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Abstract

Quantum Chromo Dynamics (QCD) provides the theoreticah&aork for
any study of TeV scale physics at LHC. Being familiar with Hasic concepts
and techniques of QCD is therefore a must for any high-enphygicist. In
these notes we consider Higgs production via gluon fusioanasxample on
how accurate and flexible predictions can be obtained imgetive QCD. We
start by illustrating how to calculate the total cross settt the leading order
(yet one loop) in the strong couplings and go through the details of the next-
to-leading order calculation eventually highlighting tlmaitations of fixed-
order predictions at the parton level. Finally, we brieflgaliss how more ex-
clusive (and practical) predictions can be obtained thhamgtching/merging
fixed-order results with parton showers.

1 Introduction

Strongly interacting particles can be described in terms $/(3) gauge theory field theory involving
gluons and quarks:
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where the sum runs over the quark flavors,

Gl = 0uAL— 0,A% — gof*°Ab A
Dlhij = 8M5Z-j + igst%Az,

andtf; are the Gell-Mann matrices in the fundamental represemtaindf ¢ are the structure functions
of SU(3), with
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Notwithstanding its apparent simplicity, QCD is an amabimich theory which is able to account for
a wide diversity of phenomena, ranging from really strongn@perturbative) interactions at low scales,
below 1 GeV, to rather weak (perturbative) interactions agdales of the TeV at colliders, from low
density to high density states such as those happening Iriraailisions or inside stars, from low to
high temperatures. For proton-proton collisions at the | .M@ere one can consider zero temperature
and density, QCD is complicated enough that we have no meaistde (for the moment!) to solve
it exactly and we have to resort to a variety of approximatdéhods, including perturbation theory
(when the coupling is small) and lattice calculations (wttrencoupling is large). Thanks to the work of
theoretical and experimental physicists over the lasttjoyears we are convinced that QCD is a good
theory of the strong interactions, of course in the rangenefgies explored so far and to the level of the
theoretical accuracy that can be achieved with currenntgoblies.

There are many excellent references on QCD with applicattorcollider physics, from books,
(e.g., [1]) to review articles, to write-up of lectures givim schools, and in particular some of those
given at the CERN schools over the years. My lectures at theotevere largely based on the inspiring
ones by Michelangelo Mangano [2], Paolo Nason [3] and on thstmecent ones by Gavin Salam [4],



which | warmly reccommend. In these notes, I'll present a&cady, i.e. how QCD can make accurate
predictions for Higgs production in gluon fusion at the LH®e aim is to see the basic concepts at work
for a realistic and very important process so to verify theiderstanding and also to have a closer look at
the basic techniques used to perform such calculations n\Wéeded and to avoid repetitions, | will refer
to specific sections of Ref. [4] as [QCD: Section number] whbe reader will find further information
on the basic concepts. Links to simple Mathematica® notieb@dth the calculations described below
can be found afittp://maltoni.home.cern.ch/.

2 Higgs cross section at the LHC

The factorisation theorem states that the total crossosefii the inclusive production of Higgs at the
LHC can be written a$

o(H+X) = Ei,j/dxlfi(xlaMF)/defj(xQHUF) X GijsH+a(S, MH, WF, UR) 5 (3)

where thef; ; (=, ur) are the parton distributions functions (long distance teram-perturbatively cal-
culable) and is the partonic cross section (short distance term, cditla perturbation theory).
& can be written as an expansionag:

5(ij = H+az) = 69%j — H)
+ (}(1)(1']‘ — H + upto 1 parton)
+ 6@ (1j — H + up to 2 partons)
+o 4)

where the first term gives the leading order (LO) approxioraind it is of order?, the second next-
to-leading (NLO) order?) and so on.

It is interesting to know how the Higgs predictions improwaad evolved over time. The LO
production was considered a long ago [5], the next-to-leadrder (NLO) QCD corrections [6-9] were
calculated decades ago in the so-called effective fieldyh@¢EFT) approximation (which will be ex-
plained in the following) as well in the full SM and found to kery large 6NY© /o0 ~ 2). This
motivated the formidable endeavour of the next-to-nexetaling order (NNLO) QCD calculations,
which have been fully evaluated in HEFT [10-12]. Given thatrections to the HEFT been estimated
through a power expansion [13-16] and found to have a netgignpact on total rates, NNLO is the
current state of the art for fixed-order predictions.

Before going into the details of the computation of the Higgsss section, let us remind a few
general important points that are relevant for any compurtah QCD.

— At LO the factorisation theorem reduces to the parton motted parton distribution functions
fi(z) are just the probabilities (and therefore positive-ded)nitf finding a given parton in the
initial state hadrons at a given resolution scaje andd gives the probability that such partons
with a total energy = x1x25 will "fuse" into a Higgs.

— Total cross sections are the first and simplest example arber class of observables, called In-
frared Safe (IS) quantities [QCD:2.3.2], which can be cstesitly computed in QCD and then
compared to experimental data. Such guantities always todwael (at least to some degree) inclu-
sive on possible extra radiation and in particular resdiliexder soft and/or collinear radiation. The

!Be careful here as for simplicity we adopt the usual pragmegtproach on Higgs production at the LHC and imagine it
coming from different channels: gluon-gluon fusion, vedioson-fusion, vector-boson-associated...and so orreg¥dct the
discussion to the first one which is the leading mechanisnfiadt) various channels overlap if contributions are orgedias
powers of strong and weak couplings (eqy, — H appears at the same orderdg andy; asgg — ttH) and in general
they mix-up once higher-order QCD and EW corrections arkider. The separation into channels is anyway useful fram th
experimental point of view as they typically lead to diffetéinal state signatures.



most known example of IS quantities beyond total cross @estare jets [QCD:5]. The constraint
of infrared safety becomes non-trivial already at NLO for &).

Total cross sections always inclusive of any possibleae€D radiation in the event, hereby
denoted byX, even when the calculation is performed at LO. In this cagsgaeadiation up to
the scaleur is accounted for by the parton distribution function’s (ADkhile hard radiation is
consistently neglected being of higher ordeg). Alternatively, one can prove that the total cross
section for producing "just a Higgs", i.e., Higgs + no resdlle radiation at an arbitrary small
scale is exactly zero at all orders in perturbation theory.

A very important point to always keep in mind is that the thdjéctives" LO, NLO, NNLO need
to be always referred to a specific observable, i.e. diftevbservables in a given calculation can
be predicted at a different order. For example, when talkimgut a "NNLO calculation for Higgs
production in gluon fusion", what is really meant is that tbtal inclusive cross section is known
at NNLO. The same calculation can predict the rate for Hidget (inclusive and exclusive) at
NLO and Higgs+2 jets only at LO (where exclusive and inclass/the same).

Beyond LO, the separation between long-distance and-distaince physics as described /by
(and alsquy) becomes non-trivialuz and. i represent arbitrary scales in the calculation, whose
dependence is generated by the truncation of the pertuelmtpansion at a given order. Exploiting
the fact that physical results must be independent on swdbssone finds renormalisation-group
type equations, such as ti¥efunction of QCD [QCD:1.2.3] and the so-called DGLAP evabuti
equations for the PDF’s [QCD:3.2].

The residual dependencexbn i andpu i at any given order in perturbation theory is often used
to gauge the accuracy of the predictions [QCD:4.4.1]. Tikyi itself a very crude approxima-
tion, while the towers of leading (subleading,...) log'sioé scales can be predicted at all orders
in perturbation theory, only an explicit computation iseabd provide the finite terms at higher
orders. In practice, it is common to choose central scaldheatypical hard scale in a process
and vary them independently betwekf2 and2 to identify an uncertainty. However, no solid and
unique procedure exists to identify central referenceeshnd variation intervals and to associate
a confidence level. However, milder scale dependence othigiter results compared to lower
ones is always used to gauge the improvement on the accuraayiven prediction.

3 pp — H + X atleading order

At LO Eq. 3 can be rewritten as

where

1 1
o"O(H + X) =/ dw1// dxa fo(r, pr) fo(z2, ur) x 60 (gg — H), (5)
70 T0/T1
wherer, = m%{/S ands = z129S. 6 fora2 — 1 process can be rewritten as
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Performing the change of variables, zo — 7,y with 1 = /7e¥, o = /7e ¥ (verify that the
jacobian.J is equal to 1) the change of the integration limits and thaltésecomes

(g4 x) — DA [T y y
o (H+X) = 2 g dy xg(y/T0e”)g(\/T0eY) . (8)
myS Jiog
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Figure 1. Representative Feynman diagram for the proggss> H. Another diagram, the one with the gluons
exchanged, contributes to the total amplitude.

This expression shows that for the cross sectionfa 1 process at LO, the contribution from the par-
ton distributions (a quantity known as gluon-gluon lumihgsfactorises from the dynamic$4|?). The
gluon-gluon luminosity depends only on the kinematics ltits of integration and can be computed
once for all for each Higgs mass. The problem is thereforaaed to the computation of the amplitude
A.

3.1 My first loop (yet finite!) amplitude: gg — H

Being a color singlet, the Higgs does not couple directlyltmgs. However, as no fundamental symme-
try forbidding it is present it can via a loop of a colored and massive particle. In the Sthstates are
the heavy quarks. Let us consider one quark at the timethediagram(s) shown in Fig. 1. The first
observation to make, even before starting the calculat®that even though a triangle loop in general
can give rise to divergences, both in the ultra-violet (UMY &n the infrared (IR), in this case we expect
a finite result. There are several different ways of convigdhat this must be the case. A simple one
goes as follows. Divergent terms always factorize over taovder amplitudes. The one-loop amplitude
is the first non-zero term contributing @ — H in the perturbative expansion. Therefore there cannot
be any divergence. A finite amplitude, however, does not ritegtra consistent regularisation procedure
is not needed. The reason is that in intermediate steps afalbalation infinities are found that cancel
at the end, yet might leave finite terms. As we will seggin— H such finite terms are actually nec-
essary to guarantee the gauge invariance of the resultlyciwing that there is no ambiguity in the
procedure?

To evaluate the diagram of Fig. 1 (there are actually twordiag, the one shown and another one
with the gluons exchanged. They give the same contributiowesll just multiply our final result by
two), we employ use dimensional regularisationlis: 4 — 2¢ dimensions?

2In fact, classically, scale invariance would forbid suctoamling. However, scale invariance is broken by renorratitis
and therefore it is not a symmetry.

3Less obvious is the case ¢fy — H where the contribution coming from gauge bosons loop hag tddme in different
gauges (or via low-energy-theorems) to prove the uniquened the correctness of dimensional regularisation proeed
Interestingly enough, people seem to forget this fact qeitelarly over the years.

“Dimensional regularisation comes in several differentdtaxand attention has to be paid to the details of the impléamen
tion. All formulas quoted in the main body of these lecturéesare in the so-called Conventional Dimensional Regzdtidn
(CDR) which is the regularisation procedure where Mi& scheme is defined. In practice, NLO calculations nowadags ar
done in a different scheme which limits the use of dhdimensional Dirac algebra to the loop computation.



Using the QCD Feynman rules [QCD: Fig. 3] and the Yukawa auton, the expression for the
amplitude corresponding to the diagram of Fig. 1 reads:

A (o 2T —imgQ die e .
A= %>Tut>( )/( (e ()ew () ©

v 27)? Den

where the overall minus sign is due to the closed fermion.fodphe denominator is Der- (/2 —
m@)[(£+p)* —my)[(¢ - q)* —mp]. Emplyoing the usual Feynman parametrization method tdoauen
the denominators of the loop integral into one:

L—z/ld /1m dy (10)
ABC )y )y TAz+By+C-z—yP

one obtains
1 1

— = Z/dac dy .
Den [02 — m2Q +20- (pr —qy)]?

The next step is to shift the integration momentd#'te- / + px — qy so the denominator takes the form

(11)

1 1
— =2 [ dxd . 12
Den / v (02 — m2Q + m2%ay)? (12)

The numerator of the loop integral in the shifted loop momenbecomes
O = T ol (£ ma) (g + ma) |
m2
= 4mq [9“”(77%22 == =) a0 + p”Q“} : (13)

where we have used the fact that for transverse gludp$,- p = 0 and so terms proportional to the
external momenta,, or ¢, have been dropped. The above expression shows alreadglsateresting
aspects.

The first one is that the trace is proportional to the heavylgoeass. This can be easily understood
as an effect of the spin-flip coupling of the Higgs. Gluons botons do not change the spin of the
fermion, as vectors map left (right) spinors into left (tigbpinors, while the scalars do couple left (right)
spinors with right (left) ones. If the quark circulating imetloop is massless then the trace vanishes due
to helicity conservation, independently of the actual Yu&aoupling. This is the reason why even when
the Yukawa coupling of the light quark and the Higgs is enkdnsuch as in SUSY or 2HDM with large
tan (3), the contribution is anyway suppressed by the kinematices.

The second point is that simple power counting shows thateitmes proportional to the squared
loop momentuny? and¢*¢” give rise to UV divergences. This means that an intermediateconsin-
stent regularisation prescription is needed for interatedmnanipulations and that divergences will have
to cancel in the final result.

By shifting momenta in the numerator, dropping terms lirieaf and using the relation

kF kY 1 k2
Ak = Zg" [ df——— 14
[ = = [ e (4
to write the amplitude in the form
292mg . [ dU 4-d 1
. _ 75 a yng 2 2 2 -
1A ” o / o) /dwdy{g [mQ +/ <—d ) + my(zy 2)]

®¢,.(p) are the transverse gluon polarizations.
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This expression shows that if one computes the integrdl=n4, the UV divergent term is absent. For
d = 4 — 2¢, however, this gives rise to a left-over finite piece, as taas integrals are given by

ddg 62 i eF 1+e€ —€
/ (27T)d (52 _ C)3 = 3972 (47‘(’) %(2 o E)C
diy 1 ; ) .
/ (2m)d (£2 - C)3 - _W(‘lﬂ) I'(1+e¢C . (16)

So it is manifest that the divergentge cancels against the — d)/d term leaving a finite piece, which
in fact ensures that the final result is gauge invariant. Bylziaing it with the other terms in the squared
parenthesis we obtain

2 2
agm 1-14
Algg — H) = 2579 5o (gﬂ”@ _ p"qﬂ)eu<p>ey<q> / dxdy(%) 17)

™ 2 mg — myxy
(Note that we have multiplied b¥in Eq. (17) to include the diagram where the gluon legs arsse.)
The Feynman integral of Eq. (17) can easily be performed @ dim analytic result if desired. Note

that the tensor structure could have been predicted fronstdré by imposing gauge invariance, i.e.,
pHFAM = ¢¥ AW = 0. By definingl(a) as

1 -z | _y4 2
I(a) = dx dy :Uy, a= %, (18)
1— 2
0 0 axry mQ

one can factorise B,/m2Q out of the integral and cancel the ovenmf2 in front of the amplitude (17). In
other terms the heavy quark mass dependence is confirgd)in
For a light quarkmg < mg,

2 2
1 m m
I(a) =3 ~5 log?a = ~3 g log? 2Q , (19)
a H My

showing that in the Standard Model the charm and bottom qoamkributions are strongly suppressed
by the square of the quark mass over Higgs mass ratio and cdtme winus sign (with respect to the
top-quark one).

The opposite limityny < mg,

I(a) =9 2, (20)

Wl

which is found to be an extremely good approximation evemigr ~ mg, is quite surprising at first.
In this case the amplitude reads

2
Algg — H) " —5—55@ (g“”% - p”(}“) eu(p)ev(q). (21)
U 2

i.e., the amplitudggg — H becomesndependenbf the mass of the heavy fermion in the loop. This is
a special case of a general low energy theorem (which holteeip; — 0 limit) that states that if the
colored particle mass, independently of the other quantumb®rs such as its spin acquires (all of) its
mass via the Higgs mechanism, it will contribute to the atagk g9 — H independently of its mass.
In other wordsgg — H acts as a counter of heavy colored particles. In a four gdaeracenario, for
instance, the contribution from tlieandd’ would lead to a factor of three increase at the amplitudd,leve
i.e. afactor 9 at the cross section level. Note that this @liapparent contradiction with of our intuition



that heavy particles should decouple and not affect theiphgs lower energy. The heavy states would
not decouple because of our assumption that their (whole} isalue to electroweak symmetry breaking
and the interaction with the Higgs. Another interestingeciasthat of SUSY, where down-type and up-
type quarks can couple differently to the Higgs(es) andratbiored states (squarks) are present in the
spectrum. At largean 3, i.e. whenm,, tan 8 ~ m;, the Higgs bottom couplings are enhanced by a
factortan 3, while those of the top suppressed byoa 5. However, the scaling with masses is different
in the two limits and the contribution from the bottom anywsyppressed byng/mpg. In addition,
the the two contributions will have an opposite sign so th#itagtually interfere destructively in the
amplitude squared. What about the squark contributionsihgBeeavy scalars and therefore coming
with an opposite sign shouldn't the stop cancel exactly ihtridoutions from the top and the others
squarks give the dominant contribution? In this case, osetbh@emember that in (possibly) realistic
SUSY models the mass of a squark has two sources: one fronothpdirgg to the Higgs vev, which
due to SUSY, it is exactly equal to the SM partner coupling #redother from the SUSY soft-breaking
terms. For light quarks the latter are by far dominant giarggaling forA of the typem,/mg, so highly
suppressed and decoupling. A light stop insteag~ m; could lead to a possibly strong suppression
of A.

3.2 Total cross section at the LHC at LO
The result can be written as:

2 2 —log /70
A 14 3) = S 1) Py [ gt o ) (@2
7y me log \/70
Using LO PDF’s available in public libraries, such as LHAP[1F] one can easily compute the gluon-
gluon luminosity and therefore the LO Higgs cross sectiothatLHC14, see Fig. 2. An example is
given in a Mathematica® notebook that can be found at the welbeas mentioned at the end of the
Introduction. An interesting exercise is to vary the valfi¢he renormalisation and factorisation scales
around the natural central choigg;, = ur = my to try to estimate the unknown higher-orders terms
in the perturbative expansion. It has to be noted that at h®,cross section depends pi only
throughags(ur) which appears in the short distance coefficient and thexedsran overall factoayfg,
and depends opng only via the PDF’s (both dependences are of logarithmicreatas the application
of the renormalisation group equations easily shows). hemtwords the dependence on the scales is
maximal as there is no explicit dependence onltigeof the scales in the short distance coefficients that
can compensate those in the coupling and in the PDF’s. Abtllier, this is consistent as scale changes
correspond to a change of at least one ordersmore and in a LO computation only the first term in the
perturbative expansion is present. The result of varyimgsttales independently 2mpy < pg, pr <
2mp with 1/2 < pp/pr < 2in the LO predictions for the LHC is shown in Fig. 9 for diffeteHiggs
masses. Result are normalized to the central referenceeghgi= ur = mpy.

4 Higgs Effective field theory

The main result of the simple calculatigiy — H is that gluon fusion is basically independent of the
heavy quark mass for a light Higgs boson. The result of Eq. ¢a88 be easily derived starting from the

effective vertex,
ag H
ﬁ — Ga Ga 122 e
off 12m H < v )

Br

H
— f apv | 2~ _
GG <2U> (1-9),

where
a

Br = S

(23)
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Figure 2: Example of a plot for the LO cross section fg8 — H at the LHC14 (pb) as a function of the Higgs
mass (GeV) obtained with Mathematica® notebook availatuimfthe author (link in the text). The red (lower)
curve is the large top-mass limit, while the blue (upperyeus the result withe full top-mass dependence.

is the contribution of heavy fermion loops to t1%&/(3) beta function and = 2ag /7.8 (Nr is the
number of heavy fermions witlw > m.) The effective Lagrangian of Eq. (23) givegH, gggH and
ggggH vertices and can be used to compute the radiative correcnitiﬁ(ag) to gluon production. The
correction in principle involve 2-loop diagrams. Howewgsing the effective vertices from Eqg. (23), the
O(a3) corrections can be found from a 1-loop calculation. To fixribeation we shall use

1 v
Log = —7AHG;, G, (24)

where Gy, is the field strength of the SU(3) color gluon field aftdis the Higgs-boson field. The
effective couplingA is given by
ags 11 ag
A=—"—(14+4—-—2= 25
3mv < H 7T> ’ (25)
wherew is the vacuum expectation value parametér,= (Gpv/2)~! = (246)%2 Ge\? and theag
correction is included, as discussed above. The effectagrdngian generates vertices involving the
Higgs boson and two, three or four gluons. The associatedrfrag rules are displayed in Fig. 3. The
two-gluon—Higgs-boson vertex is proportional to the tenso
H" (p1,p2) = g"'p1 - p2 — PiDh (26)

while the vertices involving three and four gluons and thgdsiboson are exactly proportional to their
counterparts from pure QCD

VI (p1,p2,p3) = (pr = p2)° 9" + (p2 — p3)"g"" + (p3 — p1)" 9™, (27)
and
ngychlJ = fabefccle(gupgw7 - g,uogz/p) + facefbde(guygpg - g,uogl/p)

®The (1 — 6) term arises from a subtlety in the use of the low energy theor8ince the Higgs coupling to the heavy
fermions isMy (1 + £)f f, the counterterm for the Higgs Yukawa coupling is fixed intterof the renormalisation of the
fermion mass and wavefunction. The beta function, on therdthnd, is evaluated af = 0. Thel — § term corrects for this
mismatch.
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Figure 3: Feynman rules in the EFT where the top quark is integrated®ubn momenta are outgoing.

+  fadefoee(g" g7 — 9P g"7). (28)

5 gg — Higgs @ NLO

The HEFT is clearly a very powerful approximation as it tuan®op computation into a tree-level one.
That means that within the HEFT the calculation of the totaks section for Higgs production at NLO
will appear as a usual NLO calculation, i.e., involving onlye-loop and tree-level diagrams. This is
what we describe in this section.

5.1 The NLO computation in a nutshell
At NLO Eg. 3 can be rewritten as

1 1
ANOH 4+ X) = / diy / / da fy(w1, i) o2, pr) 6% (99 — H) + 63 (99 — H)]
T0 T0/ 1

1 1
+ Z/ dzy / ) dngi(ml,up)fj(xg,up) X &g)(Zj — H/{?), (29)
T0/%1

ijk V70

wheres(® (g9 — H) and 68)(gg — H) denote the Born-level and the virtual cross sections, while
6%’(2’;’ — H k) is the real-emission cross section:

(0,1 11—
Ufg,v)(gg—>H) = Q—S\AB,Vy ddg,



N .. 1 —o2
O'g)(lj—)Hk‘) = 2—S|.AR| dPr,

In general, the virtual term contains ultraviolet (UV), tsafd collinear divergences. The UV divergences
are absorbed by a universal redefinition of the couplingsramg at the Born amplitude, as dictated by the
renormalisation of the SM. When integrated over the full pbase space, the real term generates soft and
collinear divergences, too, and only whiafrared(IR)-safequantities are computed, these divergences
cancel to yield a finite result. IR-safe observali#gp) can be best understood by considering the soft
or collinear limit in the real phase space, i.e. when thetadil parton has low energy or is parallel to
another parton. In this limit, an IR-safe observable yi¢ldsO(®r) = O(Pp), where the Born-level
configuration® g is obtained fromb y by eliminating the soft particle (in case of soft singuias) or by
merging the collinear particles (in case of collinear siagties).

There several ways to handle the cancellation of the singalg which fall into two large cat-
egories, process-dependent and process-independemdsetin the former, one treats each calcula-
tion/process independently and performs manipulationkeointegrals over the phase space so to obtain
analytic or semi-analytic results.

Process independent methods, on the other hand, are baaesggnfundamental result, i.e., that
the pattern of the soft and collinear divergences is unalersd depends only on the quantum numbers
of the initial and final state particles in the Born procedsatimeans that given the Born amplitude, one
can predict the divergences that will show up in the virtuiadtdbutions and will be then cancelled over
integration of the extra radiation in the reals. More impaotly, such divergences come in just a handful
of different types that can be dealt with once and for all.

Let us now rewrite Eqg. (30) in a general and short-hand rmtati
oMo = /dch [B(®p) + V(®5)]O(®p) + /dchR(ch) O(®R) (30)

which will be useful in the following. A NLO cross section igitten in terms of matrix elements for
the Born and virtual integrated over the Born phase spacetpiireal matrix elements integrated over
the real phase space. Within a subtraction method, the hesepspace is parametrized in terms of
an underlying Born phase spa®g; and a radiation phase spadg . A necessary requirement upon
this parametrization is that, in the singular limits, by gieg collinear partons, or eliminating the soft
parton, the real phase becomes equal to the underlying Bwen @hen the expectation value of an
IR-safe observable reads

/ deNFO O (@) = / ddp [B(@B)+V(¢B)+ / d<I>RBS(¢R)} O(®p)
+ [ avn(R(®R) O(®r) - S(@RO@) (31)

The third member of the above equation is obtained by addidgsabtracting the same quantity from
the two terms of the second member. The te$ 5) are the subtraction terms, which contain all
soft and collinear singularities of the real-emission terdsing the universality of soft and collinear
divergences, they are written in a factorised form as

S(®r) = B(®p) ® S(Prp), (32)

where the§(<I>R|B) can be composed from universal, process-independentstibtr kernels with ana-
Iytically known (divergent) integrals. These integral,evhsummed and added to the virtual term, yield
a finite result. The second term of the last member of Eq. also finite ifO is an IR-safe observable,
since by constructio cancels all singularities iR in the soft and collinear regions. The most popular
subtraction schemes currently used in public NLO codesasedon the dipole subtraction [18] and the
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Figure 4: Example of Feynman diagrams giving null contributiongie— H at one-loop in the HEFT. Bubbles
on the gluon legs are zero in dimensional regularisatigh— H is zero at all orders in perturbation theory if
mgq = 0 due to chiral symmetry.

so-called FKS scheme [19]. The caseyof— H at NLO is particularly simple as the Born amplitude
isa2 — 1 process. This means that the integration over phase spdhe tdal corrections is particu-
larly simple and can therefore be done analytically. Thisdlao the pedagogical advantage that shows
explicitly where the divergences come from and to “see” thiecellations term by term. We study the
procesgyyg — H at NLO, in the large top-quark mass limit. All results givegldw are in Conventional
Dimensional Regularization (CDR), where matrix elementscalculated irl dimensions, including the
Born and real contributions, as well as the integration gharse space [6].

5.2 gg — H: Bornin d dimensions

The Born amplitude is calculated via the HEFT feynman rul&be only difference with respect to
the previous calculation stems from the fact that now themdation has to be done h = 4 — 2e-
dimensions, withe infinitesimal. The phase space do not bring any extierm. However, the matrix
element changes
m? S|
(g“”TH - p”q“> =4(d- 2)miy , (33)
as well as the average over the initial state gluon polacizatwhich ind-dimensions are — 2. This
gives
R B a% m%{ ,uQe
75 T & 5T6v%s (I—¢) o1 —2)
= 5’0 5(1 - Z) ; (34)

wherez = m?,/s is the inelasticity of the process, i.e. the fraction of tlaetpn parton energy that
goes into the Higgs (for the Boran = 1). u is the usual arbitrary scale that needs to be introduced
in dimensional regularisation to correct for the differeimhensions and keep the action adimensional
(h = ¢ = 1). Note that a cross section ihdimensions has dimensiofig] = M2~¢. Also note that we
have defined as containing an explicit factar.

5.3 gg — H: virtual corrections

There are several diagrams appearing at one-loop. Diagraoiging bubbles on the external gluon legs
(with 3-point gluon-gluon-gluon and gluon-gluon-Higgsteees) give rise to scaleless integrals that are
zero in dimensional regularisation, see Fig. 4, left diemgr&’heqq — H process, see Fig 4 right, is
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Figure 5: Feynman diagrams giving non-zero contributiongjo— H at one-loop in the HEFT.

proportional to then, parton mass which are taken massless and therefore nulbatieis. As a result,
only two diagrams are non-zero, i.e., the vertex correciot the bubble with the four gluon vertex as
shown in Fig. 5

2 \ €

R N ags 1] 2 10 179 9

Hoo= 11— 14+ — — -+ —+ — ,
Ot G0 0(1 — 2) [ + 27TCA <mfg> cr < 2 + e + 36 + 7 (35)
2\ €

N N ag o 10 179

ub = 11— 14+ — — _ ,
Obub oo (5( Z) [ + 27TCA <m%{> cr ( 3¢ 36 (36)

where

I'(1+4eIl(1—e)?

er = Um) =4 =59

(37)

To obtain the results above, one has to write down the loopiaudes, perform a few simplifications and
the decomposition of the tensor integrals appearing in thglitudes so to express the results in terms
of the following two scalar integrals:

dde 1 w2\ /1
2e — Rl - 2
[ marr () ()

> / & : S (“_2>6<3—7r2> (38)
@m)d 2+ p)2(C+p2)?*  2my \my ) \ € ’

with py = p1 + p2. Summing the contributions of the two diagrams above widinth correction from
Eq. (25), we obtain

2\° 2 1
oy =60 6(1 — 2) [1+§—;CA<M ) cr (-6—2+—+7T2>], (39)

2
myy

i.e., the total virtual contribution is proportional to tBern amplitude and it contains pole(s) in powers
of 1/e. The fact that the full virtual amplitude is proportionalttee Born is due to the simplicity of a
2 — 1 process. However, in general one can prove that the diveogetributions must be proportional
to the Born in the case of collinear (and collinear-soft, dbeble pole) divergences and to the so-called
color-connected Born for the soft ones. Given that the Banplaude is proportional tav% and we
are calculating QCD corrections, we also expect UV divecgenwhich are proportional tb/e. The
fact that apparently we do not see any pold fia in the result above, it simply means that there is an
accidental cancellation between simple poles of IR origith #hat of UV origin, as we did not keep them
distinct in the calculation. To leave only IR poles in the ditoge to be cancelled with those coming
from the real contribution, we therefore proceed here tommalisation ofog. This can be attained by
the substitution irf(, see also [QCD:1.2.3],

2\ € b
as = ag®(ug) = ag [1 . <M—2> —0] 7 (40)
2 5 €
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Figure 6: Feynman diagrams givingj real contributions in the infinite top-quark mass limit. ‘Sheontributions
are finite.

whereby = 11/6 C4 — 2nTr /3. The UV-renormalized virtual amplitude is

- 2 € 2
M (gg) = 60 6(1 — 2) {1 + g_;CA <TZ—%{> cr <—§2 _2% 2b—0 log TZ—%Z + % + 772>] .(42)
where now the poles i/, 1/¢ are only of IR nature. Another important feature which is ifest in
the expression above is the appearance of an exllicif the renormalisation scale in the short distance
part. As mentioned before, this the improvement expecteth@scale dependence of a NLO result: the
ur dependence of '[h&ZS(,uR) overall coefficient is exactly cancelled by the explicit lgg to orderaf’g.

5.4 Real Contributions

Real corrections imply the calculation f— 2 tree-level amplitudes and their integration over phase
space ind dimensions. All possible initial and final state partonsiogls, quarks and anti-quarks need to
be included,

1. q¢ — Hg + crossing (i.e.qg — Hg),
2. qg — Hq +crossings (i.eqg — Hq,g9q9 — Hq, 93 — HQ),
3. 99—~ Hg.

It is easy to predict which divergences to expect from eacth®fsubprocesses above. The reason is
that out of the possible (by Lorentz and color invariancajartying Born amplitudes, i.eqg — H and

gg — H, the only non-zero one igg — H. Therefore the first processes must give a finite result when
integrated over phase space, the second ones can onlyrcoottimear divergences to be absorbed in
quark PDF's, while the last is expected to give rise to saft@rllinear divergences, part of which will be
absorbed in the gluon PDF’s and the rest canceled agairss# ttaming from the virtual contributions,
Eq. (41).

541 qq — Hg

This contribution, shown in Fig. 6 is finite and can be caltedadirectly in four dimensions. A simple
calculation gives

4 0} (u2+12)

M2 = 28\ T2 )
(M= 81 mv? s ’ (42)
to be integrated over thedimensional phase space
1
APy = —(1—2) dv, (43)
8

wherev = 1/2(1 + cos §) andz = m?; /s as usual. Using

t = —s(1—-2)(1—-v), (44)
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Figure 7: Feynman diagrams givingy real contributions in the infinite top-quark mass limit.

u = —s(1-2)v, (45)
gives

. agbi(1—2)°

6r(qq) = Uoﬁﬁ(% . (46)

542 gq — Hgq

Let us consider now the contribution from the diagrams witlirdtial quark, i.e., the procesg; — Hg.
Thed-dimensional averaged/summed over initial/final statanimdtions and colors amplitude is

— 1 ad (u? 4 s%) —e(u+ s)?
2= _ 5 47
M 54(1 — €) mv? t (47)
Integrating it over thel-dimensional phase space
1 [47\°© 1
APy = — [ — ) ——— 2°(1 —2)'"2 07 ¢(1 —v)~%d 48
2 87T<S> F(l—e)z( 2 v (L= v) e (48)
one gets
2 € 2 2
. . ag i 1 3(1—2) (1-=2)
alon) = o0 520r (L) e [=fme)+ 2= 3 v aeon EEE] L

where thepy,(2) color-stripped Altarelli-Parisi splitting function is\gin in the Appendix, Egs. (67). We
perform the factorisation of the collinear divergencesirgléhe counterterm

2 €
11. as H cr
oo = g2 [(5) L) (50)
We note that in fact in CDR the cross section factorises dverdtdimensional spllitting functions
Egs. (68). However, the collinear counter-termMi$ is defined with the 4-dimensional Altarelli-Parisi
splitting functions, Egs. (67), and that is why we have \eritthe result above in terms pf,(2) leaving
out a finite termz (also note that our definition afy, Eq. (34), contains a factaf). This gives

¥5(g9q) = &r(gq) + 65" (9q)
2 2 2
as miy (1—-=2) 3(1—2)
= o0y %CF Pgq(2) log E + pgq(2) log ~ +z— 2 |- (51)
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Figure 8: Feynman diagrams givingy real contributions in the infinite top-quark mass limit.

543 gg — Hg
The calculation of thel-dimensionalgg — H g amplitude involves the four diagrams shown in Fig. 8

and it is not so trivial to do by hand, yet the final result isyweompact:
1 a_?é(m%+s4—i—t4+u4)(1—26)+%6(m}1{+52+t2+u2)2
24(1 — €)2 w2 stu '

[M? = (52)
This example is illustrative of the fact that keeping tratkhe ¢ parts in the amplitude squared makes
the calculation significantly more complex for at least tveagons. First the structure of the result
itself is more involved. Second, one is forced to work at theased amplitude level asdimensional
contributions come from thel(— 2 dimensional ) gluon polarizations and therefore cannotaéxghe
beauty, power and simplicity of helicity amplitude techugg [20, 21]. Computing QCD amplitudes
where states have fixed polarizations entails huge simgtiifics and allows to make predictions for
amplitudes with many external partons. For example, egetamplitudes in the HEFT involving up to 5
extra partons can be easily obtained automatically usiolg tauch as APGEN[22] or MAD GRAPH [23].
Fortunately, it turns out that is possible to use a diffesiteme than CDR and actually perform the
computation of the Born and real matrix elements in exacily flimensions (yet integrate them over the
d-dimensional phase space). This involves a different (asittacky) d-dimensional algebra for the loop
computations and the introduction of (universal) finitarterfor the initial-state counter-terms and UV
subtractions, yet with an enormous computational simglifdz. All public NLO codes for processes at
the LHC in practice do use such "maximally four dimension&tlimensional regularisation schemes.
Integrating the amplitude (52) over tdedimensional phase space of Eq. (48) gives

2\ € 2
A . Qg M 2 2 by 7T
or(99) = 605-Ca <—qu> cr [(—2 + = - —> 5(1—2)

_ )3 )2 2 2
EAYERR LT APE (T K
+41+z4+(1—z)4 (log(l—z)) ] ’ (53)
z 1-=2 n
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where the plus prescription is defined as follows:

1 1
/ dz [h(@)), f (z) = / de h(@)[f(z) - F(1)]. (54)
0 0

Note that theZ 2&5(1 — 2) in Eq. (53) comes from rexpressing the divergent terflgy + 55 +

z(1 — z)] in terms of— %pgg(z), see Eq. (67). The factorisation of the collinear divergeischandled by
adding the corresponding counterterm

2 €
reoll _ as |(H7) ¢
Hog) 20052 | (L) L) (55)
which gives
MS(99) = Grlgg) + 63" (g9)

2\ € 2
7 2 2by w
= —_— —_— —_—— — 1_
% 27TCA (mH> T [<62+6C'A 3)5( ?)
m% B E(l—z)?’ _4(1 —2)2(1 4 2%) + 22

w23 z z(1—2)
1+z24 4+ (1—2)* [log(1 - 2)

4 . 56

i < >+] 9

z 1—2

+2pgy4 log log =z

We can now recognise that the IR poles match those of thealictantributions in Eq. (41). Adding up
the contributions from real and virtual contributions of fy channel we obtain (note that our definition
of og, EQ. (34), contains a facta:

M(gg) = 615(99) + 55 (g9)
g 1 2, bo m%
= 0g —= — 4+ ix2—92 1og 1—
o0 27TCA [<3 +37T o ,UR (1 —2)
11(1—2)? 2 (1—242%)7?
- + 2pyq log 5—4 1= 2) log z
1-— 22 /log(1 —
+8( z+z%) <Og( Z)> ] _ (57)
2 1—=2 n

As predicted, the final results for the short distance caeffts is finite (yet scheme dependent) and does
contain the necessaiyg’s of the renormalisation and factorisation scales thatpemsate up ta% the
corresponding dependencesﬂﬁq(pR) of the Born amplitude and in the PDF'’s.

5.5 NLO results: discussion

The expressions above can be easily implemented in a nuahedde to perform the convolution in-
tegrals with PDF’s. A few simple numerical optimizationachk as the choice of integration variables,
and a bit of attention to the implementation of thedistributions, that’s all is needed. The reader can
find a sample implementation in a Mathematica® notebooketibb address mentioned at the end of
the Introduction. By running the code with different scafmices, one can associate an uncertainty to
the NLO predictions as done at LO. The result, shown in Figed®nes as a big surprise! The NLO
calculation predicts a rate twice as large and the resmekbtyand NLO uncertainty bands do not even
overlap. That means that our naive estimate of the uncédsiat LO is totally off and therefore unre-
liable. It seems also to suggest that perturbation expansiat stake here. As we had mentioned, this
motivated the computation of the NNLO corrections, whiagh@so shown in Fig. 9. Fortunately, NNLO
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Figure 9: K-factors for Higgs production from gluon fusion at the LH@ncertainty bands are obtained via in-
dependent scale variatidn2my < pg,pr < 2mpg with 1/2 < pup/ur < 2. The LO and NLO bands can
be obtained by implementing the formulas obtained in thedesin a code that perfoms the numerical integra-
tion over the PDF's. Cross-checks and NNLO results can bairdd with HNNLO [24]. (Plot courtesy of M.
Grazzini).

predictions do overlap with NLO and also display a smallelesclependence, so that the perturbation
picture seems safe starting from NLO on. In fact, this bedraia rather special tpp — H + X and

it is often rephrased by saying that what we call LO (in theyrbative expansion) is not actually the
leading one in size and therefore we should not start from fhar instance, in Drell-Yan or VBF this
does not happen, and the perturbative expansions (seerorte@drge beautifully, see Fig. 10. In any
case, the Higgs production reminds us an important facttbathould always keep in mind: scale vari-
ation cannot by definition reproduce missing finite termshim perturbative expansion and as such can
only give an indication of what the real uncertainties cdutd On the other hand, comparison between
predictions from LO and NNLO, their stabilization (or ladieteof) and the use of approximate meth-
ods to determine (classes of) higher order terms, all tegethn provide a rather solid picture on the
theoretical uncertainties on a case-by-case basis. Weaneim passing, another important source of
uncertainties in making predictions for hadron collidess,, that coming from imperfect knowledge of
the PDF’s. Uncertainties are related to unknown higheeotdrms in the DGLAP evolution equations
that determine as well as from the extraction of the init@dition from experimental data, see [QCD:3]
and in particular [QCD:3.3.2].

As far as total cross sections are concerned, the situaitimerefore pretty clear. Fixed-order
calculations come equipped with self-detecting procesitinat can give us information on whether a
prediction is reliable or not. If not, it can be systematicamproved by including higher-order terms
(almost for free nowadays at NLO, yet at a rather high costML®) and uncertainties can be easily
estimated. So it is natural to ask, what about other IR-sbéeiwables?

Let us consider, once agaip — H + X as an example, and focus on the Higgs momentum

"The latter does in fact imply also the prediction of experitaéobservables at the same order in perturbation theaty an
therefore are also intrinsically also affected by scaleeddpncies. Such effects are not included normally in tHeatbn of
the uncertainties coming from PDF’s.
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Figure 10: Examples of improvement in the predictions of processesi&t In going from LO to NNLO. On the
left, scale dependence of the predictions Zor* production (aty = 0) at the LHC14, at fixed order [25]. On
the right, Higgs production at the LHC7 via VBF [26] as a fuanotof the Higgs mass. The bands are obtained by
independent scale variation in the intergsl4d < up, ur < 4Q, @ being the virtuality of théV, Z fusing into the
Higgs. In both cases the perturbative expansion behavemnaesty well and NNLO predictions overlap with those
at LO and NLO and display a much smaller residual uncertainty

(fully inclusive) distribution, which can be parametriziederms of only two variablés the rapidityy i
and the transverse momentyrf). At LO (referred to the total cross section), the Higgs caibbested

in the forward or backward directions in the lab system, = %log g—; yet it has alwayg?’, = 0, i.e.
the distribution inp%, is a delta function centered af; = 0. At NLO (again referred to the total cross
section),2 — 2 diagrams enter in the calculation and the Higgs can have @eaypl,. Since at any
point in phase space withi; # 0 this is the first non-zero contribution, the observajeof the Higgs

is only at LO. In other words if we want to know thé, distribution of the Higgs at NLO over all phase
space, we need at least a NNLO prediction for the cross sectinother way of thinking about it is to
ask oneself what kind of diagrams are present in the calonl&r that observable in a given area of the
phase space: if there are only tree-level diagrams therbereable is LO. It is important when working
with NLO codes to always think about what kind of observalalesactually predicted at NLO, what at
LO and what not even at LO. Again, a NNLO computation for theltoross section fopp — H + X,
gives NNLO information on the Higgs rapidity distributioNO for the Higgspl, andpp — H + 1-jet
observables, LO fopp — H + 2-jets observables and the structure of the jeflin- 1-jet events and no
information at all orpp — H + 3-jets observables. In short, a fixed-order computation céy make
predictions for a finite number of observables, typicallyhad rather limited number of resolved partons
and a very small number of unresolved ones, i.e. just one M@ computation and up to two for a
NNLO computation. This is the first main limitation of a fixedder computation. However, it is not the
only one.

Consider again thg?; distribution of the Higgs as predicted by a NLO computationthe total
cross section, Fig. 11. This curve can be easily obtaineagusie expressions in four dimensions of
Egs. (42,47,52), performing the integration over the palagle together with the PDF’s via a Monte-
Carlo method and plotting it point-by-point during the igttation. Thep?, distribution is divergent in
pL = 0 as expected from soft and beam-collinear emissions. As we learnt such divergences are
proportional tod(1 — z) wherez is the fraction of parton-parton energy taken by the Higgs are
cancelled by the virtual contributions, all of which residepy = 0. So the cancellation between real
and virtual contributions, all of it happens in the first biintlee histogram. How do we interpret such

8We do not consider the azimuthal anglgbecause for symmetry reasons can only lead to a uniformitditon
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Figure 11: Higgsp%, spectrum for a Higgs of; = 120 GeV at the LHC7. The labeling NLO and NLL+NLO
refer to the total cross section. The curves are normalzéut same value (=total cross section is the same). The
green curve is just a LO prediction for tpg, of the Higgs. The logarithmic divergenceigi — 0 is cancelled by

the negative infinite virtual contributions g, = 0 (not shown!). The resummed prediction (red curve) featares
“physical” smooth behavior at smalf,. (The resummed prediction is obtained via HqT [27]).

weird distribution? A useful way is to think about the sizeltoé bin of the distribution as our resolution
scale: with a rather coarse binning there is no "going-finnty" and predictions are rather stable (this of
course includes the total cross section which correspandsimg only one bin), while with thin binning,
we start to be sensitive to low energy and virtual emissioh&lvbecome increasingly important and
are not included at all in a fixed-order approach. This is Hseavhere resummed predictions come into
rescue: one finds that the leading part of soft emissionsdnebvirtual) is universal, it can be considered
at all orders and included by identifying th&s's associated to it and exponentiating them. This can be
done either at very high accuracy analytically yet fullylirgively or in a numerical and exclusive way
at the leading log with a parton shower (which actually resiooth soft and collinear enhancements).
The result of including these effects analytically is shawfig. 11, red curve. In very crude words, the
effect of the resummation is to spread tig) of the virtual contributions over a range of a few tens of
GeV with the effect of smoothing out the divergence and pcodpa "physical” distribution.

In summary, fixed-order calculations in perturbative QCD b& performed in a well-defined
and quite simple framework, i.e. in the context of the faettion theorem. It is therefore possible to
make predictions for inclusive quantities in hadron celiigl which can be systematically improved at
the "only" price of an (exponential) increase in the comitjeaf the calculation. In practice, however,
the use of fixed-order predictions is limited by several ptheortant drawbacks. First, only processes
with a few resolved partons can be calculated, while in fraete know that hundreds of hadrons can be
produced in a single proton-proton interaction of which weetzound to ignore the details. Second, sharp
infinities appear in the phase that do cancel between reaViaingl contributions if inclusive enough
observables are defined, yet lead to unphysical distribsitio specific areas of the phase space and/or
when the resolved partons become either soft or collinaarh $cal positive and negative infinities are
unphysical because they appear only due the artificial &time of the perturbative expansion. Finally,
the fact that plus and minus infinities appear locally in ghesace also means that fixed order predictions
beyond LO cannot be used as probability functions to geaaragnts as distributed in nature. Parton
showers, i.e. fully exclusive resummation, and their megffnatching with fixed-order predictions,
provide an elegant and powerful way out to all the above &tionhs.
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6 Beyond fixed-order predictions

As we have explicitly verified, fixed-order predictions hangortant limitations both of principle (ar-
eas of phase space and observables, such as jet substaretyraeorly described, no hadrons but only
partons) and in practice (no event simulation is possilfiejtunately, an alternative approach exists that
is based on the fact that the IR structure, soft or collineBQCD is universal and contributions can
be resummed at all orders. Last but not least, formulas #dribe the emission of soft and collinear
partons are amenable of a probabilistic interpretationthacefore not only it is possible to perform an
explicit resummation but also to associate a full “histoiy"an hard scattering event, i.e., to associate
to every event a full-fledged description of an high-energgné from the two initial protons to the final
(possibly hundreds) of hadrons and leptons in the final stataddition, in the latest years, enormous
progress has been achieved in combining the accuracy ofdirdmt predictions with the flexibility of
parton showers. These methods are briefly presented hexhéogvith their applications to Higgs pro-
duction. The short presentation below is adapted from R8f. [The reader is also referred to [QCD:4.4]
for further details, examples and references.

6.1 Parton Showers

Parton Showers (PS) are able to dress a given Born procelssallvihe dominant (i.e. enhanced by

collinear logarithms, and to some extent also soft ones) @lation processes at all orders in pertur-
bation theory. In particular, the dominant contributors, those given by the leading logarithms, coming
from both real and virtual emissions are included. The csession for the first (which is often also the

hardest) emission in a shower reads:

do_lststep — d(I)BB(q)B) [A(pTin) +d(I)R‘BA(pT(CI)R‘B))P(q)R\B)] ) (58)

whereA (pr) denotes the Sudakov form factor

A(pr) = exp {—/ d®r pP(®RB)O(PT(PR) —pT)| - (59)

This Sudakov form factor can be understood as a ho-emissalrapility of secondary partons down to
a resolution scale git. Here P(®p, ) is a process-independent universal splitting function alaws
to write the PS approximation to the real cross secfidfi, typically given schematically by a product
of the underlying Born-level term folded with a splittingrkel P

RPS(®) = P(®p ) B(®p). (60)

In this framework,® i 5 is often expressed in terms of three showering variables thie virtualityt in
the splitting process, the energy fraction of the splittirgnd the azimutky. A very simple (and widely
used) choice for the splitting function, is

05 p (s L8y, (61)

P(®Rp)dPr s = 5y 5 7

where P(z) are Altarelli-Parisi splitting functions on which any QCDnplitude factorisises in the
collinear limitd || c.

The above definition of the Sudakov form factor, guarantbas the square bracket in Eq. (58)
integrates to unity, a manifestation of the probabilisttune of the parton shower. Thus, integrating the
shower cross section over the radiation variables yieldddtal cross section, given at LO by the Born
amplitude. The corresponding radiation pattern consist&/@ parts: one given by the first term in the
square bracket, where no further resolvable emission abevgarton-shower cut-off'* — typically of
the order ofl GeV — emerges, and the other given by the second term in tlegesuacket describing
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the first emission, as determined by the splitting kernels linportant to stress that the real-emission
cross section in a PS generator is only correct in the smgléaand/or soft limit, wherg"> is a reliable
approximation of the complete matrix element.

After the 1st step the process is repeated using the new coatiign as the Born one.

While rather crude, the PS approximation is a very powerfid,alue mainly to the great flexi-
bility and simplicity in the implementation of — 1 and2 — 2 high-Q? processes. In addition, once
augmented with a hadronisation model the simulation caitygasvide a full description of a collision
in terms of physical final states, i.e., hadrons, leptonsmradons. In the current terminology a generic
Monte Carlo generator mainly refers to such tools, the melstvant examples of areyPHIA 6 and
PYTHIA 8 [29, 30], HERwIG [31], HERWIG++ [32], and S$HERPA [33]. A very clear and exhaustive
presentation of parton shower generators can be found ir{30gf

6.2 Matrix-element merging (ME+PS)

In parton showers algorithms QCD radiation is generatetiércollinear and soft approximation, using
Markov chain techniques based on Sudakov form factors. Biaddvidely separated jets are thus poorly
described in this approach. On the other hand, tree-levetl forder amplitudes can provide reliable
predictions in the hard region, while failing in the collareand soft limits. To combine both descriptions
and avoid double counting or gaps between samples withreliffenultiplicity, an appropriate merging
method is required.

Matrix-element merging [35] aims at correcting as manydaaggle emissions as possible with the
corresponding tree-level accurate prediction, rathan tirdy small-angleaccurate. This is achieved by
generating events up to a given (high) multiplicity using atmx-element generator, with some internal
jet-resolution parametdp.,; on the jet separation, such that practically all emissidrms/a this scale
are described by corresponding tree-level matrix elemditisir contributions are corrected for running-
coupling effects and by Sudakov form factors. RadiatiombeD..,.. on the other hand is generated by
a parton-shower program, which is required to veto radiatith separation larger tha@ .. As far as
the hardest emission is concerned, matrix-element mergiag accurate as matrix-element corrections
(when these are available) or NLO+PS. Since they lack NL@iaircorrections, however, they do not
reach NLO accuracy for inclusive quantities. Nevertheléissy are capable to achieve leading-order
accuracy for multiple hard radiation, beyond the hardebt, avhile NLO+PS programs, relying on the
parton shower there are only accurate in the collinear arsdfo limit for these quantities.

Several merging schemes have been proposed, which in¢ladeKW scheme [35—-37] and its
improvements [38, 39], the MLM matching [40], and the-MLM variation [41]. The MLM schemes
have been implemented in several matrix element codes sud&LRGEN [22], MADGRAPH [23],
through interfaces to YrHIA/HERWIG, while SHERPA [33] and HERwIG++ [32] have adopted the
CKKW schemes and rely on their own parton showers. In Ref] d8etailed, although somewhat
outdated description of each method has been given and aatative study has been performed.

6.3 NLO+PS in a nutshell

Several proposals have been made for the full inclusionmfudete NLO effects in PS generators. At this
moment, only two of them have reached a mature enough stdggeused in practice: MC@NLO [43]
and POWHEG [44]. Both methods correct — in different ways e-ribal-emission matrix element to
achieve an exact tree-level emission matrix element, emange angle. As we have seen in the previous
subsection, this is what is also achieved with matrix-eleneerrections in parton showers, at least for
the simplest processes listed earlier. This, however, isafficient for the NLO accuracy, since the
effect of virtual corrections also needs to be included. dthitmethods, the real-emission cross section
is split into a singular and non-singular palt= R* + R/. One then computes the total NLO inclusive
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cross section, excluding the finite contribution, at fixedentying Born kinematics, defined as

B* = B(®p) + [V((I)B) +/d‘I’RBRS(‘I’RB)} : (62)

and uses the formula

S

_ : R*(®
40N — a0 (B1) [ A% + A0 A pr(@)] + a2l (Br) (69
B
for the generation of the events. In this formula, the téBntan be understood as a lod&lactor
reweighting the soft matrix-element correction part of giraulation. Clearly, employing the fact that
the term in the first square bracket integrates to unity, &r&gethe cross section integrates to the full
NLO cross section.

In MC@NLO one choose®? to be identically equal to the terlB ® P that the PS generator
employs to generate emissions. Within MC @NL:Opody events are obtained using tBé function,
and then fed to the PS, which will generate the hardest emnisgicording to Eq. (62). These are calfed
events in the MC@NLO language. An appropriate number oftevane also generated according to the
R/ cross section, and are directly passed to the PS generhiese Bre calle@ events. In MC@NLO,
Rf = R — R? is not positive definite, and it is thus necessary to generaggtive weighted events in
this framework. A library of MC@NLO Higgs processes (gluarsibn, vector-boson associated pro-
duction, and charged Higgs associated with top) is avalabRef. [45], which is interfaced tosRwIG
and HERwIG++. A fully automatized approacisMC@NLO [46] implemented in the MDGRAPH
framework, is now available that allows to compute and comlzill necessary ingredients (Born, real,
virtual matrix elements plus counterterms) at the usersiest.

In POWHEG, one chooseB’ < R, and in many cases eve®’ = R, so that the finite cross
sectionR/ vanishes. In this case, the hardest emission is generathth WAOWHEG itself, and the
process is passed to the parton shower only after the hawat#iation is generated. Positive weighted
events are obtained, siné® can always be chosen to be positive definite. In all casestbsenR*
has exactly the same singularity structureRaso thatR’ always yield a finite contribution to the cross
section. Implementations of Higgs production processédb thie POWHEG method are available in
HERWIG++ [47], in the POWHEGBOX [48] (interfaced to botharwIG and PrTHIA) and recently in
SHERPA [49].

6.4 Improved descriptions of Higgs production

Being of primary importance, Higgs kinematic distributsosre now quite well predicted and also avail-
able via public codes such as ResBos [50] and HqT [27,51fetiftialp?; distributions accurate to LO
yet featuring the exact bottom- and top-quarks mass loopra#gnce (and therefore can be used also for
predictions of scalar Higgs in BSM) can be obtained via HIGBP) as well as via HPro [53]. However,

in experimental analyses, it is also crucial to get as peggisdictions as possible for exclusive observ-
ables that involve extra jets, such as thepjetspectra and the jet rates, at both parton and hadron level.
To optimize the search strategies and in particular to dugbvery large backgrounds, current analyses
both at Tevatron and at the LHC select 0-,1- and 2-jet everdparform independent analyses on each
sample. The final systematic uncertainties are effectedolly the theoretical and experimental ones
of such a jet-bin based separation. In the HEFT, fully exetuparton- and hadron-level calculations
can now be performed by Parton Shower (PS) programs or wit RICD codes matched with parton
showers: via the MC@NLO and POWHEG methods. Beyond the HEHRMY, exclusive predictions
ME+PS and NLO+PS techniques has become available onlythedbd, 55]. The reason is that one
needs to compromise between the validity of HEFT and the &axitp of higher loop calculations.

Fig. 12 shows a comparison of the predictions of tfieof the Higgs at LHC7 as obtained in
HEFT from:
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Figure 12: Higgs p%, spectrum for a Higgs of; = 140 GeV as predicted by a series of improved predictions:
NNLL+NNLO resummed (red solid), MC@NLO + Pythia (blue dashenatrix-element + Pythia merged results
(magenta dashes), POWHEG + Pythia (cyan dashes). All giedlécdisplay similar features, i.e. a peak between
10-20 GeV and a similar shape at high-with differences that lie within their respective uncemtas (not shown).

a full analytical resummation at NNLL;
MC@NLO (W/ PrTHIA);
— ME+PS merging (MDGRAPH+PYTHIA);
POWHEG (W/ RTHIA).

We first stress (again) that this observable which is at NLgiti” only in the Hqt predictions.
The ME+PS approach is built to be LO for all observables, @/MIC@NLO and POWHEG predic-
tions are based on the NLO calculation for the total crostigecthe same performed in these notes.
Notwidthstanding we see that given the expected uncegainthich are quite large above all at high-
the shapes are in substantial agreement both in the low ahephiranges. In Fig. 13 thg” distribu-
tions for the first and second jets are shown comparing the REEprediction based on the HEFT and
one with the full top-mass depedence andRIA. Even in this case the agreeement between the various
approaches is extremely good for a light Higgs. For a veryyéehggs difference in the distributions
of the extra jets become visibile at quite a hijgh a region not very relevant phenomenologically.

7 Conclusions

Progress in the field of QCD predictions for the LHC in the fafiMC tools usable by both theorists and
experimentalists has made tremendous progress in theskast. it is fair to say that we are now able (or
close to be able in some specific very challenging casesypote automatically or semi-automatically
any interesting cross section for Standard Model and Beyoodesses at NLO accuracy and interface
it with parton shower programs for event generation. In thClera the lowest acceptable accuracy for
any serious phenomenological and experimental study iawillLO event generator. LHC precision
physics is now at NNLO in QCD and NLO in EW. Any physicist irgsted in making discoveries at the
LHC needs to be familiar with the ideas, the physics and taehr@f the current QCD simulation tools.

To this aim, we have consideregp — H + X as a case study. We have illustrated how accurate
and useful predictions for cross sections and other obsixvaan be obtained in QCD, starting from
the calculation of Born amplitude (at one loop) and the @poading hadronic cross section. We have
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Figure 13: Jetpr distributions for associated jets in gluon fusion produttof my = 140GeV andmpy =
500 GeV Higgs bosons at 7 TeV LHC.

then considered Higgs production at NLO in the HEFT and dised the limitations of fixed-order
predictions. Finally, we have briefly discussed how fullglesive predictions are obtained with modern
tools, that allow to reach the accuracy of NLO predictiorgetber with the full exclusivity of a parton

shower approach.

Appendix
Splitting functions and collinear counterterms
We define the 4-dimensional splitting functions as in (4 &4he ESW book:

r 2
Pu(2) = Cr pegl2) = Cr ﬁ + 2601 - z)} (64)
Pyy(z) = Trpey(z) =Tg [22 + (1 — 2)2] (65)
Pyy(2) = Crppglz) =Cp L;'Z)T (66)
Pyy(2) = Cupgglz) =2C4 [ L =% 0= z)} by d(1—2), (67)
(I—-2)+ z

whereby = 11/6 C4 —2n¢Tr /3. We also define the following quantities as the extensioh@splitting
functions ind-dimensions:

P(z) = Py(2) +ePg(2) (68)
where
P(z) = Crpy(z) =-Cp(l—=2) (69)
Py (2) = Trpgy(z) = -Tr22(1 - 2) (70)
Py (z) = Crpg(z) =—Crz (71)
Pi(z) = 0 (72)

factorisation of the collinear divergences is performedulgh the addition of the following counterterm
for each parton in the initial state:

2\ €
ag 1% cr
iR = ogPR o [(MT) ?Pij(z)] (73)
F
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wheres5HEME s the LO cross section and its value depends on the schemthgsexample for Drell-
Yan)]. In CDR, when there is a collinear divergence, the £gection behaves as

1
ol ~ —EPS-(,Z)U(?DR + other terms. (74)

Adding the counterterm (73), leaves a finite part
a? ~ —Pj(z) (0SPR|0) + other terms. (75)
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