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Motivation for single top

• Why have we worked so hard on single top production?
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• Looking to the future: single top as a prototype for new physics searches.
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Relative sizes

• t-channel dominant.

• For the s-channel, have to leave
it all on the field at the Tevatron.

• Wt significant at the LHC, but
similar situation to s- at the
Tevatron.

• Both main channels not much
affected by lower energies at
the LHC, e.g. reduced by a
factor of two for 14 → 10 TeV.

• (single top)/(top pairs) relatively
independent of energy.
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t-channel logarithms
• As already noted, the Wt and t-channel processes are enhanced by a 

collinear logarithm.

• This results from integrating over the t-channel propagator.
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Absorbing into PDFs

• Putting it together:

• But the first part resembles the evolution equation for a quark:

• So, when the logarithms really dominate, can replace this description by 
an equivalent one:

• Scale of the bottom quark PDF should be related to pT,max.

• At all orders, the two would agree. Otherwise, differ by:

• evolution of logarithms in b-PDF: they are resummed;

• ranges of integration (obscured here);

• approximation by large logarithm.
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ACOT
• A sensible way of combining the two approaches was formally identified 

some time ago, in a procedure now known as the “ACOT” formalism.

• Roughly: use the bottom PDF (“5F scheme”) when the spectator b is 
unimportant, otherwise keep it explicit in the final state (“4F scheme”).

• The tricky question is still, what happens in the intermediate region?

• Deciding factor - simpler to calculate with one less external leg.

• All higher order
calculations performed
 in the 5F scheme.

• Terms from 4F scheme enter
at NLO. Properties of
final-state b only LO.

• All calculations presented so far set mb=0 in final state for simplicity.
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Aivazis, Collins, Olness & Tung, PRD50, 3102 (1994)

2→2

2→3
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• Would like:

• control of large logarithms i.e. in the pT(b)→0 region; NLO
predictions for the same;

• faithful description (i.e. mb non-zero) otherwise.

• ACOT formalism difficult to realise in a parton shower.

• “Effective NLO approximation”: separate regions according to pT(b) and 
use NLO 2→2 below (+shower) and LO 2→3 above.

• implemented in (CompHEP) SingleTop and used by D0 and CMS.

• Ad-hoc matching well motivated but theoretically unappealing. 

CompHep-SingleTop
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matched 
at 10 GeV

Boos et al., 
Phys. At. Nucl. 
69, 1317 (2006)
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A fresh approach

• Use the 4F (2→3) process as the Born and calculate to NLO.

• harder calculation due to extra parton and mass;

• “spectator b” distributions assessed at NLO;

• compare with 2→2 to assess logarithms and applicability;

• starting point for future NLO+PS beginning at 2→3.

• The 5F calculation simplifies greatly due to color.
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JC, Frederix, Maltoni, Tramontano, arXiv:0903.0005

→0, due to tr(Ta)=0

(virtual diagrams are 
only vertex corrections 
on each line separately)

interference vanishes, due to tr(Ta)=0

(s- and t-channels remain 
separated at NLO)
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2→3 factorization
• The same arguments still mostly apply. Majority of matrix elements can be 

uniquely associated with either the light or heavy quark current.

• Vertex corrections on the light
current (as before), but boxes
on the heavy current.

• Most real corrections clearly
associated with one or other
of the currents.

• Most interferences between the two
currents vanish by the same color
argument once again. 
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virtual,
heavy current

real emission,
heavy current

interference, 
zero (also for 
corresponding 
real diagram)
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Near-factorization

• Not all real emission pieces factorize so neatly, but non-factorizing pieces 
are always color-suppressed.

• s-channel and t-channel in
principle mix at this order,
although we have checked
this interference is small
(<0.5%) and dropped.
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factorizing leading 
term N2CF2

subleading 
interference N2CF

factorizing leading 
term N2CF

subleading 
interference NCF



John Campbell, University of Glasgow

Outline of calculation

• Analytic computation of helicity amplitudes via standard methods.

• Cross-checks:

• gauge invariance, CP, mb ↔ mt symmetry;

• two different reduction schemes;

• divergences checked by two implementations of dipole method.

• Most interesting check comes from crossing the whole calculation.

         

• Excellent agreement found. 

• Calculation implemented in the MCFM parton-level NLO code.
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top spin available

change couplings,
mt → mb, sign of 
boson virtuality

Nason & Oleari, NPB521, 237 (1998)
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MCFM commercial
• General purpose NLO code: http://mcfm.fnal.gov.

• Unified approach to many signal and background processes at the 
Tevatron and LHC.

• Recent inclusion of numerical approaches to virtual corrections
(H+2 jets, WW+jet).

• Also quarkonia (spectrum and polarization of Υ, J/ψ at HERA).

• Future goal: extend to higher multiplicity final states, e.g. W+3 jets.
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W+0,1,2 jets
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v5.4 as of 3/12/09
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http://mcfm.fnal.gov
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Setup

• Use mt=172.5 GeV and mb=4.7 GeV.

• Need to take some care with PDFs for consistency.

• for the 2→3 (4F) calculation, the b-quark should not enter in the 
evolution of the strong coupling or the PDFs;

• for the 2→2 (5F scheme), use a regular PDF;

• alternatively, could use 5F set for both and pass to the 4F scheme 
using well-known transition rules.

• Depart from majority of 2→2 calculations by using mb non-zero in NLO 
real emission diagrams.

• explicit logarithm cancelled using ACOT formalism;

• negligible effect on total rate, distributions of top, light jet;

• significant effect on the b jet.

13

MRST2004nlo

Cacciari et al., JHEP05, 007 (1998).
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4F vs 5F scale dependence

• Both schemes much 
improved from LO.

• 2→2 calculation only mildly 
sensitive to scale at NLO
(use mt in what follows).

• 2→3 expected to be 
worse, but isn’t by much.

• No region of overlap 
between the two.

• 2→3 seems to prefer scales 
smaller than mt, particularly 
at the Tevatron.
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Scale dependence of 4F

• Take advantage of heavy/light separation to choose different scales on 
each line.

• expect heavy scale to be smaller since related to g→bb splitting.

• split (subleading) ambiguous terms equally.
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light scale fixed, 
heavy varying

heavy scale fixed, 
light varying

• Tevatron (but LHC similar).

• Stronger dependence on 
heavy line, as expected.

• Preference for scales 
smaller than mt.

• Choose central values:
μL=mt/2, μH=mt/4.
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Total rates and uncertainties

• Estimate uncertainty from scale dependence: renormalization and 
factorization independent, variation by a factor of two.

• Switch to more modern PDF (CTEQ6.6).

• Tevatron: 30% difference at LO becomes 6% at NLO, well within the 
combined uncertainty.

• LHC: 10% difference at LO not improved at NLO. Marginally consistent 
due to <5% uncertainty in both schemes. 

• Perturbative expansion is well-behaved

• small scale uncertainty, corrections are mild.

• Larger differences (and uncertainties) if one uses mt scale throughout.
16
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• PDF uncertainty dominant at the Tevatron, but not at the LHC.

• Consistency at the Tevatron: logarithms not so dominant?

• Combined NLO estimate (conservative scale/PDF errors only):

• For the LHC, difference could point to either:

• large logarithms being resummed;

• the need for a NNLO calculation for the 2→2 process
(2→3 NLO calculation would be included in that).
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slight reduction in central value,
but much larger uncertainty

σt(4F/5F) = 1.92 +0.30
−0.42 pb

[
σs = 0.84 +0.09

−0.09 pb
]
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Top quark and light jet distributions

• 2→3 NLO distribution normalized to 2→3 LO one (= 2→2 NLO).

• Jet defined by pT>15 GeV, ΔR>0.7.

• Some differences, but typically at the level of 10% or less.

• Similar for transverse momenta.
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Bottom quark rapidity distribution

• Would be completely wrong with mb=0.

• First NLO prediction for such a quantity.

• Peak shifted more forward at the Tevatron in the 2→3 calculation
 - for a given sign of the top (and bottom).

• Bigger deviations, up to 20-30%, common.
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Rapidity vs. MC

• Comparison with 
Madgraph/Madevent 
and Pythia.

• Showering from 2→3 
goes the other way 
from NLO corrections.
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• Combined 
b and anti-b 
distribution.

• Significant 
broadening 
of peak.
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Bottom quark pT distribution

• NLO prediction throughout the whole range. 

• different slope at the Tevatron: more b’s at low pT.

• Future study: contrast with parton shower, SingleTop, Madevent, etc.
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Transverse momentum vs. MC
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• Completely different kinematics in default Pythia.

• Showering from 2→3 similar to NLO.
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Theory perspective: I
• Understanding backgrounds is hard.

• W+jets including heavy flavor is top of the list.

• Leading order + PS clearly doesn’t describe this data well.

• Checking NLO effects at the moment ...

• ... but hard to account for such a large difference.

• Would be fantastic to have an in-situ (i.e. within single top analysis) 
determination of rates for W+1,2,3 jets with 1 or 2 b-tags.

• Background shapes a large part of final error.

• Some NLO calculations available; what else can we do to help?
23

CDF Note 
9321

σb-jets(W + b-jets)×BR(W → "ν)ALPGEN = 0.78 pb

JC, Febres-Cordero, Reina et al. (w/ C. Neu)
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Theory perspective: II
• Extraction of Vtb/anomalous coupling very sensitive to theory input.

• Not so much of an issue now, but something for the precision future.

• Top mass important, e.g. 10% change in cross-section for 170→175 GeV.

• Other uncertainties: PDF (beware the bottom quark!), scale, αs, mb.
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Calculation Reference PDF cross- 
section

uncert.

s- NLO e.g. Sullivan, PRD
70 (2004) 114012 CTEQ6.6M 0.42 (+0.4, -0.4)

s- NNNLO* Kidonakis, PRD 
74:114012,2006. MRST2004NNLO 0.52 (+0.03, -0.03)

t- 2→3 NLO JC et al.,
arXiv:0903.0005 CTEQ6.6M 0.93 (+0.16, -0.18)

t- 2→2 NLO e.g. Sullivan, PRD
70 (2004) 114012 CTEQ6.6M 0.99 (+0.12, -0.10)

t- 2→2 NNNLO* Kidonakis, PRD 
74:114012,2006. MRST2004NNLO 1.12 (+0.06, -0.06)

* = exact to NLO, leading logs at NNNLO

e.g. down by ~10% from 2004 to now
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Summary and to-do list
✓ Different, but equivalent, calculation of t-channel single top.

✓ Allows exploration of theoretical assumptions and prejudice.

✓ The two calculations are in excellent agreement at the Tevatron, but 
marginal at the LHC. Slight reduction in expected cross section (3-10%).

✓ Spectator b distribution predicted at NLO throughout entire region, 
significant corrections.

‣ Detailed assessment of impact on current single top searches:

‣ comparison with event generators;

‣ effect on matrix element method.

‣ Systematic uncertainty study.

‣ Application to fourth-generation heavy quark searches (t’ and b’).

‣ Inclusion of top quark decay.

‣ Implications for other heavy-quark initiated predictions (5F vs. 4F).

‣ Inclusion in a full shower (a la MC@NLO).
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