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Theoretical setup

For Higgs production in VBF, we need the DIS structure fumtsi for scattering 6 a Z-boson
(neutral current) as well asffoa W*-boson (charged current), i.d?iV with i =1,2,3 andV €
{Z,W=}. To NLO, this has been documented well in Ref. [1] (see alea¢hiew Ref. [2]). Below,
we present formulae for the relevant structure functiorsetmnd order in QCD. For both, neutral-
and charged-current structure functions we employ the P@@entions [3].

Beyond NLO, there are three issues to address here.

¢ We need to implement the correct dependence of the PDFs dlatie quantum numbers.
e We need to separate the flavor non-singlet, pure-singleglrmh contributions, see Fig. 1.

e We need to implement the correct scale dependence kegpinag; .
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Figure 1:Sample diagrams for the non-singlet, pure-singlet andrgbamtribution to vector-bosoW(*, Z)
production. The dashed line indicates the final state cut.
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Figure 2:Sample diagram for the a new contribution beyond NNLO tosebbson YW=, Z) production in
the quark sector (non-singlet and singlet). The dashedditieates the final state cut.



Neutral-current Z-exchange

We expand the DIS neutral current structure functionzfexchang§f withk=1,2,3 as follows:

1 1
FZ(x Q) = a() f iz f dys(x—-y2) @
x Y (¥ +ad) {(qj(y>+m(y))c:ns(z)+2(qk(y>+ak(y>)ci,ps(z)+g(y)ci,g(z)},
1:1 k=1
1 ng
F56 Q) = f cz [ aystx-y2) Y 2 (a0)-60)C3ned. @
0o 0 =1

wherei = 1,2 and the pre-factors ag(x) = 1/2, ax(X) = x.
Here, the (anti)-quark and gluon distributions are dengted; andg and taken at the factor-
ization scalgu,. The singlet distributioms and the (non-singlet) valence distributiqfy are given

by
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The non-singlet part oIFf (k= 1,2) evolves like a flavor asymmetry of the typg,. The most
general definition of these asymmetries reads, see e.g. [4],
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We can use these relation to define
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With these relations, we arrive at the following alternatdxpressions deiZ,
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wherei = 1,2 andCjq = CI s+ Cips alsogs and anI of Egs. (3) and (6). Note, thadj s+ 0
starting at two-loop order. Likewise
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where gy, and Onsi of Egs. (4) and (7) have been used. Theftioent function is defined as

Cans=Canst Cg s Note, thatCy = C5 . up to two-loop order, i. eC3 ns # 0 starting only at

three-loop order. Thus, for all practical purposes, thenfof F% as given in Eq. (9) dtices.

Coupling constants

The coupling constants are given by
1_4gi2g,) u-type quarks
273 w
(% - %sinzew) d-type quarks
vigg = {

The codficient functionsC; parameterize the hard partonic scattering process. Thasndieonly
on scaling variable, and dimensionless ratios QF, u; and the renormalization scale. Their

complete scale dependence, i.e. the logarithmic toweRs=nu? /,uf andM = Q2/,uf (keeping
Hr # ;) is easily derived by renormalization group methods. Theupeative expansion dg; in
the strong couplings up to two loops reads in the non-singlet sector,
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and, likewise,
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Cosefficient functions
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and in the singlet sectdr

Ciq(®) = 61— x)+as{ Dy P(O)} (15)

1 All coefficient functions can be taken e.g. from Ref. [5]. Note, howgbat both the pure-singlet and the gluon
codficient functions need to be divided by a facigr(due to the conventions of Ref. [5] witle?) = 1/ns 3, el2 in the
case of photon exchange).
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wherei = 1,2 andas = as(y,)/(4r). We abbreviatdy = In(Q?/u?) andLg = In(u?/u?) and all

products are understood as Mellin convolutions. MoreouerhavePglq) =P+ Pé,ls) andci(zq) =
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Our expansion parameter is always= as/(4x) and the conventions for the running coupling
are
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wherepg, denote the usual four-dimensional expansionfiicients of the beta function in QCD,
i.e. starting with

= —Bodl-prac-prai—..., (18)
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In QCD, the color cofficients areCa = 3 andCg = 4/3. The splitting function@i('j) can be taken
e.g. from Ref. [4,6]. At leading order they read
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Pgg(X) = CA(l—x+x 8+4x—-4x“+ 35(1 X) 3nch(l X), (23)

Please also note the explicit factor oh¢2 in Eq. (21) which is due to the definition cﬁfgg in

Eq. (21) (and, likewise foPEllg)) in Ref. [6]. This factor originates from summation overgllarks
and anti-quarks>

Charged-current W*-exchange

For the charged current structure functidﬁ‘é’i with W=-exchange with = 1,2,3 we have at
leading order in QCD in terms of the parton densities

FV' (%) = 2x(U+d+s+E+b), (24)

2In analogy to the pure-singlet and the gluon fiieéent functions (see footnote 1) also the splitting furm:siﬁgog)
andPglg) in Egs. (15)—(17) need to be divided by a faatigr
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FY (x) = 2x(u+d_+§+c+5), (25)
FV'(x) = 2(—U+d+s—6+b), (26)
FYV (%) = 2(u—d_—§+c—g). 27

With these expressions, we can construct to leading or@esttiicture functions for the sum and
differencesW* + W~. The latter have well defined transformation propertiesenrtde standard
OPE of DIS.
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where the asymmetigo, s parametrizes the iso-triplet component of the proton,u.2.d and so

on. It arises from Eq. (5) as
Shs = > DL heij- (32)
ieu-typejed-type

In order to identify definite flavor representations for tH2H3 and the respective déeient
functions we expand the DIS charged current structure fomsfor W+* iW‘-exchangé:‘k’V+”—’W_
with k=1,2,3 as follows:
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Here we have used the relations &gr gy, andsqg,s of Egs. (3) and (4) and (32).
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Taking the sum and the ftierence, we obtain for the structure functidﬂ\{é’i with k=1,2
which describe individualv*-exchange,
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The respective results fd?iW+ are obtained from Egs. (37), (38) with the simple replacgmen
00ns = ~00hs:

Please recall, that the functlo@$ andC; q start to dffer only at two-loop order; up to NLO
there is no dierence (cf. the simple replacement rules in Ref. [1]). Rexdab, thatC3 ns = Cins
up to two-loop order.

This implies, that the iso-triplet component of the protays enters in a non-trivial way for
the first time at NNLO. It numerical impact is expected to baBtmough.

Coupling constants

The coupling constants are given by

v.:a;:ﬁ. (39)



Electromagnetic y-exchange

This interaction gives contributions to trﬁ%V structure function for = 1,2 only, because the-
exchange is not a CP-violating interaction.

Just as a reminder we recall that the structure fund%ig)lat leading order takes the following
form

Fl0 = xiqz(qi +a). (40)
i=1

wherens is the number of active flavors and the electromagnetic esaages = 2/3 for au-type
quark andg = —1/3 for ad-type quark.
At higher orders we have the following structure, e.g.ﬁér see e.g. Ref. [5],
XF) = CF s®0hs+(€%)(Coq®0s+Cog®0), (41)

where® denotes the Mellin convolution and

1«
& = n—f;qz. (42)

Finally according to the notation in Ref. [5],
Ci,q = Cins+Cips. (43)

Recall that for an even number of, we have(e?) = 5/18. According to Egs. (40), (41) we
can easily check that the quark combinatiggis

ds = AA{ D @+@)- Y. @@l (44)

i=u-type i=d-type

whereA(e?) = 1/2(e% - €5) = 1/6. Note thaig)s evolves like ags quark combination, see also [7].
RecallF} = 0.

Up to two-loop order we can recover the cases for neutral-clwadged current interactions
discussed above with the following set of substitutiéris Eq. (41). E.g. forF% we have, cf.

Eq. (8),
, 2
e — (% -3 S|n2(9W))
X 1FZ = x1F) , (45)
. 2
& - (3 - §sirf(ow))
and the PDFs remain unchanged.
Likewise, e.g. forF‘z’Vf we have, cf. Eq. (37)

€y -1
Xy = 1FZ{ _ , (46)
Ohs = 00 = [(U—U) = (d=d)] +[(c—C) — (5= 9] +...

where substitution of the nonsinglet PDF accounts for tlo@@r quark-flavor dependence.

3The pure-singlet and the gluon dheient functions of Ref. [5] need to be divided by a factgrdue to the
conventions of Eq. 42.
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