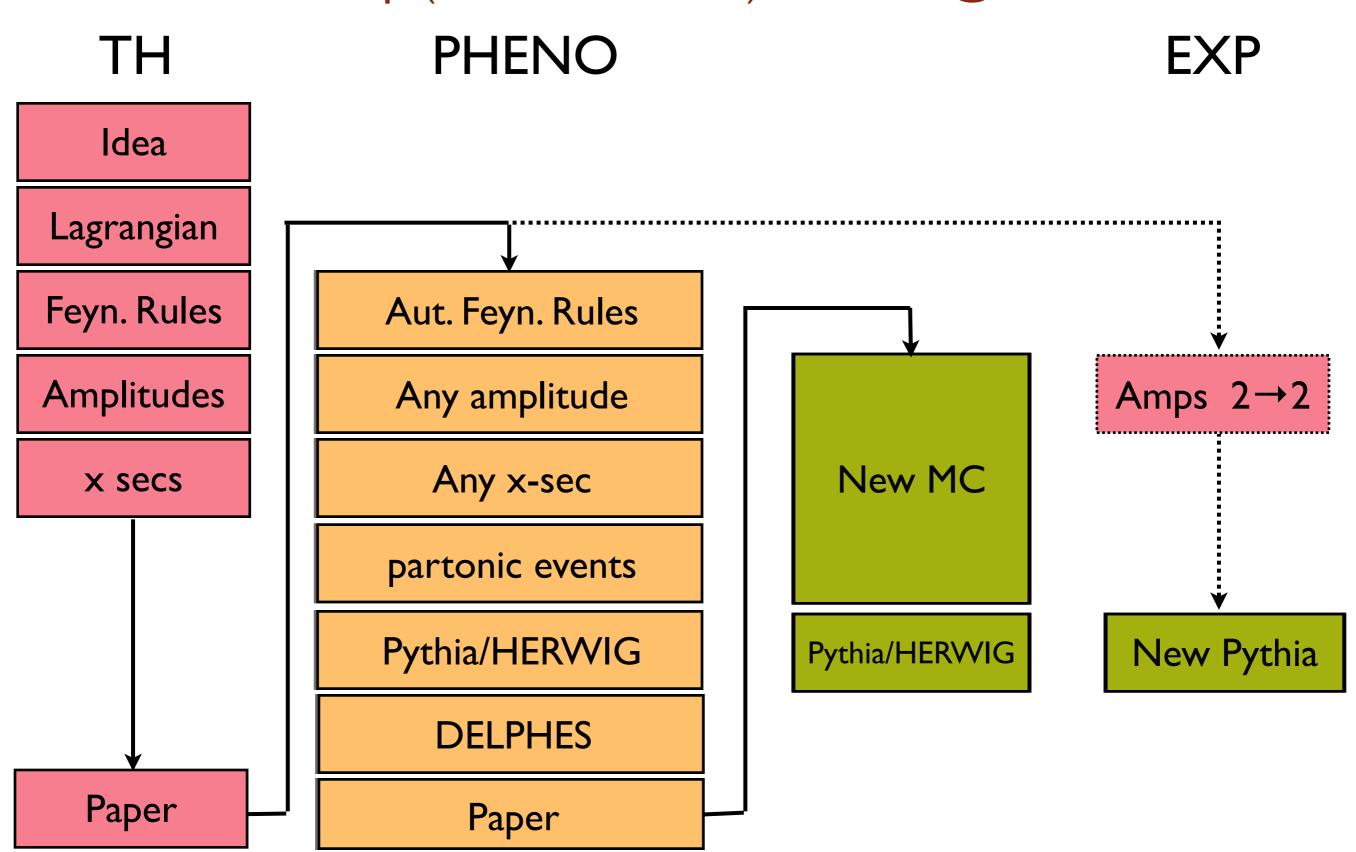


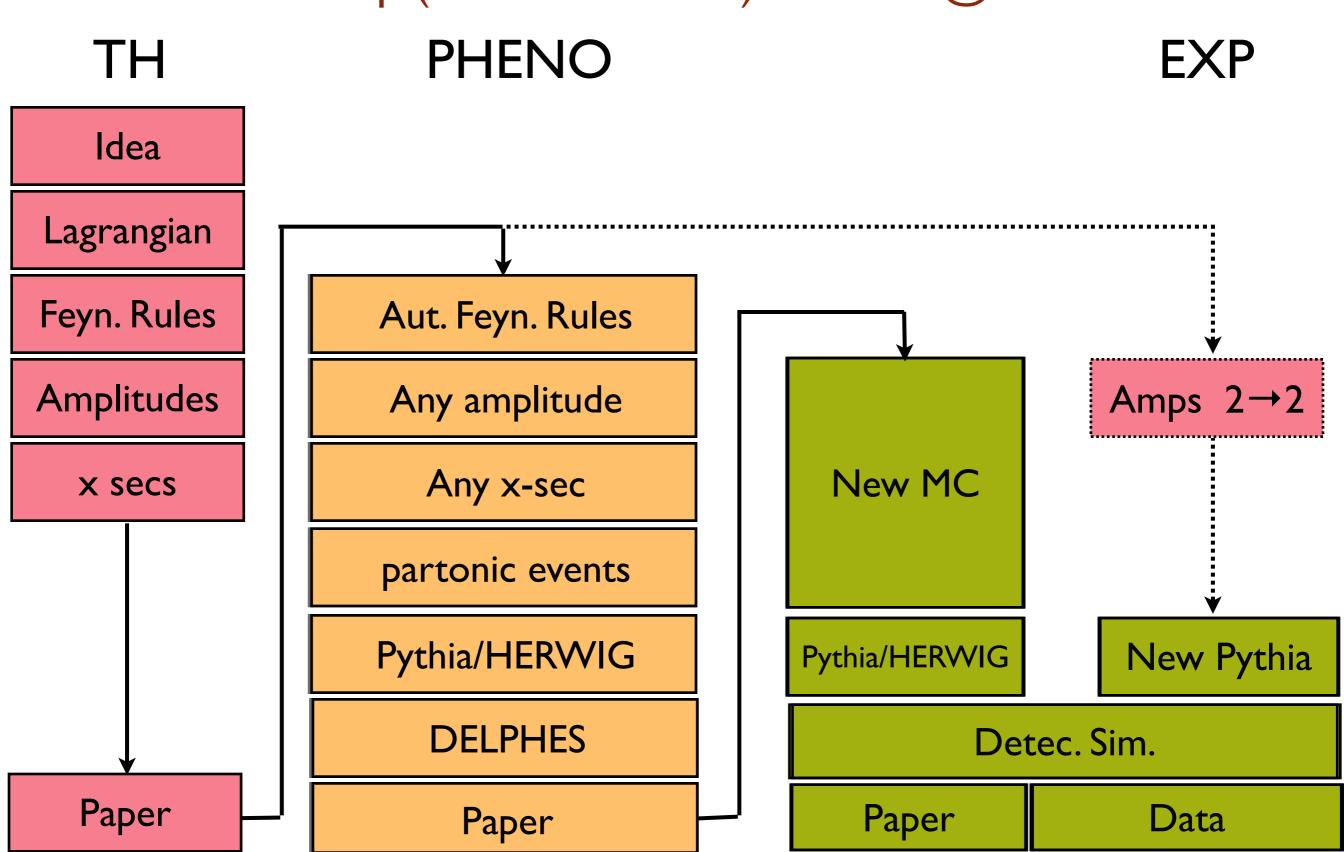
EXP



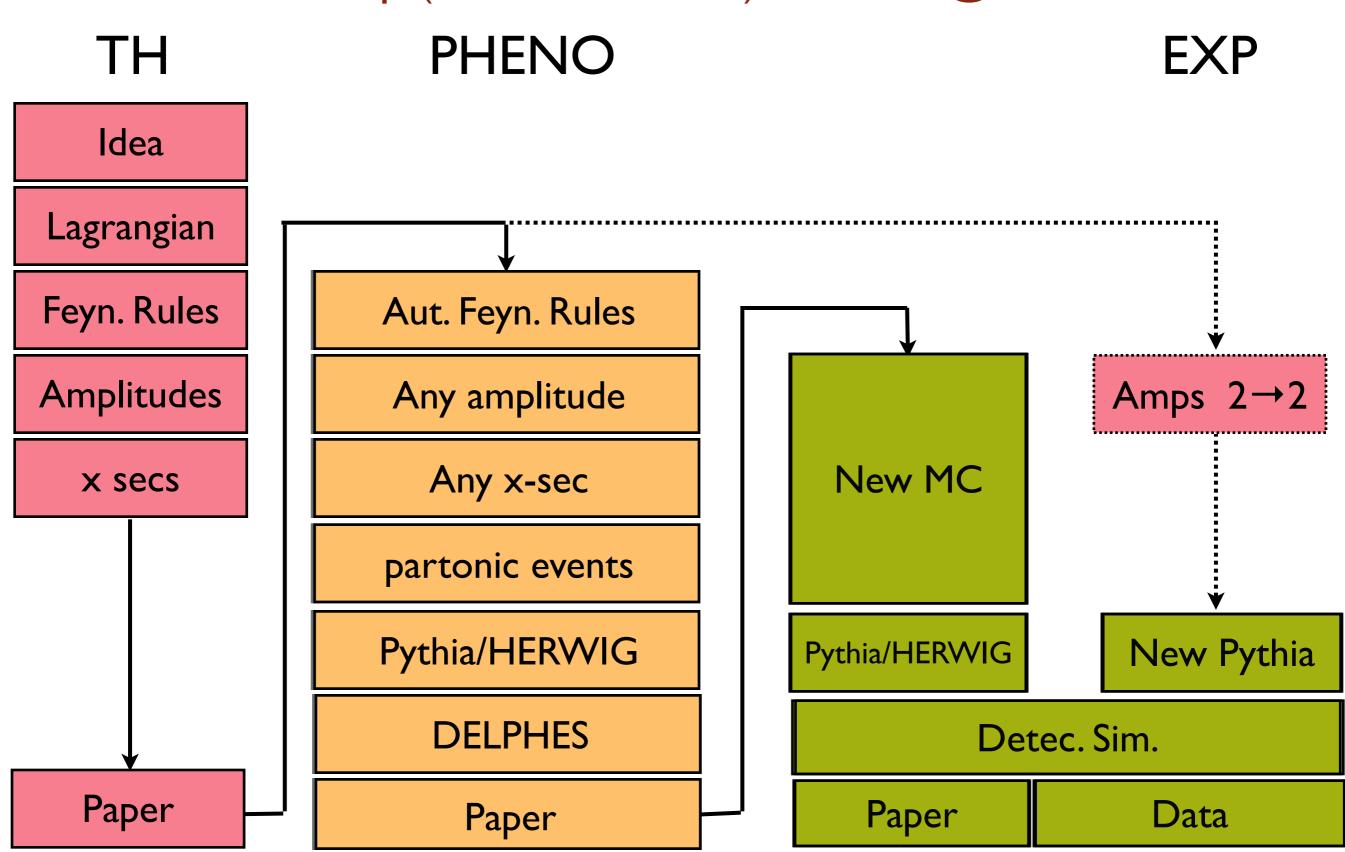
EXP







- Workload is tripled!
- Long delays due to localized expertises and error prone. Painful validations are necessary at each step.
- It leads to a proliferation of private MC tools/ sample productions impossible to maintain, document and reproduce on the mid- and longterm.
- Just publications is a very inefficient way of communicating between TH/PHENO/EXP.



TH PHENO EXP

Idea

Lagrangian

Aut. Feyn. Rules

Any amplitude

Any x-sec

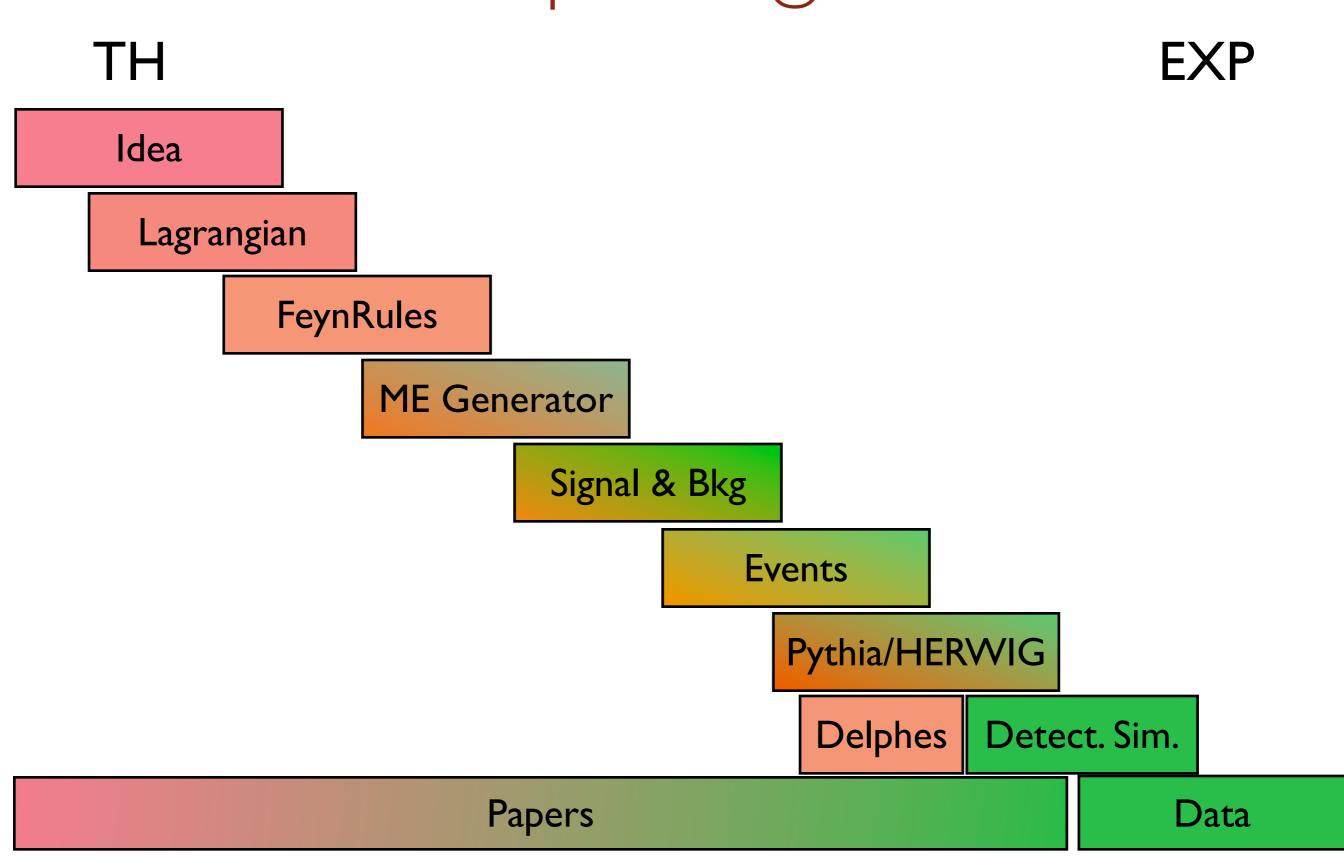
partonic events

Pythia/HERWIG

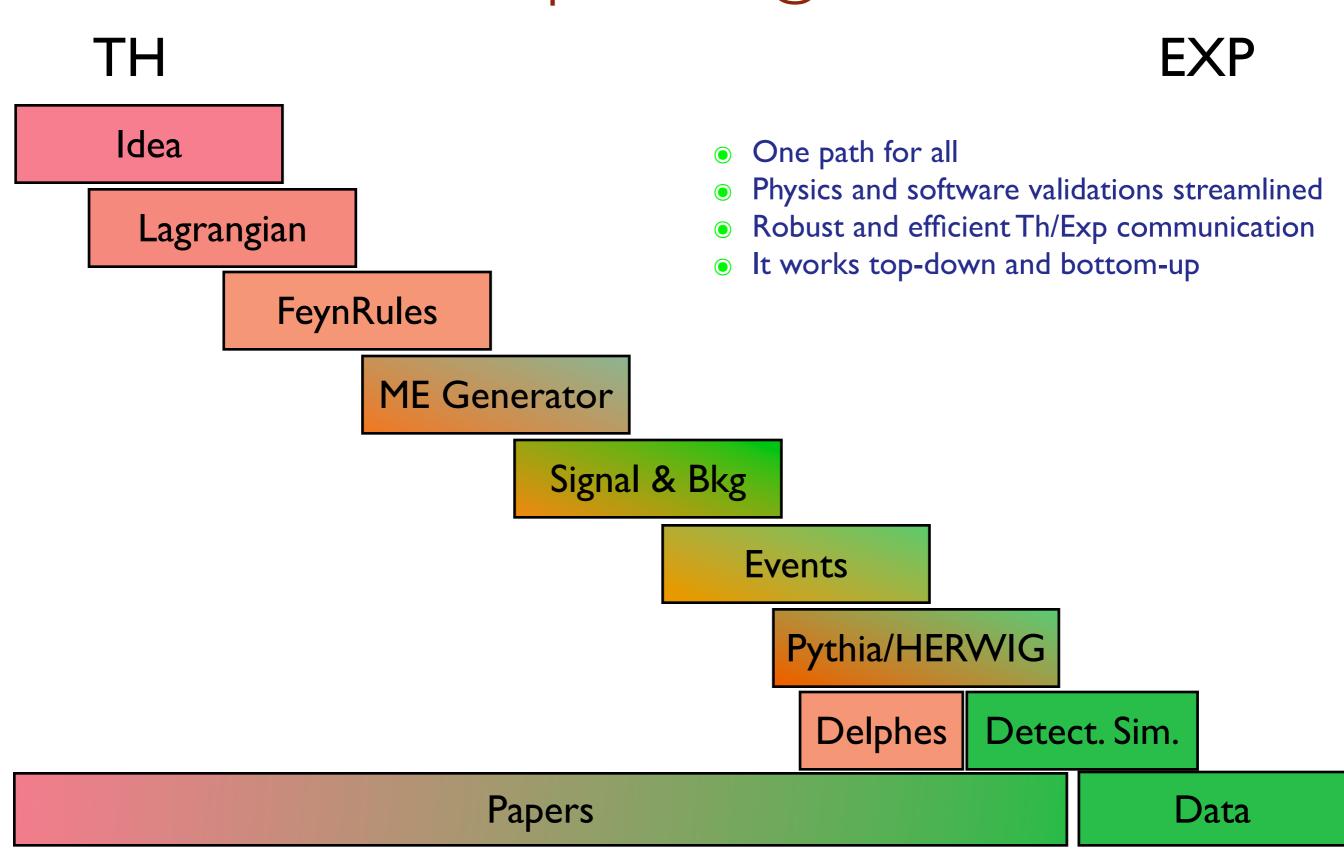
Detec. Sim.

Data

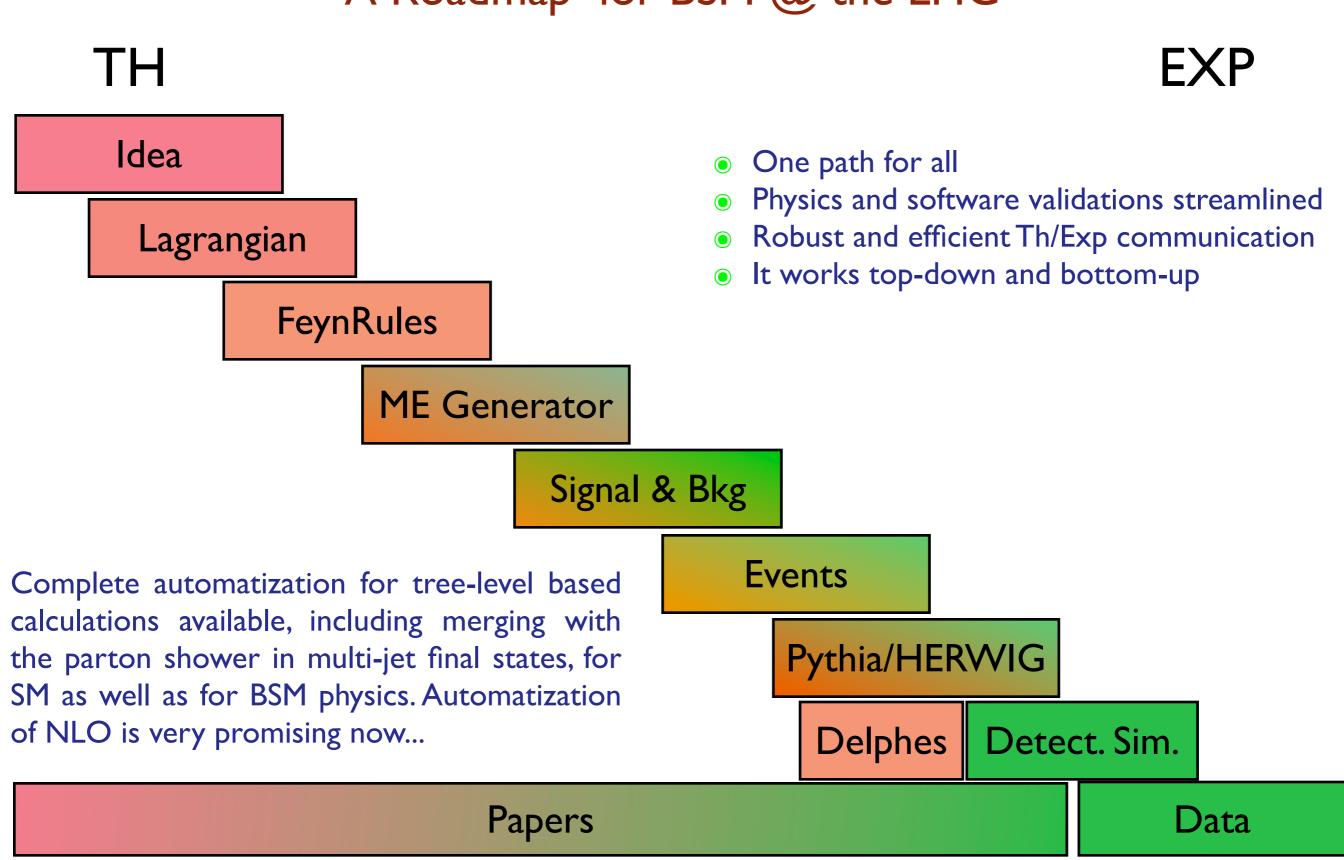
A Roadmap for BSM @ the LHC



A Roadmap for BSM @ the LHC

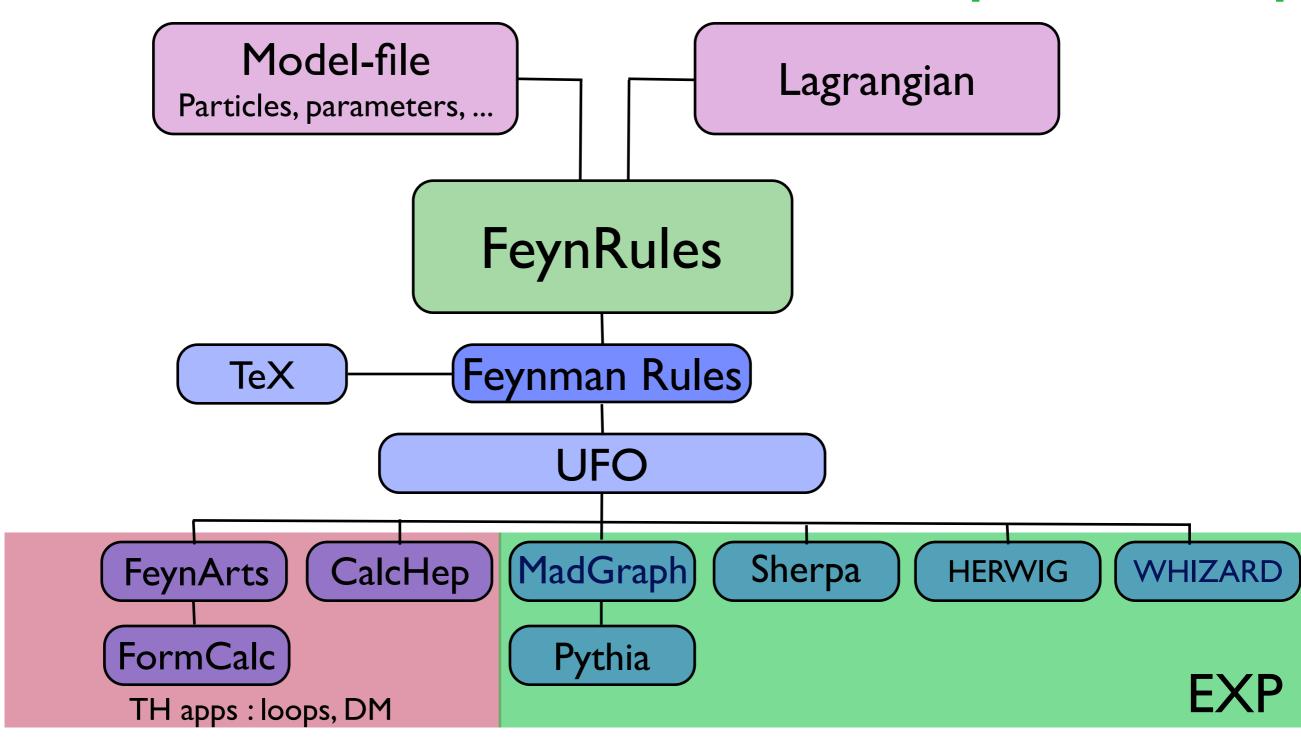


A Roadmap for BSM @ the LHC



A working implementation

[Christensen, et al.2009]



• The need for better description and more reliable predictions for SM processes for the LHC has motivated a significant increase of theoretical and phenomenological activity in the last years, leading to several important achievements.

- The need for better description and more reliable predictions for SM processes for the LHC has motivated a significant increase of theoretical and phenomenological activity in the last years, leading to several important achievements.
- A new generation of tools and techniques has been is available. Among the most useful is the matching between fixed-order and partonshower both at tree-level and at NLO.

- The need for better description and more reliable predictions for SM processes for the LHC has motivated a significant increase of theoretical and phenomenological activity in the last years, leading to several important achievements.
- A new generation of tools and techniques has been is available. Among the most useful is the matching between fixed-order and partonshower both at tree-level and at NLO.
- Fully efficient, flexible and robust BSM simulation chain being completed. Same level of sophistication as SM processes attained and both top-down and bottom-up approaches included.

- The need for better description and more reliable predictions for SM processes for the LHC has motivated a significant increase of theoretical and phenomenological activity in the last years, leading to several important achievements.
- A new generation of tools and techniques has been is available. Among the most useful is the matching between fixed-order and partonshower both at tree-level and at NLO.
- Fully efficient, flexible and robust BSM simulation chain being completed. Same level of sophistication as SM processes attained and both top-down and bottom-up approaches included.
- Automation of NLO and MC@NLO/POWHEG in sight.

- The need for better description and more reliable predictions for SM processes for the LHC has motivated a significant increase of theoretical and phenomenological activity in the last years, leading to several important achievements.
- A new generation of tools and techniques has been is available. Among the most useful is the matching between fixed-order and partonshower both at tree-level and at NLO.
- Fully efficient, flexible and robust BSM simulation chain being completed. Same level of sophistication as SM processes attained and both top-down and bottom-up approaches included.
- Automation of NLO and MC@NLO/POWHEG in sight.
- Shift in paradigm: useful TH predictions in the form of tools that can be used by EXP's. Communication and collaboration between THs & EXPs easier ⇒ emergence of an integrated LHC community.