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Outline of the lecture

1) Introduction
2a) Parton showering
2b) Soft physics (multiparton interactions)

Many previous lectures can be found at
http://users.phys.psu.edu/∼cteq and montecarlonet.org.
Further references at the end of the slides.
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Part 1: Introduction

a) Why do we need Event Generators?
b) Event generation at hadron colliders.
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How will we find what is out there?

Know what we want to look for…

Missing ET and jets (a.k.a. classical SUSY)?
Compressed masses?

Dark sectors?
New bound states?

Know what we’re facing…

QCD,
QCD,

QCD.

Assess if there is a realistic chance with our current experiments
…and check before building a new experiment.

We need an accurate representation of ”known” and ”unknown”
physics that comes as close to data as possible!
=⇒ Event generators
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High-energy scattering ab → ABC . . . of fundamental particles at the ”core” of
the collision

e
+

e
−

q

q̄
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Highly accelerated particles decellerate by radiating (especialy QCD emissions)
arbitrarily often,

e
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e
−

q

q̄
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…but even massive W- or Z-bosons can be radiated at very high energies.
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Colliding composite protons means there can be many interactions between the
proton constituents
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…which all produce yet more radiation.
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If all energies are small, we have a phase transition to a colour-neutral state
(by transitioning to “proto-hadron” colour strings)
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The colour-neutral strings then break up into tiny pieces forming (highly
excited) hadrons,
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and the excited hadrons decay into the particles (protons, pions, photons,
electrons …) we see in the detector.
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After all these steps, the simulation should match as closely as possible what
detectors record.

Jet?

Lepton?

U
n
d
er
ly
in
g
ev
en
t?
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Standard event generator frameworks

The three commonly used General Purpose Event Generators are

HERWIG
aa
Basic ME generator
aa
Angular ordered q̃ shower
and p⊥-ordered CS dipole
shower
aa
aa
YFS for soft photons
MPI afterburner
aa
Cluster hadronisation

a

PYTHIA
aa
Basic ME generator
aa
p⊥-ordered dipoles with
ME-corrections, VINCIA
antenna shower, DIRE
dipole parton shower.
aa
Photons from shower
Interleaved MPI
aa
String hadronisation

a

SHERPA
aa
Mature ME generator
aa
p⊥-ordered CS dipole
shower, DIRE dipole
parton shower
aa
aa
YFS for soft photons
MPI afterburner
aa
Cluster hadronisation

(Warning: No purists in this game. Every theorist has to learn and compromise)
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Part 2: Parton showering

a) Factorisation
b) From probabilities to parton showers
c) Parton shower details
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Jets

Hard scattering + Radiation cascade + Hadronisation + Hadron decays

−→ Leads to collimated sprays of particles called Jets

Jets are complicated objects to model in detail. But measuring only the
”macroscopic” properties of jets reduces the complexity considerably (1000s of
partices → to 10s of jets)

Jets are indispensable to be able to calculate scattering properties.

To model jets, we need to model the radiation cascade! 19 / 71



Factorisation: Divide and conquer

ū-quark

u-quark µ+-lepton

µ−-leptonPhoton

−ieγν−ieQuγµ

−igµν

(p1+p2)2+iǫ

Gluon

ε∗a/ (k)

ig3T
a
ij

i(p/−k/ )
(p−k)2+iǫ

v̄i(pb) ū(p1)

v(p2)uj(p)

Hadron

fb(xb, t)

f(x, t)

The hadronic cross section is

dσ(pp → µ+µ−g + X) = dxdxbf(x, t)fb(xb, t)dσ̂ , dσ̂ =

∣∣M(uū → µ+µ−g)
∣∣2 dΦn+1

4
√

(ppb)2
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Factorisation: Divide and conquer

ū-quark

u-quark µ+-lepton

µ−-leptonPhoton

−ieγν−ieQuγµ

−igµν

(p1+p2)2+iǫ

Gluon

ε∗a/ (k)

ig3T
a
ij

i(p/−k/ )
(p−k)2+iǫ

v̄i(pb) ū(p1)

v(p2)uj(p)

Hadron

fb(xb, t)

f(x, t)

E(p−k) ≈ zEp and small gluon p⊥ ⇒ Interal quark almost on-shell. Then:

i(�p − �k)
(p − k)2 ≈ u(pa)ū(pa)

p2a
, dΦn+1 ≈ dΦn

dϕdzdp2⊥
4(2π)3(1 − z) ,

1
4
√

(ppb)2
≈ z

4
√

(papb)2

=⇒ Matrix element, phase space integration and flux factors factorise! 21 / 71



Factorisation: Divide and conquer

ū-quark

u-quark µ+-lepton

µ−-leptonPhoton

−ieγν−ieQuγµ

−igµν

(p1+p2)2+iǫ

Gluon

ε∗a/ (k)

ig3T
a
ij

i(p/−k/ )
(p−k)2+iǫ

v̄i(pb) ū(p1)

v(p2)uj(p)

Hadron

fb(xb, t)

f(x, t)

Matrix element, phase space integration and flux factors factorise:

dσ(pp → µ+µ−g + X) = dσ(pp → µ+µ− + X)
∫

dp2⊥
p2⊥

dz
z

αs

2π
CF

f( xa
z , t)

fa(xa, t)
1 + z2

1 − z
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Factorisation: Divide and conquer

Every cross section containing an additional collinear parton can be factorised
as

dσ(pp → Y + g + X) = dσ(pp → Y + X)
∫

dp2⊥
p2⊥

dz
z

αs

2π

f( xa
z , t)

fa(xa, t)
P(z)

with the splitting kernels P(z)

Pqq = CF
1+z2

1−z
Pgg = CA

(1−z(1−z))2

z(1−z)
Pqg = TR

[

z2 + (1− z)2
]

This is independent of the process pp → Y + X!
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Emission probabilities

The splitting kernels
. . . are independent of the “hard” scattering;
. . . have a probabilistic interpretation:

∫ p2⊥max

p2⊥min

dp2⊥
p2⊥

∫ zmax

zmin

dz αs

2π
P(z) ≡

aa
Probability of emitting a parton with
momentum fraction 1 − z ∈ [zmin, zmax] and
transverse momentum p⊥ ∈ [p⊥min, p⊥max].

Also, note
dp2⊥
p2⊥

= dQ2

Q2 = dΘ2

Θ2 = dρ

ρ
(for ρ = f(z)p2⊥)

=⇒ Many variables can be used to characterise the collinear limit!

…and note that we’ve put the z-range [zmin, zmax]. The lower limit zmin comes
from the constraint xa

z < 1, the upper limit when conserving 4-momentum.
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Emission probabilities

Integrating the splitting probability, we get∫ p2⊥max

p2⊥min

dp2⊥
p2⊥

∫ zmax

zmin

dz αs

2π
P(z) ≈

∫ p2⊥max

p2⊥min

dp2⊥
p2⊥

∫ zmax

zmin

dz αs

2π

2CF/A
(1 − z)

≈ αs ln
(

p2⊥max

p2⊥min

)
ln
( zmax

zmin

)
More generally, we can write

dσ(pp → Y + g + X) = dσ(pp → Y + X) ⊗
(
αsc2L2 + αsc1L + αsc0

)
with L = ln

(
Q2/p2⊥min

)
, Q2 = O(p2⊥max), p2⊥min = O(ΛQCD).

Even more generally
dσ(pp → Y + ng) = dσ(pp → Y) ⊗ αn

s
(
c2nL2n + c2n−1L2n−1 + · · · + c0

)
dσ(pp → Y + ng) ≈ dσ(pp → Y)αn

s c2nL2n

⇒ Multi-parton cross sections approximated by multiplying splitting kernels.
⇒ Largest terms comes from “dressing” states with many collinear partons!
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Comments on iterating the collinear approximation

• (Multiple) gluon emission give the largest contribution to this
multi-parton cross section…but other QCD splittings (e.g. g → qq̄) give
very important sub-leading contributions, and are included!

• A careful analysis shows: The dominant contributions to the cross section
are produced by ordered emissions
…but any ordering

ρ0 > ρ1 > ρ2 > . . .

is allowed if dρ
ρ

= dp2⊥
p2⊥

. The many ways of choosing an ordering are one
major difference between parton shower Monte Carlo’s (see later).

• Sensible predictions respects energy-momentum conservation!

Most important, just multiplying splitting kernels gives dσ(pp → Y)αn
s c2nL2n,

which is divergent as p⊥min → 0 .

=⇒ Largest contribution for sure, but to give a sensible approximation of the
multi-parton cross section, we need to do more!
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Real-virtual cancellations and the Kinoshita-Lee-Nauenberg theorem

..

Pen-and-paper: Add Born + Real + Virtual

⟨O⟩NLO =
∫

BnO(Φn)dΦn +
∫

Bn+1O(Φn)dΦn+1 +
∫

VnOn(Φn)dΦn
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∫
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The Sudakov form factor

To give a sensible collinear approximation of the multi-parton cross
section, we also need approximate virtual corrections!

By looking at multi-loop integrals in the collinear limit, we find that that
approximate virtual corrections form an all-order Sudakov form factor

Π(ρ0, ρmin) = exp
(

−
∫ ρ0

ρmin

dρ

ρ

∫
dz

αs

2π
P(z)

)
= 1 −

∫ ρ0

ρmin

dρ1

ρ1

∫ z0

zmin

dz1
αs

2π
P1(z1)

+
∫ ρ0

ρmin

dρ1

ρ1

∫
dz1

αs

2π
P1(z1)

∫ ρ1

ρmin

dρ1

ρ1

∫
dz2

αs

2π
P2(z2) + . . .

. 1st-order virtual correction.

.

2nd-order virtual correction.

But how do we calculate this?

=⇒ Taking probabilities seriously!
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Taking probabilities seriously

We have already found:

δp2⊥
p2⊥

∫ z0

z1
dz

αs

2π
P(z) ≡

aa
Probability of an emission with 1 − z ∈ [z1, z0]
and p2⊥ in the range [p2⊥min, p2⊥min + δp2⊥].

Then the probability of no emission is

1 − δp2⊥
p2⊥

∫ z0

z1
dz

αs

2π
P(z)

or, if δp2⊥ is divided into n parts, and the no-emission probabilities are
independent[
1 − δp2⊥/n

p2⊥

∫ z0

z1
dz

αs

2π
P(z)

]n
→

n→∞
exp

(
−
∫ p2⊥min+δp2⊥

p2⊥min

dp2⊥
p2⊥

∫ z0

z1
dz

αs

2π
P(z)

)

The Sudakov factor is the probability of no resolvable emission in the
range [p2⊥min, p2⊥min + δp2⊥], where resolvable means 1 − z ∈ [z1, z0].
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Branching probabilities

Thus: ∫ ρ0

ρmin

dρ

ρ

∫ z0

z1
dz

αs

2π
P(z) ≡

aa
Probability of a resolvable emission
with p2⊥ in the range [ρmin, ρ2

0].

exp
(

−
∫ ρ0

ρmin

dρ

ρ

∫ z0

z1
dz

αs

2π
P(z)

)
≡

aa
Probability of no resolvable emission
with p2⊥ in the range [ρmin, ρ0].

We can construct an all-legs and all-loops result based on probabilities!
=⇒ Ideal for numerical iteration with random numbers.
=⇒ Monte Carlo parton showers.
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An algorithm to produce multiple emissions

0. Construct a state with no emissions.

1. Begin algorithm at a “largest p⊥” ρmax (evolution parameter).

2. Propose a state change by emitting at ρ < ρmax.

3. Decide if a new state should be constructed according to the
splitting function probability. If yes, construct the new state.

4. Set ρmax = ρ. Start from 1. (possibly with a new input state - need
momentum conservation in step 3 to be able to iterate!).

When the “p⊥” is decreased by δρ, there are two possibilities:
⋄ The algorithm produced an emission at scale ρ.
⋄ The algorithm did not produce an emission.

= P(No emission above ρmin) + P(No emission above ρ)× P(One emission at ρ)

= dσ ⊗ Π0(ρ0, ρmin) O0 + dσ ⊗

ρ0∫
ρmin

dρ

ρ

z0∫
z1

dz αs

2π
P(z) Π0(ρ0, ρ) O1
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Parton shower cross sections

Each of parton shower cross section is a finite result including all orders
in QCD, because of Sudakov suppression:

dσB(pp → X) ⊗
∫ ρ0

ρmin

dρ

ρ

∫ z0

z1

dz αs

2π
P(z) Π0(ρ0, ρ) O1 →

ρmin→0
finite

Now remember that we derived the no-emission probability Π from

Pemission + Pno emission = 1

=⇒ Summing over all emissions, the PS never changes the cross section,
it only changes shapes:
The PS takes a small, finite (!) part of the 0-parton cross section and
reinterprets it as 1-parton cross section. This is called parton shower
unitarity.
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(No-)branching probabilities summary

Remember:

Π(ρ0, ρ1) = exp
(

−
∫ ρ0

ρ1

dρ

ρ

∫ z0

z1
dz

αs

2π
P(z)

)
≡

aa
Probability of no resolv-
able emission with evo-
lution scale in the range
[ρ1, ρ0].

dρ

ρ

∫ z0

z1
dz

αs

2π
P(z)Π(ρ0, ρ) ≡

aa
Probability of a exactly
one resolvable emission,
with evolution scale ρ.
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Initial state radiation and PDFs

Note: We’ve cheated by quietly dropping PDFs before! Keeping the
PDFs, we would have arrived at

No-emission probability:

Π(ρ0, ρ1) = exp
(

−
∫ ρ0

ρ1

dρ

ρ

∫ z0

z1

dz
z

αs

2π

f1( x
z , ρ)

f0(x, ρ)
P(z)

)
Probability of an emission with xnew = x

z at evolution scale ρ:

dρ

ρ

∫ z0

z1

dz
z

αs

2π

f1( x
z , ρ)

f0(x, ρ)
P(z)Π(ρ0, ρ)

Note
d lnΠ
d ln ρ

=
∫ z0

z1

dz
z

αs

2π

f1( x
z , ρ)

f0(x, ρ)
P(z)

⇒ A shower of incoming partons reproduces the DGLAP evolution of the
sructure functions, but PDFS are crucial for that!
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Backward evolution

Remember: PDFs evolve according to the DGLAP equation, from small
virtuality Q2 to larger virtuality Q2

0. PDFs are small at large Q2
0.

Should parton showers do the same?

No, since it would be very unlikely to “hit” a resonance (i.e. a Higgs or
Z-boson propagator) in a narrow virtuality window at large Q2

0.
=⇒ Simulating high-scale physics would be nearly impossible!

=⇒ Instead, reformulate DGLAP to evolve from large Q2
0 and small x to

=⇒ smaller Q2 and larger x/z.
=⇒ Backwards evolution.

DGLAP : Sums up all emissions by evolving from Q2 to Q2
0

Backward evolution: Performs all emissions (that had previously been
Backward evolution: summed up) by evolving from Q2

0 to Q2.
Backward evolution: It “unintegrates” the PDFs!
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Review

Achievements so far:
• Found a way to approximate (one of) the largest contributions to a

n-parton cross section: the collinear approximation
…and devised a probabilistic algorithm to produce this result.

• The parton shower produces finite results by introducing all-order
(resummed) virtual corrections.

• This extends the validity of perturbation theory even to small p⊥.
• We know how to treat emissions off final and initial state partons.

To get there, we needed
• To derive emission and no-emission probabilities.
• Find a prescription for momentum conservation - otherwise, we cannot

iterate the procedure.
• We had to order in an evolution scale ρ to reproduce the dominant terms.

But…

• The evolution scale ρ can be defined freely, as long as dρ/ρ = dp2⊥/p2⊥.
This e.g. allows (relative) angle, virtuality, p2⊥…

• Momentum conservation can be implemented in many different ways.
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Choosing an ordering variable: Double-counting and hardness

Backward evolution in the initial state means evolving from a “hard
process” at large momentum transfer to smaller momentum transfers.

The hard process is the “starting point” of the radiation cascade.

We want to start from an “exact” result, i.e. a good description of the
inclusive cross section with n partons, and produce approximate higher
order corrections.

If the evolution scale is defined such that after some emissions, a
“harder” process is generated, then the exact starting point is obscured,
and we cannot do backward evolution.

=⇒ Initial state showers suggest to use a “hardness” ordering, i.e. where
large momentum transfers happen early in the cascade (e.g. Q2 or p2⊥).
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Choosing an ordering variable: Is virtuality ordering safe?

Ordering:
Pythia: Virtuality,
Herwig: Something else.
aaaa
aaaa
=⇒ Something is missing.

=⇒ Virtuality ordering did not capture the physics!
=⇒ Missing another important ingredient!
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The soft limit and QM interference

When trying to find an approximation of additional gluon emissions, we found
that the largest contribution to Qi(pi + k) → Q′

i (pi) + g(k) arose from an on-shell
propagator

u(pi)�ε
(�pi + �k)
(pi + k)2 = u(pi)

piε
2pik

= u(pi)
piε

(1 − z)E2Qi(1 − cosΘQig)

Apart from collinear divergence ΘQig → 0, there is also a soft divergence z → 1.

=⇒ We were missing the soft piece before!

For z → 1, already the amplitudes universally factorise. Thus, upon squaring

dσn+1 = dσn

∫
dw
w

dΩ
2π

αs

2π

∑
ij

CijWij

with Wij =
1 − cosΘQiQj

(1 − cosΘQig)(1 − cosΘQjg)
=⇒ QM interference between gluon emission off partons Qi and Qj!

How can soft emissions be independent?
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Coherence in the soft limit

How can soft emissions be independent?
Let us write

Wij = W1
ij + W2

ij with Wi
ij = 1

2

(
Wij + 1

(1 − cosΘQig)
− 1

(1 − cosΘQjg)

)
Then, after integrating over the azimuthal angle, we get∫

dϕQig

2π
Wi

ij =

{
1

(1−cos ΘQig) for ΘQig < ΘQiQj

0 else

Soft emissions are independent if ordered in emission angle!
Another (opening cone) argument shows: p⊥-ordered final state emissions are
okay as well.

Herwig had angular ordering in the CDF plot. Color coherence necessary to
describe data! But angle does not define hardness!
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Choosing an ordering variable: Hardness vs. angle

We found: Hardness ordering (Q2, p2⊥) motivated by ISR, Θ ordering by soft
limit. Both mutually exclusive!

Q2 E2Θ2 p2⊥

Virtuality
• Defines hardness, as

necessary in ISR.
aa

• No coherence.
Additional vetoes
necessary.

aa

Angle
• Does not define

hardness. Additional
vetoes necessary.

• Coherence by
construction.
aa

aa

p⊥

• Defines hardness, as
necessary in ISR.
aa

• Coherence in FSR.
ISR not clear.
aa

Is it hopeless? No! =⇒ Dipole/antenna showers.
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Dipoles / antennae

In the soft limit, we found

dσn+1 = dσn

∫
dw
w

dΩ
2π

αs

2π

∑
ij

CijWij

and after writing

Wij = W1
ij + W2

ij with Wi
ij = 1

2

(
Wij + 1

(1 − cosΘQig)
− 1

(1 − cosΘQjg)

)
derived angular ordering.

But we could have directly used Wij as splitting probability (≡ QCD antenna),
or partitioned cleverly (≡ QCD dipole).

Both antennae and dipoles can be inferred from NLO subtraction methods.
This means they come with a well-defined phase space mapping.
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Energy-momentum conservation

We have stressed the importance of energy-momentum conservation, but not
given a prescription.

NLO subtraction formalisms give a one-to-one correspondence

dΦn+1 = dΦndΦ̂ = dΦnJ(ρ, z, ϕ)dρdz dϕ

2π

which maps an on-shell n-particle phase space point unto an on-shell
n + 1-particle configuration. The n + 1-particle is completely covered.

This momentum conservation can be achieved by
aborbing the “recoil” of a 1 → 2 splitting with a spectator (dipoles).
performing 2 → 3 splittings (antennae).

⇒ All modern showers are designed in this way!

Momentum conservation in each intermediate step is the major advantage
compared to analytical tools. It also makes systematic step-by-step
improvements possible (=⇒ Andreas’ lecture).

Freedom in the recoil scheme is an uncertainty of the very exclusive parton
shower predictions.
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Running scales

Until now, we have found:
• Parton showers generate the leading collinear logarithms. Angular ordering

(or modern showers) include the soft limit as well.
• Local momentum conservation (formally beyond LL) is included.
• Initial state radiation requires PDF evaluations at dynamical scales (e.g.

Q2, p2⊥ of the branching).
aa

Another important improvement is eval-
uation of αs at dynamical scales αs =
αs(p2⊥).
aa
This is known as Modified Leading Log
Approximation. This resums dominant
universal propagator corrections to all
orders.
aa
After this improvement, many more soft
emissions are produced. The PS must
ensure to avoid the Landau pole (e.g.
p⊥min > ΛQCD).

aa

αs(p
2

⊥1
)

αs(p
2

⊥2
)

aa
aa
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Effects (almost) beyond the reach of parton showers

Parton showers already include many sub-dominant contributions. But
remember that

1. Any parton shower is only sensible in the collinear regime:
Only very collimated parton cascades are reliably modelled.

2. Showers are always leading order correct for (very) inclusive observables.
3. Non-relativistic threshold effects are not included.
4. High-energy (i.e. low-x) enhancements ln(̂s/̂t) are hardly included.
5. Traditionally, showers only include QCD.

Photon emissions and final-state γ → f̄f usually included.
Recent efforts to include W/Z emissions.

More developments still necessary!

Major industry of improvements for points 1. and 2. (Matrix element
corrections, Merging, NLO Matching, NLO Merging, NNLO Matching).
=⇒ Andreas’ lecture
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Parton showers in Event Generator frameworks

Parton showers are usually part of event generator frameworks.
Commonly used event generators for LHC physics are

HERWIG++: Improved angular ordered q̃ shower
HERWIG++: p⊥-ordered Catani-Seymour dipole shower
PYTHIA 8 : p⊥-ordered dipole shower with DGLAP+ME- corrections
PYTHIA 8 : DIRE dipole shower
PYTHIA 8 : VINCIA antenna shower (FSR)
SHERPA : p⊥-ordered Catani-Seymour dipole shower
SHERPA : DIRE dipole shower

All three include QED radiation, EW effects, underlying event, diffractive
modelling, hadronisation, higher-order improvements, hadron decays…
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Summary of Part 2: Parton showering

• QCD scattering cross sections factorise in the soft / collinear limits.
• The factorisation is universal, and can be viewed as probabilistic.
• The existence of emission and no-emission probabilities makes

all-order (all-legs) numerical implementations possible.
• Parton showers require an ordering criterion. Hardness and angle are

well-motivated, but not without pitfalls.
• Almost all modern showers are based on antennae or dipoles instead.
• With the inclusion of soft effects, momentum conservation and

running scales, many (all-order) refinements are already added.
• Some effects are beyond the parton shower approximation. But

systematic enhancements are possible.

…now we can describe collimated jets of partons in isolation, but
a) How do we convert to a colour-neutral final state?
b) What about all the other activity that proton scatterings
produce in-between jets?

No description of a) given in this lectures. See other MCnet/CTEQ lectures for that. 47 / 71



Back to the big picture

Detector event Multiple scattering Perturbative scattering

When colliding composite objects, many constituent scatterings ”compete” for
the collision energy. For example, two simulaneous scatterings can look like
single complicated scatterings! Which effect is more important?
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The issue with the dijet process

Remember that the perturbative cross section

σ(pp → jj + X) =

Ecm
2∫

p⊥min

dx1dx2f1(x1)f2(x2)
dσ̂

dp⊥
dp⊥ > σ(pp → anything) for p⊥min

Ecm
→ 0

as f(x) not small (enough) for low x ≈ p⊥min
Ecm

to suppress p⊥min
Ecm

→ 0 divergence!
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Hints from factorisation
Still consistent with perturbative QCD: PDFs are the inclusive probability
to find parton at x, with all other interactions above x ≈ p⊥min

Ecm integrated
out!

e
+

e
−

q

q̄
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Multiple interactions (indirect evidence)
Collider observables are not “inclusive” enough and can “see” these
additional interactions.
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Multiple interactions (“direct evidence”)

Double parton scattering has typical kinematics…

 [GeV]jets∆
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…that’s seen in the data (ATLAS New J.Phys. 15 (2013) 033038)
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Multiple scatterings and the inelastic cross section

A scattering above p⊥min is accompanied by an average ⟨n(p⊥min)⟩
interactions, so that

dσinc(p⊥min, Ecm) = ⟨n(p⊥min)⟩ · σND(p⊥min, Ecm)

where

σND < σ(pp → anything)

is the inelastic scattering cross-section1.

Now the average number of scatterings is unconstrained, but the (single
scattering) cross section remains small.

a1 more precisely, the inelastic non-diffractive cross-section defined implicitly by total, elastic cross section and diffractive parametrisation:

σND ≈
(

σtot − σel
)

−
∫

(dσSD − dσDD − dσCD)
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Multiparton interactions from a “consistency condition”

Question: So can we just overlay many scatterings to approximate the
Question: result?
Answer: No!

Consistency condition: For large p⊥, model must preserve the
perturbative hard scattering cross section, otherwise factorisation of
inclusive cross section violated!

Solution: Subtract what you add!
Solution: For every additional scattering, we need ”virtual corrections”

(This should sound familiar from parton shower derivation (and KLN)!)
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Start from a single scattering…

O (SH)
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…and add another scattering

O (SHS2→2)+O (SH)

M
P
I
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…then include ”virtual corrections” to preserve the cross section

O (SHS2→2)+O (SH) − O (SH)

M
P
I

M
P
I

.

Remember PS unitarity:
First terms in a ”no-scattering” factor.
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This is like a first parton shower step!

O (SHS2→2)+O (SH) − O (SH)

ΠMPI(Ecm, p⊥min)O (SH) ΠMPI(Ecm, p⊥1)O (SHS2→2)+

M
P
I

M
P
I

M
P
I

.

Remember PS unitarity:
First terms in a ”no-scattering” factor.
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As in the parton shower, we can continue with this…

+O (SH) − O (SH)

⊗ O (SHS2→2) + O
(

SHS2→2S
′
2→2

)

M
P
I

M
P
I

M
P
I
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…and we have a multiple scattering model!

+O (SH) − O (SH)

ΠMPI(Ecm, p⊥min)O (SH)

⊗

⊗

O (SHS2→2) − O (SHS2→2) + O
(

SHS2→2S
′
2→2

)

ΠMPI(p⊥1, p⊥min)O (SHS2→2)

+

+ ΠMPI(p⊥1, p⊥2)O
(

SHS2→2S
′
2→2

)

M
P
I

M
P
I

M
P
I

M
P
I

M
P
I

M
P
I

. Remember PS unitarity:
First terms in a ”no-scattering” factor.

.
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If you have a hammer…

…everything looks like a parton shower. Assume

δp⊥⟨n(p⊥)⟩ ≡ Probability for scattering with p⊥ ∈ [p⊥min, p⊥min + δp⊥].

Then the probability of no scattering is
1 − δp⊥⟨n(p⊥)⟩

or, if δp⊥ is divided into m parts, and the scattering probabilities are
independent

[1 − δp⊥/m ⟨n(p⊥)⟩]m →
m→∞

exp

−
p⊥min+δp⊥∫
p⊥min

dp⊥⟨n(p⊥)⟩

 ≡ ΠMPI(p⊥min+δp⊥, p⊥min)

We can define a no-additional scattering probability which contains
”all-order virtual corrections” – just like a parton shower Sudakov factor.
=⇒ Can recycle the PS algorithm to produce additional scatterings.
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The pedestal, or how entangled are MPI?
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Activity uniform in rapidity. More additional particles for harder core
scatterings (trigger bias!) ⇒ Not captured by model where all scatterings have
same probability. ⇒ Model matter overlap, i.e. introduce impact parameter
dependence. 63 / 71



The pedestal, or how entangled are MPI?

Redefine the naive scattering as

⟨n(p⊥)⟩ → ⟨n(p⊥)⟩ · A(b)/⟨A⟩

The probability for any partonic scattering is still σinc, but the
no-additional-scattering probability becomes

ΠMPI(b, p⊥0, p⊥) exp

−A(b)
⟨A⟩

p⊥0∫
p⊥

dΦ2→2
dσ̂2→2(Φ2→2)

σND


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Parameters of Multiparton Interaction models

⇒ Perturbative MPI model keeping the inc. cross section. Unknowns:

• σND depends on σtot, σelast and diffractive model. The parameters of
these thus influence MPI.

• Most MPI very soft, but σinc is still divergent for p⊥min → 0, i.e.
needs extra regulator parameter p⊥0. Regulator should be larger if
Ecm becomes larger (to not violate the total cross section), i.e. get
parameters for energy scaling of p⊥0

• Cut p⊥c deciding when to convert to hadrons.
• Parameters for matter profile A(b).

MPI models in general-purpose event generators:
HERWIG: Pick interactions prior to running according to Poissonian,
SHERPA: MPI after hard process evolution in a p⊥-ordered sequence.
PYTHIA: MPI + ISR + FSR combined in one single p⊥ sequence.
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Summary of Part 2b: Multiparton interactions

• Collider events are always accompanied with low-energy activity.
• The factorisation of QCD into long- and short-distance physics gives

hints how to describe this.
• Multiparton interactions are built upon a consistency condition:

Integration over all MPI degrees of freedom will recover the
perturbative result, while each scattering has a finite probability.

• Multiparton interactions are generated almost identical to parton
shower emissions.

• Lacking a rigorous foundation, MPI models come with parameters.
The most important input is the proton matter profile.

Thanks for your time! Questions?
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Exercise: Compare the no-emission probabilities with Sudakov factors

Remember:

Π(ρ0, ρ1) = exp

(
−
∫ Q2

q2⊥

dp2⊥
p2⊥

∫ z0

z1

dz αs

2π
P(z)

)
≡

aa
Probability of no resolv-
able emission with p2⊥ ∈
[Q2, q2⊥].

We will often call this a Sudakov (form) factor. The quark Sudakov form factor
for a massless quark can be calculated analytically in QCD. For q⊥ → 0, it reads

∆(ρ0, ρ1) = exp

(
−
∫ Q2

q2⊥

dp2⊥
p2⊥

αs

2π
CF
[
ln
(

Q2

p2⊥

)
− 3

2 + O
(

p2⊥
Q2

)])
(1)

a) Assume that the parton shower splitting kernel is P(z) = CF 1+z2
1−z , and that

z1 = a1 p⊥
Q + a2

p2⊥
Q2 , 0 < z1 < 1 and z0 = 1− z1. Write the no-emission probability,

for p⊥
Q → 0, in the form of eq. (1). (Hint: Rewrite P(z) so that you can clearly

identify which term gives the logarithm and which term gives the constant)
What are the phase space boundary z0, z1 necessary to match eq. (1)?

b) Now assume the splitting kernel P(z, p2⊥) = CF 2(1−z)
(1−z)2+p2⊥/Q2 − (1 + z). What is

the form of z0, z1 now?

Which phase space is larger?
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Explanation of some technical terms

Yesterday, you rightfully asked to explain some technical terms that
appeared in the lecture (see picture).
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Explanation of some technical terms
Yesterday, you rightfully asked to explain some technical terms that appeared in the lecture. I’ll try to do so here. For details, consider the
books “QCD and collider physics”, by Ellis, Stirling and Webber, or “Quantum Chromodynamics” by Dissertori, Knowles and Schmelling.
Collinear limit: The limit in which the three-momenta of two or more particles are perfectly aligned, and all of these particles move in the
same direction. This limit can be characterised in many different ways, e.g. by using that the relative angle between the particles vanishes.
Virtual corrections: Quantum fluctuations that get reabsorbed directly so that the momenta of external particles do not get changed.
Rather, the total probability of an interactions gets re-adjusted.
Emission: Any higher-order correction to a scattering that adds new particles to the final state. These corrections change the momentum
distribution of external particles w.r.t. the state without the correction.
DGLAP: Short for Dokshitzer-Gribov-Lipatov-Altarelli-Parisi, the authors of an important result for massless gauge theories: The DGLAP
evolution equation, which tells us how the functions encoding the structure of hadrons at low-energies can be translated to the structure
functions at large momentum transfers that we need for high-energy collider physics. This is done by “evolving” the structure functions
extracted from fits of experimental measurements at low energies to the necessary high energies through an all-order perturbative
approximation of the massless theory.
Resummed: By that, we mean that we find closed analytical expressions that, when expanded, contain any order in the coupling
parameter. An example of this is exp(−αsF) =

∑∞
n=0

(−αsF)n/n!.

Evolution scale: We imagine that a set of high-energy particles evolves to a larger set of low-energy partons by successive decays and
emissions. The state changes (by e.g. additing particles to the final state) can be characterised by the momentum transfers – or energy
scales – at which they occur. It thus convenient to think that the set of particles expands by following a decreasing sequence of “evolution
scales”.
Ordering variable: A function of the particle momenta that is used in parton shower calculations to classify how close to the singular limits
a phase space point is. Common examples are the relative angle between particles, the relative transverse momentum of particles, or the
squared sum of their four-momenta.
Soft limit: The limit in which the energy of one (or more) massless external particle vanishes.
Virtuality: The squared sum of four-momenta of two external particles. If these particles were connected by a single vertex, then the
virtuality (p1 + p2)2 is the invariant mass of an internal particle, i.e. the off-shellness of an internal propagator.
Angle: The relative angle of two particles. This function of particle momenta can be used to define the collinear limit.
Dipoles and anntenas: In the soft limit, the pattern of radiation from a system of two color charges looks, in the simplest approximation,
like the electric field (of photons) of an electric dipole in electrical engineering. Radio antennas produce such an electric field. Because of
this analogy, we call QCD radiation cascade programs that produce radiation by referring to two color charges dipole or antenna showers.
These programs have two advantages over simpler parton showers: a) The soft limit of QCD is described in a more natural way, and b)
Momentum conservation is apparent in a much simpler way. Dipole and antenna showers are slight variations on how to implement the
soft limit in detail. Unfortunately, what is called “dipole shower” and what is called “antenna shower” depends on the physics publication,
depending on which tradition the authors want to be associated with.
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