

Matrix-Element Method Tutorial: MadWeight

Olivier Mattelaer IPPP/Durham

PLAN

- Instruction
 - → Theoretical reminder
 - description of the exercise
- Installation
- Tutorial
- Conclusion

Associate to each experimental event characterised by p^{vis} , the probability $\mathcal{P}(p^{vis}|\alpha)$ to be produced and observed following a theoretical assumption α

$$\mathcal{P}(\mathbf{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}^{vis}} \int d\Phi dx_1 dx_2 |\mathbf{M}_{\alpha}(\mathbf{p})|^2 W(\mathbf{p}, \mathbf{p}^{vis})$$

- $|M_{lpha}(p)|^2$ is the squared matrix element
- $oldsymbol{\square}$ $W(oldsymbol{p},oldsymbol{p}^{vis})$ is the transfer function
- $\Box \int d\Phi dx_1 dx_2$ is the phase-space integral

Weight Evaluation

$$\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \int d\Phi dx_1 dx_2 |M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$$

Four Elements:

- 🗆 cross-section
- matrix-element
- transfer function

integration

Computed via

- 1 MadGraph 5
- 1 MadGraph 5
- □ fitted from MC

Madweight

MadWeight

MadWeight returns:

$$\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \sum_{\alpha} \int d\Phi dx_1 dx_2 |M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$$

Líkelíhood need to be correctly normalized

$$L(\alpha) = \prod_{i=1}^{N} \mathcal{P}(\boldsymbol{p}_{i}^{vis} | \alpha)$$

$$-ln(L(\alpha)) = -\sum_{i=1}^{N} ln(P_i^{MW}) + N * ln(\sigma_{\alpha})$$

History

- □ 2009: MadGraph4 Implementation
- 2011: Private Implementation in MadGraph5
 - Initial State Radiation Support
 - SubProcess grouping (speed)
 - □ NWA (speed)
- 2013: MadWeight5
 - ☐ Improve cluster support (speed)
 - □ (MC over jet/parton assignment (speed)
 - □ pre-training (speed)
 - □ better multí-channel (speed)
- □ 2014: MadWeight5
 - □ Support for multi-transfert function estimated on the same phasespace point (speed)
 - □ Module of preselection of the jet/parton assignment (speed)

Jet-Parton assignment

0		12	3587							
1	1	0.935	5.230	83.80	0.00	1.0	0.0	0.00	0.0	0.0
2	4	-0.161	1.878	85.60	9.66	7.0	0.0	1.10	0.0	0.0
3	4	-0.223	5.295	45.64	5.43	3.0	0.0	0.30	0.0	0.0
4	4	0.695	2.208	37.99	7.68	8.0	0.0	3.63	0.0	0.0
5	4	1.164	3.357	49.01	6.95	13.0	0.0	2.66	0.0	0.0
6	6	0.000	6.035	39.48	0.00	0.0	0.0	0.00	0.0	0.0

Which jet correspond to which parton?

MW4: one integral per permutation

MW5: Monte-Carlo over the permutation

process	tf	permutation	Sum/MonteCarlo
tt semi leptonic	delta	24	7.5
tt semi leptonic	gauss	24	2
tt di leptonic	gauss	2	0.6
w+ j j	delta	2	1.5
tth (semi lept)	gauss	720	20

Speed benchmark

process	perm	MW4	MW5
tt semí lept	24	1h16	41s
tt fully lept	2	46s	10s
tth semí lept	720	> 2 days	10min
tth semí lept	48	> 3h	6min
tth fully lept	24	>1h	1mín
h>w+w->1lept	2	59s	<5s
h>w+w->2lept	1	8 s	<5s
zbb	24	39m	18 S
zh	24	43M	<5s

running on 1 core of a Intel core it 2.3 Ghz

Exercises

Installation:

- Download the tar-ball from indico
 - everything is inside
 - you are ready to go.

Exercise 1:

- Extract the top-quark mass from a sample of tt~ events (fully leptonic decay) at parton level
- Use the likelihood method (do not forget to normalize it)

Exercise 2:

- Same but at detector level
- Show the sensitivity to the transfer function

Exercise 3:

Add background

Installation

- Download the package from indico
- \$> tar -xzpf Tutorial.tgz
- You have
 - → Tutorial/samples/: samples of events that we will use
 - → Tutorial/MG5_aMC: code of MadGraph/ MadWeight
 - →Tutorial/MG5_aMC/bin/mg5_amc : executable
 - →Tutorial/mg5: symbolic link to the previous executable

Exercises

Installation:

- Download the tar-ball from indico
 - everything is inside
 - you are ready to go.

Exercise 1:

- Extract the top-quark mass from a sample of tt~ events (fully leptonic decay) at parton level
- Use the likelihood method (do not forget to normalize it)

Exercise 2:

- Same but at detector level
- Show the sensitivity to the transfer function

Exercise 3:

Add background

creation of the dedicated code:

- run the executable
 - \$> cd Tutorial
 - \$> ./mg5 (or ./MG5_aMC/bin/mg5_amc) [open a prompt]
 - mg5_amc> generate p p > t t~, t > b e+ ve, t~ > b~ mu- vm~
 - mq5_amc> output madweight MW_TT_FULL_LEPT

result:

Now you have a directory in your current directory:
 MW_TT_FULL_LEPT

comments:

- All LO MG5 syntax are supported (but no NLO)
- For semi-leptonic:
 - mg5_amc> generate p p > t t~, t > b e+ ve, t~ > b~ j j
 - mg5_amc> add process p p > t t~, t > b j j, t~ > b~ e- ve~

computing the weight:

mg5_amc> launch MW_TT_FULL_LEPT

OR

- \$> cd MW_TTT_FULL_LEPT
- ./bin/madweight.py

```
output:
```

```
Do you want to edit a card (press enter to bypass editing)?
                 : param_card.dat
  1 / param
 2 / run
                 : run_card.dat
 3 / madweight : madweight_card.dat
 4 / transfer
                 : transfer_card.dat
 5 / lhco
                 : input.lhco
vou can also
  - enter the path to a valid card or banner.
  - use the 'set' command to modify a parameter directly.
    The set option works only for param_card and run_card.
    Type 'help set' for more information on this command.

    call an external program (ASperGE/MadWidth/...).

    Type 'help' for the list of available command
  - use the 'change_tf' command to set a transfer functions.
 [0, done, 1, param, 2, run, 3, madweight, 4, enter path, ...][60s to answer]
```

comments:

- param: default model parameter
 transfer: definition of TF
- run: accelerator/cut (if used)
 lhco: input data for events
- madweight: see later

define transfer function:

- answer the question with
 - change_tf all_delta

output:

The same question is re-asked.

comments:

- This defines ONLY the functional form of the transfer function
- The numerical coefficient can changed in transfer_card.dat
- They are no numerical coefficient for this transfer function
 - neutrino are not constraint
 - all other particles are assumed to be perfectly measured
- You can define your own functional form if needed (see backup)

define the input file / number of events /...

- answer the question with
 - madweight

output

open the madweight_card within an editor (typically vi)

action

- change
 - the number of event to 25 (nb_exp_events)
 - the input path to .(.)/samples/parton.lhco.gz (inputfile)
 - define a scan over the top mass from 163 to 183 (by step of 5GeV
 - name of the run to "parton" (name)

comment

- Note that this card de-activate the cut of the run_card. (use_cut)
- you can change each of those parameters with "set name VALUE"

MadWeight_card

other interesting parameters

- nb_event_by_node: for running on cluster. (option for cluster define in MG5_aMC/input/mg5_configuration.txt)
- use_cut: defines if the cut of the run_card are applied or not. (in principle no cut should be applied)
- permutation: using only one (or all) jet-parton assignment
- montecarlo: using MC over the jet-parton assignment
- more info on the card: see the online wiki.

launch the run

- answer the question with
 - done (or just press enter)

What's going on

- The parametrization of the phase-space is chosen
- The actual computation takes places (N_event*Nth)

output

- in Events/parton/
 - un-normalized_likelihood.out: -ln(L) without the cross-section
 - weights.out: column format with the weights
 - output.xml: structured format contains details of the computation
 - The amount of information depends of the "log_level" parameter (can contain weight for each permutation/full log/...)

Compute the normalization factor

- we will use mg5_amc for that
- \$> ./mg5 (or ./MG5_aMC/bin/mg5_amc) [open a prompt]
- mg5_amc> generate p p > t t~, t > b e+ ve, t~ > b~ mu- vm~
- mg5_amc> output MG_TT_FULL_LEPT
- mg5_amc>launch

output:

```
The following switches determine which programs are run:

1 Run the pythia shower/hadronization:

2 Run PGS as detector simulator:

3 Run Delphes as detector simulator:

4 Decay particles with the MadSpin module:

5 Add weights to the events based on changing model parameters: reweight=OFF
Either type the switch number (1 to 5) to change its default setting,

or set any switch explicitly (e.g. type 'madspin=ON' at the prompt)

Type '0', 'auto', 'done' or just press enter when you are done.

[0, 1, 2, 3, 4, 5, auto, done, pythia=ON, ...] [60s to answer]
```

output:

we do not need any of this (shower/...) so just press enter


```
output:
             Do you want to edit a card (press enter to bypass editing)?
               1 / param
                              : param_card.dat
               2 / run
                              : run_card.dat
               9 / plot
                              : plot_card.dat
              you can also
                - enter the path to a valid card or banner.
                - use the 'set' command to modify a parameter directly.
                  The set option works only for param_card and run_card.
                  Type 'help set' for more information on this command.

    call an external program (ASperGE/MadWidth/...).

                  Type 'help' for the list of available command
              [0, done, 1, param, 2, run, 9, plot, enter path] [60s to answer]
```

action:

- edit the run_card.dat to remove ALL cut. (type run to edit the card)
- then type "set mt scan:range(163,185,5)" [this defines a scan on the top mass]
- then press enter

output:

- MG_TT_FULL_LEPT/Events/scan_run_[01-05].txt
 - contains the cross-section for each top mass value

make the plot

use your favorite program for that:

Expected output

Exercises

Installation:

- Download the tar-ball from indico
 - everything is inside
 - you are ready to go.

Exercise 1:

- Extract the top-quark mass from a sample of tt~ events (fully leptonic decay) at parton level
- Use the likelihood method (do not forget to normalize it)

Exercise 2:

- Same but at detector level
- Show the sensitivity to the transfer function

Exercise 3:

Add background

creation of the dedicated code:

\$> cd MW_TTT_FULL_LEPT

comments:

 Since the process is the same (but not the transfer function) we can reuse the same directory/code

configure:

- run ./bin/madweight.py
- at the question type "change_tf dbl_gauss_pt_jet"

comment:

- the same as all_delta but for jet where the pt is related to a resolution function (double gaussian where each parameter is a function of the pt)
- Now you can edit the value of various parameter in the transfer_card

change the path to the event file:

- pass to ../samples/detector.lhco.gz
- change the name to "detector"

expected output:

question:

explain the bias (the correct value is 173)

study the impact of transfer function

- rerun the same computation but with the variance of the transfer function divide and multiply by two.
- do it in a single run.

edit transfer_card.dat

all entry should have three entries:

4 0.9518d0 # sigma first gaussian

• 4 1.8d0 # for the second tf

• 4 0.47 # for the third tf

unmodified parameter should also have three entries.

run and compare the running time

Exercises

Installation:

- Download the tar-ball from indico
 - everything is inside
 - you are ready to go.

Exercise 1:

- Extract the top-quark mass from a sample of tt~ events (fully leptonic decay) at parton level
- Use the likelihood method (do not forget to normalize it)

Exercise 2:

- Same but at detector level
- Show the sensitivity to the transfer function

Exercise 3:

Add background

Exercise III: background Durham University

run and compare the running time

- background is here w+ w- + 2j
- in samples

Conclusion

 Thanks for your participation, questions and remarks.

Define transfer function


```
TF JET
##*******************************
<blook name='jet'>
                   #name can be anything
<info> doubel gaussian with parameter depending of the energy </info>
<particles> u,d,s,c,b,g </particles>
# this defined when this tf will be used the letter correspond to the label in
        particles.dat
<width_type> large </width_type>
# width_type should be thin or large (thin is for energy acuurate up to 5-10%)
<variable name='E'>
<tf>
       prov1=(#1+#2*dsqrt(pexp(0))+#3*pexp(0))
       prov2=(#4+#5*dsqrt(pexp(0))+#6*pexp(0))
       prov3=(#7+#8*dsqrt(pexp(0))+#9*pexp(0))
       prov4=(#10+#11*dsqrt(pexp(0))+#12*pexp(0))
       prov5=(#13+#14*dsqrt(pexp(0))+#15*pexp(0))
       tf=(exp(-(p(0)-pexp(0)-prov1)**2/2d0/prov2**2))
                                                                 !first gaussian
       tf=tf+prov3*exp(-(p(0)-pexp(0)-prov4)**2/2d0/prov5**2)
                                                              !second gaussian
       tf=tf*((1d0/dsqrt(2d0*pi))/(prov2+prov3*prov5))
                                                              !normalisation
</tf>
<width>
       prov2=(#4+#5*dsqrt(pexp(0))+#6*pexp(0))
       prov5=(#13+#14*dsqrt(pexp(0))+#15*pexp(0))
       width=max(prov2,prov5)
</width>
</variable>
# in this case THETA/PHI are not defined because they are considered
# in delta (=default)
# The same syntax apply
</block>
```