

NLO / Loop Induced

- check that everything is working @NLO
 - → p p > mu+ mu- [QCD]
 - \rightarrow pp > t t~ [QCD]
- Compare for your BSM model
 - → pp > uv uv~ @LO and @NLO
 - perform the decay of uv uv~ with full spin correlation

- generate g g > h j in heft (Effective Field Theory)
- Do the same in the SM with the full loop
- Compare

Exercise I: Matching

- I. Generate p p > w+ with 0 jets, 0, 1 jets and 0, 1, 2 jets

 (Each on different computers use the most powerful computer for 0, 1, 2 jets)
 - a. Generate 20,000 events for a couple of different xqcut values.
 - b. Compare the distributions (before and after Pythia) and cross sections (before and after Pythia) between the different processes, and between the different xqcut values.
 - c. Summarize: How many jets do we need to simulate? What is a good xqcut value? How are the distributions affected?

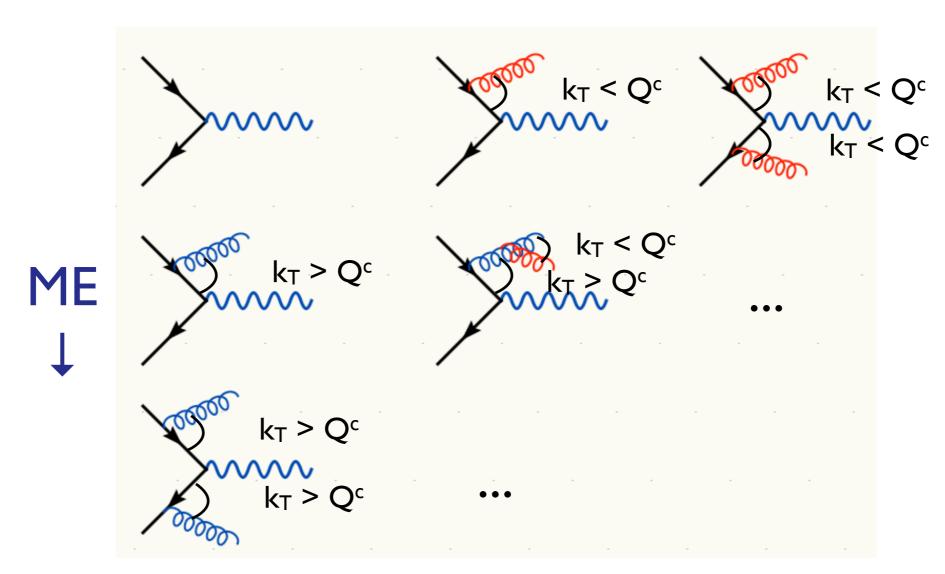
Matching (reminder)

Merging ME with PS

[Mangano]
[Catani, Krauss, Kuhn, Webber]

 $PS \rightarrow$

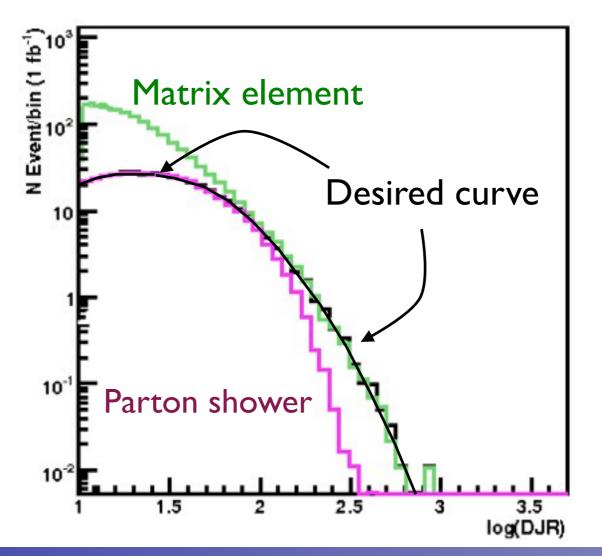
$$pp o W^+$$
 $pp o W^+ j$
 $pp o W^+ jj$
 $pp o W^+ jj$
 $pp o W^+ jj$



Merging ME with PS

[Mangano]
[Catani, Krauss, Kuhn, Webber]

 $PS \rightarrow$

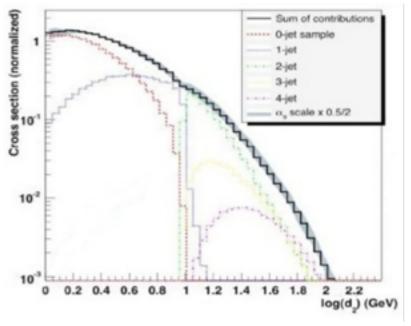

Double counting between ME and PS easily avoided using phase space cut between the two: PS below cutoff, ME above cutoff.

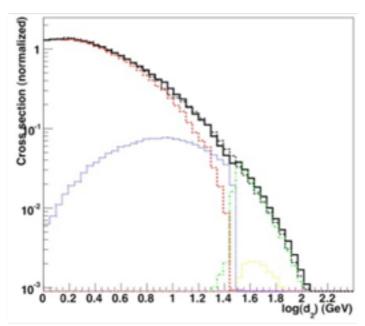
Goal for ME-PS merging/matching

- Regularization of matrix element divergence
- Correction of the parton shower for large momenta
- Smooth jet distributions

2nd QCD radiation jet in top pair production at the LHC, using MadGraph + Pythia

Summary of Matching Procedure


- I. Generate ME events (with different parton multiplicities) using parton-level cuts ($p_T^{ME}/\Delta R$ or k_T^{ME})
- 2. Cluster each event and reweight α_s and PDFs based on the scales in the clustering vertices
- 3. Apply Sudakov factors to account for the required non-radiation above clustering cutoff scale and generate parton shower emissions below clustering cutoff:
 - a. (CKKW) Analytical Sudakovs + truncated showers
 - b. (CKKW-L) Sudakovs from truncated showers
 - c. (MLM) Sudakovs from reclustered shower emissions



Validation

- 1. The matching scale (QCUT) should typically be chosen around 1/6-1/2 x hard scale (so xqcut correspondingly lower)
- 2.The matched cross section (for X+0,1,...
 jets) should be close to the unmatched
 cross section for the 0-jet sample
 (found on the process HTML page)
- 3. The DJR should be smooth

How to.

- generate the diagram with
 - generate
 - add process
- output
- launch
 - → ask to run pythia
 - In run_card: put icckw=1
 - set the value for xqcut
 - → In pythia_card set a value for qcut
- Qcut is the matching scale (the separation between the shower and the matrix element
- xqcut should be strictly lower (by at least 10-15GeV) than qcut

Solution

	w+0j	w+1j	w+2j	w+3j
no matching	8.35E+04	1.58E+04	8.7E+03	3.5E+03

	1GeV	10GeV	20GeV	50GeV	100GeV	500GeV
w+0	8.35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04
0+1	1.07E+05	9.09E+04	8.91E+04	8.61E+04	8.40E+04	8.35+04
0+1+2	1.12E+05	9.29E+04	9.03E+04	8.66E+04	8.44E+04	8.35E+04
0+1+2+3	1.20E+05	9.47E+04	9.07E+04	8.68E+04	8.40E+04	8.35E+04

Slow

Fast

low efficiency

High efficiency

	w+0j	w+1j	w+2j	w+3j
no matching	8.35E+04	1.58E+04	8.7E+03	3.5E+03

	1GeV	10GeV	20GeV	50GeV	100GeV	500GeV
w+0	₹35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04
0+1	1.07E+05	9.09E+04	8.91E+04	8.61E+04	8.40E+04	8.35+04
0+1+2	1.12E+05	9.29E+04	9.03E+04	8.66E+04	8.44E+04	8.35E+04
0+1+2+3	1.20E+05	9.47E+04	9.07E+04	8.68E+04	8.40E+04	8.35E+04

• No effect of the matching for 0 jet sample.

	w+0j	w+1j	w+2j	w+3j
no matching	8.35E+04	1.58E+04	8.7E+03	3.5E+03

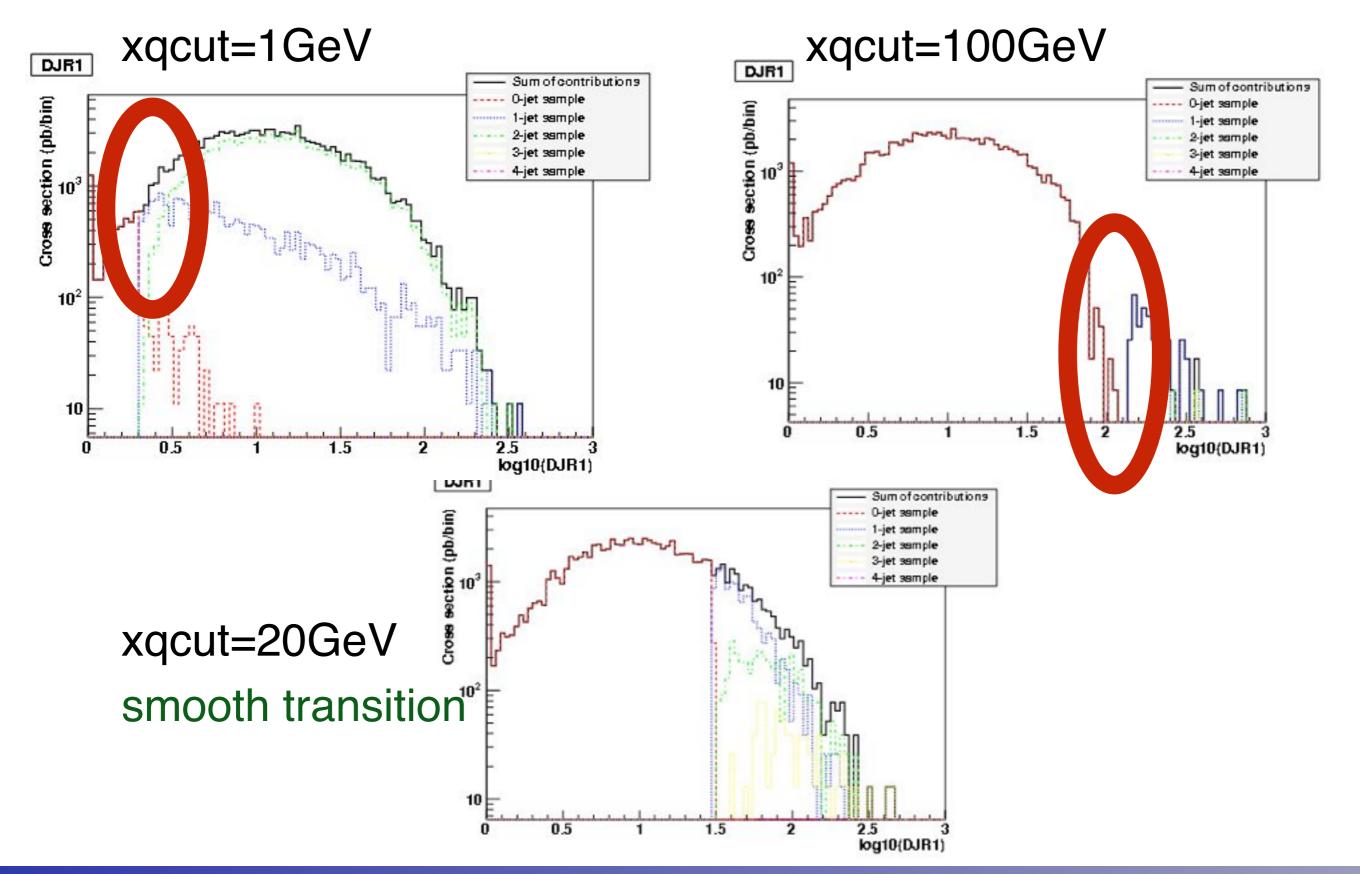
	1GeV	10GeV	20GeV	50GeV	100GeV	500GeV
w+0	8.35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04	.35E+04
0+1	1.07E+05	9.09E+04	8.91E+04	8.61E+04	8.40E+04	8.35+04
0+1+2	1.12E+05	9.29E+04	9.03E+04	8.66E+04	8.44E+04	8.35E+04
0+1+2+3	1.20E+05	9.47E+04	9.07E+04	8.68E+04	8.40E+04	35E+04

 matching scale too high only the 0 jet sample contributes => all radiations are from pythia

	w+0j	w+1j	w+2j	w+3j
no matching	8.35E+04	1.58E+04	8.7E+03	3.5E+03

	10°V	10GeV	20GeV	50GeV	100GeV	500GeV
w+0	8.35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04
0+1	1.07E+05	9.09E+04	8.91E+04	8.61E+04	8.40E+04	8.35+04
0+1+2	1.12E+05	9.29E+04	9.03E+04	8.66E+04	8.44E+04	8.35E+04
0+1+2+3	1.20E+05	9.47E+04	9.07E+04	8.68E+04	8.40E+04	8.35E+04

 matching scale too low. Only highest multiplicity sample contributes and low efficiency


	w+0j	w+1j	w+2j	w+3j
no matching	8.35E+04	1.58E+04	8.7E+03	3.5E+03

	10°V	10GeV	20GeV	50GeV	1 Jan V	500GeV
w+0	8.35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04
0+1	1.07E+05	9.09E+04	8.91E+04	8.61E+04	8.40E+04	8.35+04
0+1+2	1.12E+05	9.29E+04	9.03E+04	8.66E+04	8.44E+04	8.35E+04
0+1+2+3	1.20E+05	9.47E+04	9.07E+04	8.68E+04	3.40E+04	8.35E+04

• Wrong differential rate plot. so to discard.

	w+0j	w+1j	w+2j	w+3j
no matching	8.35E+04	1.58E+04	8.7E+03	3.5E+03

	1GeV	10GeV	20GeV	50GeV	100GeV	500GeV
w+0	8.35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04	8.35E+04
0+1	1.07E+05	9 J9E+04	8.91E+04	8.61E+0	8.40E+04	8.35+04
0+1+2	1.12E+05	9.29E+04	9.03E+04	8.66E+04	.44E+04	8.35E+04
0+1+2+3	1.20E+05	9.17E+04	9.07E+04	8.68E+0	8.40E+04	8.35E+04

- Relatively stable cross-section! Important check.
- Close to the unmatched 0j cross-section