

From new physics simulations to the recasting of LHC results

Fuks Benjamin

LPTHE Paris / UPMC Paris VI

MadGraph School 2015 @ Shanghai, China

23 - 27 November, 2015

When new physics meets Monte Carlo simulations

New physics simulations with Monte Carlo event generators

Interpretation of LHC results and recasting the experimental searches

Standard Model simulations at the LHC: the status

The need for better simulation tools has spurred a very intense activity

- Automated matrix element generation (MADGRAPH5, etc.)
- Higher-order computations (aMC@NLO, etc.)
- Parton showering and hadronization (PYTHIA, HERWIG, etc.)
- Matrix element parton showering matching
- Merging techniques (MLM, CKKW, FxFx, UNLOPS, etc.)

Standard Model simulations

- * All processes relevant for LHC physics can be simulated with a very good precision
- * This precision will even improve within the next few years (electroweak corrections, etc.)

Standard Model simulations are under good control What about new physics?

New physics simulations at the LHC: the challenge

New physics is a standard in many tools today

- Prospective phenomenological studies
- Experimental searches (signal generation)
- Recasting of current results

Topics of this lecture

When new physics meets Monte Carlo simulations

New physics implementations in Monte Carlo tools (1)

- + How to implement a new physics model in a Monte Carlo program?
 - Model definition: particles, parameters & vertices (≡ Lagrangian)
 - To be translated in a programming language, following some conventions, etc.
 - Tedious, time-consuming, error prone (and no-brainer)
 - Iterations for all considered tools and models (high level of redundancy)
 - Beware of the restrictions of each tool (Lorentz structures, color structures)
 Validation is tricky

New physics implementations in Monte Carlo tools (2)

New physics simulations: other challenges

New physics simulations: cascade decays (1)

Concrete models

- Many new states to be supplemented to the Standard Model
- Usually pair-produced
- Further cascade-decaying into each other
- The lightest new state can be stable (and a dark matter candidate)

Is the simulation of 2 to N processes (with N large) a problem?

The issue is the computing time

- Matrix element generation is possible
- Computationally challenging
- Practically useless: only diagrams with intermediate resonances usually dominate

New physics simulations: cascade decays (2)

- Production and decay processes are factorized
 - Propagators can be seen as sums of products of external wave functions

Example:
$$\mathcal{M} \sim j_1^{\mu} \left[g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} \right] j_2^{\nu} = \sum_{\lambda} \underbrace{j_1^{\mu} \varepsilon_{\mu}^*(\lambda)}_{\mathcal{M}_{\text{prod}}(\lambda)} \underbrace{\varepsilon_{\nu}(\lambda) j_2^{\nu}}_{\mathcal{M}_{\text{dec}}(\lambda)}$$

- Case I: loss of spin correlations
 - \star Helicity sums performed independently at the production and decay levels

ΡΥΤΗΙΑ 6

[Sjostrand, Mrenna, Skands (JHEP '06)]

 \star Example:

$$\sum_{\lambda} \underbrace{j_1^{\mu} \varepsilon_{\mu}^*(\lambda)}_{\mathcal{M}_{\text{prod}}(\lambda)} \sum_{\lambda'} \underbrace{\varepsilon_{\nu}(\lambda) j_2^{\nu}}_{\mathcal{M}_{\text{dec}}(\lambda)}$$

- Case 2: including spin correlations
 - ★ Helicity sums performed after accounting for production and decays
 - ★ Example:

* Resonance mass smearing: partial recovery [Frixione, Laenen, Motylinksi, Webber (JHEP '07)]

New physics simulations: cascade decays (3)

Is a correct decay handling important: yes!

From new physics simulations to the recasting of LHC results

When new physics meets Monte Carlo simulations

New physics simulations with Monte Carlo event generators

Summary

New physics simulations so far

Reinterpreting LHC physics analyses (1)

 Exploit the full potential of the LHC (for new Priority #1 of the European strategy for part Designing new analyses to probe new ideas Recasting LHC analyses to study models not 	ew physics) icle physics Prospectives for new physics (based on MC experimentally considered The I	Simulations)
 LHC data has been collected with significar Important for on-going analyses (within population) 	nt human and financial efforts ular theoretical contexts of today)
 Important for future opportunities (within future opportuniti	iture scientific contexts) mandatory [Kogler, South & Steder (JPCS'12) (ICFA DPHEP Study Group)]
 Related tools need to be supported by the Both theorists and experimentalists Allowing for the reinterpretation of the LHC 	entire community [Kraml	et al. (EPJC'12)]

Reinterpreting LHC physics analyses (2)

- The simplified model spectrum (SMS) approach is fast and powerful, but limited
 - Too conservative (final state topologies, different kinematics, etc.)
 - Considered decay patterns and assumptions rarely realized (many channels, etc.)
 - Works however not too bad in many cases for a fair estimate of constraints

The SMS approach for LHC result reinterpretations (1)

The SMS approach for LHC result reinterpretations (2)

Beyond the SMS approach

Detector modeling with DELPHES

See talk from M. Selvaggi

- Detector simulation with DELPHES 3 [de Favereau, Delaere, Demin, Giammanco, Lemaître, Mertens & Selvaggi (JHEP'14)]
 - Starts from hadron-level Monte Carlo information
 - Derive calorimetric and track information; object reconstruction is then necessary
 - \star Close to what actually happens
 - \clubsuit DELPHES is modular >> extra modules and tuning can be added / included
 - * Extra information on lepton isolation or track information; skimming of the output files. etc.

Current existing programs

From new physics simulations to the recasting of LHC results

Benjamin Fuks - 24.11.2015 - 20

Reimplementing new physics analyses: challenges

Implementing a new analysis in a recasting tool

Example I: CMS-SUS-I3-II (stops with one lepton)

- Missing information for the validation
 - Efficiencies
 - Cutflows and Monte Carlo information for given benchmarks

Discussions with
CMS mondad
CM3 needed

Joint MC4BSM and LPC "dat ×) 🔃 Physic	csResultsSUS13011 < ×
- C 🔒 https://twiki.cern.ch/twiki/bin/	/view/CMSPublic/PhysicsResultsSUS13011#Additional_Material_to_aid_the_P
Additional Material to aid the Phenome	enology Community with Reinterpretations of these Results
Summary of yields for the $\tilde{t} \to t \tilde{\chi}_1^0$ model with $m_{\tilde{t}} = 650$ GeV and $m_{\tilde{\chi}_1^0} = 50$ GeV. No trigger efficiency of ISB reweighting is applied. In the first block of the	
Summary of yields for the $\tilde{t} \to t \tilde{\chi}_1^0$ model with $m_{\tilde{t}} = 650$ GeV and $m_{\tilde{\chi}_1^0} = 50$ GeV. No trigger efficiency or ISR reweighting is applied. In the first block of the table, the first row shows the yield after requiring at least one analysis lepton, at least 4 jets, and MET > 50 GeV. In each subsequent row, the preselection requirements are added one at a time. In the second block of the table the low-mass (LM) signal region yields are indicated. In the third block the high-mass (LM) signal region yields are indicated. The third block the high-mass (LM) signal region yields are indicated.	Update of the analysis wiki page

Example 2: ATLAS-EXO-2014-04 (monophotons)

From new physics simulations to the recasting of LHC results

Example 3: When things are borderline...

- ATLAS-EXOT-2014-04 (monophotons)
 - Effects non-reproducible with DELPHES (cleaning cuts, triggers, good vertexing)
- ATLAS-SUS-2013-09 (stops in the dilepton channel)
 - Information on effects non-reproducible with DELPHES lost (student has quit physics)

Efficiencies computed by hand Maybe model-dependent

Very good results (for a SUSY benchmark)

Cut	ATLAS	Rel. decr.	MA5 (ul ul~)	Rel. decr.
Nominal	9989		9989	
a. Trigger	8582			
b. Good Vertex	8574			
c. Cleaning cuts	8213			
0. $E_T^{\text{miss}} > 150 \text{ GeV}$	4131		4384	
1. 1 loose γ , $p_T > 125$ GeV, $ \eta < 2.37$	2645	-36.0	2637	-39.8
2. Tight leading γ with $ \eta < 1.37$	2068	-21.8	2052	-22.2
3. Isolated leading γ	1898	-8.2	1856	-9.6
4. $\Delta \phi(\gamma^{\text{leading}}, E_T^{\text{miss}}) > 0.4$	1887	-0.6	1840	-0.8
5. $N_{\text{jet}} \leq 1 \text{ and } \Delta \phi(jet, E_T^{\text{miss}}) > 0.4$	1219	-35.4	1234	-33.0
6. Lepton veto	1188	-2.5	1233	-0.1

Summary

Example 4: sometimes...

Unfortunately: many more examples!

A wishlist from theorists to experimentalists - part I

- Analysis description
 - Clear description of the selections, including their sequence
 - * A tabulated form would be appreciable (possibly on the analysis wiki pages)
 - * Efficiencies for physics (electrons, muons, jets, taus, b-tagging, mistagging rates, etc.)
 - \star Including pT and η dependence
 - \star Or a reference with the information
 - Efficiencies for triggers, event cleaning, etc.
 - \bigstar Effects that cannot be modeled in our fast simulation
 - Digitized figures
 - * Missing in particular the performance results (reading off log-scale histograms...)
 - ★ ROOT format, text format, etc.
 - Special variables (e.g., the CMS razor)
 - \star Providing snippets of code would be highly appreciated
 - ★ Some variables have different definitions in different analyses (e.g., asymmetric M_{T2})

A wishlist from theorists to experimentalists - part 2

 \bullet Validation material \succ quality of the reinterpretation

Benchmark scenarios

- ★ Spectra and decay tables (under an SLHA-form)
- \star Several scenarios are appreciable
- ★ Publicly available on the wiki pages or HEPDATA
- Monte Carlo tools configuration
 - ★ Cards, tunes, merging information, etc.
 - **★** Better, the CMS way: LHE files with shower inputs (no new source of discrepancies)
 - ★ Publicly available on the wiki pages or HEPDATA
- Detailed cutflows for the benchmarks, with the correct selection ordering
 - \star Including each step of the (pre)selection
 - \star For several benchmarks
 - ★ The more steps are available, the better (even the preselection, the cleaning, etc.) (pin-down the differences in our machinery, in the fastsim vs. CMS-ATLAS simulation)
- Kinematical distributions at different steps of the selection
 - \star Extra cross-check of our machinery

The LHC legacy (1)

From new physics simulations to the recasting of LHC results

The Physics Analysis Database (PAD) of MADANALYSIS

[Dumont, BF, Kraml et al. (EPJC '15)]

A database with MADANALYSIS 5 implementations of LHC analyses has been initiated
 http://madanalysis.irmp.ucl.ac.be/wiki/PhysicsAnalysisDatabase
 Exact a install (install PAD)

Easy to install (install PAD)

Analysis	Short Description		Implemented by		Code Validation note		te	
⇔ATLAS-SUSY-2013-05 (published)	shed) stop/sbottom search: 0 leptons + 2 b-jets		G. Chalons	0	G→Inspire G→PDF G→(figures		es)
⇔ATLAS-SUSY-2013-11 (EWK-inos, 2 leptons + MET		B. Dumont	[⇔Inspire ⇔PDF ⇔(sou		ce)	
⇔ATLAS-HIGG-2013-03 (published)	hed) ZH->II+invisible		B. Dumont	5	⇔Inspire ⇔PDF ⇔(source)		ce)
⇔ATLAS-EXOT-2014-06 (published)	mono-photons + MET		D. Barducci	5	⇔Inspire ⇔PDF ⇔MadGraph		raph cards
⇔ATLAS-SUSY-2014-10 (published)	2 leptons + jets + MET		B. Dumont	0	⇒Inspire	Inspire □ □ PDF □ (source)	
⇔ATLAS-SUSY-2013-21 (published)	0 leptons + mono-jet/c-jets + MET		G. Chalons, D. Seng	gupta	G→Inspire G→PDF G→(source)		ce)
⇔ATLAS-SUSY-2013-02 (published)	0 leptons + 2-6 jets + MET		G. Chalons, D. Seng	gupta	⇒Inspire	G⇒PDF	
Delphes card for / Delphes card for / Delphes card for / Delphes card for /	ATLAS-SUSY-2 ATLAS-SUSY-2 ATLAS-SUSY-2	013-11, ATLAS	S-SUSY-2013-02 and DELPHES cards	ATLAS-HIGG-2013-0		cut	Validation no flows, distril	otes butions)
Delphes card for / Delphes card for / Source for / Sourc	ATLAS-SUSY-2 ATLAS-SUSY-2 ATLAS-SUSY-2	013-11, ATLAS	S-SUSY-2013-02 and DELPHES cards	ATLAS-HIGG-2013-0 Code from	m INSPIRI	e (cut	Validation ne flows, distril	otes butions)
Analysis ⇒ CMS-SUS-13-011 (nublished)	Short Description	single lepton mode	S-SUSY-2013-02 and DELPHES cards	ATLAS-HIGG-2013-0 Code from Implemented by B. Dumont, B. Fuks, C.	n INSPIRI	E (cut	Validation note	otes butions)
Analysis ⇒ CMS-SUS-13-011 (published) ⇒ CMS-SUS-13-012 (published)	Short Description stop search in the s	oilo oo, ATLAS 013-11, ATLAS 014-10	DELPHES cards	ATLAS-HIGG-2013-0 Code from Implemented by B. Dumont, B. Fuks, C. Wymant S. Bein, D. Sengupta	m INSPIRI Code ⇔Inspin [1] ⇔Inspin	e GPDF	Validation net flows, distribution ation note (source) (source)	otes butions)
Analysis ⇒ CMS-SUS-13-011 (published) ⇒ CMS-SUS-13-016 (PAS)	Short Description stop search in the s gluino/squark search search for gluinos u	o13-11, ATLAS 014-10	And missing energy	ATLAS-HIGG-2013-0 Code from Implemented by B. Dumont, B. Fuks, C. Wymant S. Bein, D. Sengupta D. Sengupta, S. Kulkarn	n INSPIRI	E (Cut Valida e G→ PDF e G→ PDF	Validation net flows, distribution ation note (source) (source) (source)	otes butions)
Analysis ⇒ CMS-SUS-13-011 (published) ⇒ CMS-SUS-13-012 (published) ⇒ CMS-SUS-13-016 (PAS) ⇒ CMS-SUS-14-001 (published)	Short Description stop search in the s gluino/squark search search for gluinos u Searches for third- (monojet analysis)	013-11, ATLAS 014-10	and missing energy nd b-jets n fully hadronic final states	ATLAS-HIGG-2013-0 Code from Implemented by B. Dumont, B. Fuks, C. Wymant S. Bein, D. Sengupta D. Sengupta, S. Kulkarn S. Sharma, S. Pandey	n INSPIR	E (Cut Valida e G→PDF e G→PDF e G→PDF	Validation ne flows, distrib	otes butions)

Delphes card for the MA5tune analyses DELPHES cards

From new physics simulations to the recasting of LHC results

Benjamin Fuks - 24.11.2015 - 30

The LHC legacy: data preservation

[Dumont, BF, Kraml et al. (EPJC '15)]

A stop simplified model: the recasting episode

Recasting of the CMS analysis

The CMS-SUS-13-011 analysis: recasting and simulations

 ◆ The CMS study relies on leading order simulation and MLM merging ◆ Simulated signal: p p → t t t + 0,1,2 jets at the leading order ◆ Parton showering: PYTHIA 6 with the Z2 tune [Field (APPB '11)] ◆ Analysis ◆ Selection of top-antitop plus missing energy final states yielding a single lepton signature ◆ One single lepton and 4 jets (mainly issued from the stop-antistop system decay) ◆ Large missing energy ◆ At least one b-jet ◆ Top reconstruction quality ◆ Transverse variable constraints
 Observation The selection does not really depend on the extra jets The main hadronic activity comes from the decay products The limit should be agnostic of the merging

The CMS-SUS-13-011 analysis: multijet merging

The CMS-SUS-13-011 analysis: modern tools effects

The CMS-SUS-13-011 analysis: merging and NLO

New physics simulations with Monte Carlo event generators

Interpretation of LHC results and recasting the experimental searches

Summary

+ Lots of effort have been invested in new physics simulations during the last decade

- Streamlining the link between models and events
- Multipartonic matrix element merging
- Cascade decays
- Next-to-leading order corrections
- Techniques are (and will be) used for signal simulations both by theorists and experimentalists

The LHC legacy

- It is crucial to be able to reinterpret the LHC results in any theoretical context
- * This is a very active field of the last few years: several tools are now ready to be used
- Reproducibility is the ability of an entire experiment to be reproduced, possibly by an independent (pheno) study