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Master equation for hadron 
colliders

Parton-level cross section from matrix elements: model 
and process dependent

Parton density (or distribution) functions: process 
independent

Differences between colliders given by parton 
luminosities

3

Parton density 
functions

Parton-level 
(differential) 
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Perturbative expansion
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Perturbative expansion

The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter, schematically:
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Perturbative expansion

The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter, schematically:

Including higher corrections improves predictions and reduces 
theoretical uncertainties
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Improved predictions

Remember, predictions are inclusive: also at LO initial state radiation 
is included via the PDF; final state radiation by the definition of the 
parton, which represents all final state evolutions

Can be made explicit by using a parton shower (which is unitary)

Due to these approximations, Leading Order predictions can depend 
strongly on the renormalization and factorization scales

Including higher order corrections reduces the dependence on these 
scales
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Going NLO

At NLO the dependence on the renormalization and factorization scales is 
reduced

First order where scale dependence
in the running coupling and the
PDFs is compensated for via the loop
corrections: first reliable estimate
of the total cross section

Better description of final state:
 impact of extra radiation included
(e.g. jets can have substructure)

Opening of additional initial state
partonic channels

6
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NLO corrections

NLO corrections have three parts:

The Born contribution, i.e. the Leading order.

Virtual (or Loop) corrections: formed by an amplitude with a 
closed loop of particles interfered with the Born amplitudes

Real emission corrections: formed by amplitudes with one 
extra parton compared to the Born process

Both Virtual and Real emission have one power of αs extra 
compared to the Born process
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NLO predictions

As an example, consider Drell-Yan Z/γ* production
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NLO predictions

As an example, consider Drell-Yan Z/γ* production
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NLO predictions

As an example, consider Drell-Yan Z/γ* production
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NLO predictions

As an example, consider Drell-Yan Z/γ* production

8

2

�̂ = �Born

✓
1 +

↵s

2⇡
�(1) + . . .

◆

2

gs + ...

×2 Re
gs

gs



Rikkert Frederix

Going NNLO...?

NNLO is the current state-of-the-art. There are only a few complete results 
available, but this year great progress has been made and NNLO results for 
ttbar, H+1j, dijet appeared

Why do we need it?

An NNLO calculation gives control
of the uncertainties in a calculation

It is “mandatory” if NLO corrections are
very large to check the behavior of the
perturbative series

It is the best we have! It is needed for
Standard Candles and very precise tests
of perturbation theory, exploiting all the available information, e.g. for 
determining NNLO PDF sets
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Predictions at NNLO

Why?

● A NNLO computation gives control on the 
uncertainties of a perturbative calculation.

● It’s “mandatory” if NLO corrections are very large to 
check the behaviour of the perturbative series

● It’s the best we have! It is needed for Standard Candles 
and for really exploiting all the available information, for 
example that of NNLO PDF’s.
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Higgs predictions at NNLO

LO calculation is not reliable,

but the perturbative series stabilizes 
at NNLO

NLO estimation of the uncertainties 
(by scale variation) works reasonably 
well

10
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Higgs predictions at NNLO

• LO  calculation is not reliable.

• The perturbative series stabilizes. 

•NLO estimation of higher orders 
effects by scale uncertainty works 
reasonably well.
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NNNLO?
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NNNLO?

Nothing known here... Too complicated!
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NLO...?

Are all (IR-safe) observables that we can compute using a NLO code 
correctly described at NLO? Suppose we have a NLO code for pp ⟶ ttbar

Total cross section

Transverse momentum of the top quark

Transverse momentum of the top-antitop pair

Transverse momentum of the jet

Top-antitop invariant mass

Azimuthal distance between the top and anti-top
13

Born VirtualReal
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Obstacles

Let us focus on NLO... there are already enough steps to be taken:

Virtual amplitudes: how to compute the loops automatically in a 
reasonable amount of time

How to deal with infra-red divergences: virtual corrections and real-
emission corrections are separately divergent and only their sum is 
finite (for IR-safe observables) according to the KLN theorem

How to match these processes to a parton shower without double 
counting

14

+ anything
= + O(αs2) +



Rikkert Frederix

Why an automatic tool?

To save time
Trade human time and expertise on computing one process at the 
time with time on physics and phenomenology.

Robustness
Modular code structure means that elements can be checked 
systematically and extensively once and for all. Trust can easily be 
build.

Wide accessibility
One framework for all. Available to everybody for an unlimited 
set of applications. Suitable for Experimental collaborations.

15
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NLO predictions

As an example, consider Drell-Yan production
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Branching

In the soft and collinear region, the branching of a gluon from a quark can 
be written as

where kt is the transverse momentum of the gluon, kt=E sinθ.

The singularities cancel against the singularities in the virtual corrections, 
which result from the integral over the loop momentum of the function

The sum is finite for observables that cannot distinguish between two 
collinear partons (kt ⟶ 0); a hard and a soft parton (z ⟶ 1); and a single 
parton (in the virtual contributions)
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3.2 Initial-state parton splitting, DGLAP evolution

3.2.1 Final and initial-state divergences

In Eq. (26a) we wrote the universal form for the final-state ‘splitting’ of a quark into a quark and a soft

gluon. Let’s rewrite it with different kinematic variables, considering a hard process h with cross section
σh, and examining the cross section for h with an extra gluon in the final state, σh+g. We have

p
zp

E =

θ

(1−z)p

σ
h σh+g ! σh

αsCF

π

dz

1− z

dk2t
k2t

, (41)

where E in Eq. (26a) corresponds to E = (1 − z)p and we’ve introduced kt = E sin θ ! Eθ. If we
avoid distinguishing a collinear q+ g pair from a plain quark (measurements with IRC safe observables)
then, as we argued before, the divergent part of the gluon emission contribution always cancels with a

related virtual correction

p p
σ
h σh+V ! −σh

αsCF

π

dz

1− z

dk2t
k2t

. (42)

Now let us examine what happens for initial-state splitting, where the hard process occurs after the

splitting and the momentum entering the hard process is modified p → zp:

zp
p

(1−z)p

σ
h σg+h(p) ! σh(zp)

αsCF

π

dz

1− z

dk2t
k2t

, (43)

where we have made explicit the hard process’s dependence on the incoming momentum, and we assume

that σh involves momentum transfers ∼ Q % kt, so that we can ignore the extra transverse momentum
entering σh. For virtual terms, the momentum entering the process is unchanged, so we have

p p
σ
h σg+h(p) ! −σh(p)

αsCF

π

dz

1− z

dk2t
k2t

, (44)

The total cross section then gets contributions with two different hard cross sections:

σg+h + σV+h !
αsCF

π

∫ Q2

0

dk2t
k2t

︸ ︷︷ ︸

infinite

∫ 1

0

dz

1− z
[σh(zp)− σh(p)]

︸ ︷︷ ︸

finite

. (45)

Note the limits on the integrals, in particular theQ2 upper limit on the transverse-momentum integration:

the approximations we’re using are valid as long as the transverse momentum emitted in the initial state is

much smaller than the momentum transfersQ that are present in the hard process. Of the two integrations
in Eq. (45), the one over z is finite, because in the region of the soft divergence, z → 1, the difference of
hard cross sections, [σh(zp) − σh(p)], tends to zero. In contrast, the kt integral diverges in the collinear
limit: the cross section with an incoming parton (and virtual corrections) appears not to be collinear safe.

This is a general feature of processes with incoming partons: so how are we then to carry out calculations

with initial-state hadrons?

In Section 2.3.1, when trying to make sense of final-state divergences, we introduced a (non-

perturbative) cutoff. Let’s do something similar here, with a cutoff, µF, called a factorization scale
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Infrared cancellation

The KLN theorem tells us that divergences from virtual and 
real-emission corrections cancel in the sum for observables 
insensitive to soft and collinear radiation (“IR-safe observables”)

When doing an analytic calculation in dimensional 
regularization this can be explicitly seen in the cancellation of 
the 1/є and 1/є2 terms (with є the regulator, є ➞ 0)

In the real emission corrections, the explicit poles enter after the 
phase-space integration (in d dimensions)

19
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Infrared safe observables

For an observable to be calculable in fixed-order perturbation 
theory, the observable should be infrared safe, i.e., it should be 
insensitive to the emission of soft or collinear partons.

In particular, if pi is a momentum occurring in the definition of an 
observable, it most be invariant under the branching
      pi ⟶ pj + pk,
whenever pj and pk are collinear or one of them is soft.

Examples

“The number of gluons” produced in a collision is not an 
infrared safe observable

“The number of hard jets defined using the kT algorithm with a 
transverse momentum above 40 GeV,” produced in a collision is 
an infrared safe observable

20
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phase-space integration

For complicated processes we have to result to numerical phase-space 
integration techniques (“Monte Carlo integration”), which can only be 
performed in an integer number of dimensions

Cannot use a finite value for the dimensional regulator and take the 
limit to zero in a numerical code

But we still have to cancel the divergences explicitly

Use a subtraction method to explicitly factor out the divergences from the 
phase-space integrals

21
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Example
Suppose we want to compute the integral (“real emission radiation”, 
where the 1-particle phase-space is referred to as the 1-dimensional x)

where                               and             is finite everywhere

Let’s introduce a regulator

for any non-integer non-zero value for     this integral is finite

We would like to factor out the explicit poles in     so that they can be 
canceled explicitly against the virtual corrections
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Subtraction method

Add and subtract the same term

We have factored out the 1/   divergence and are left with a finite integral

According to the KLN theorem the divergence cancels against the virtual 
corrections
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Limitations

Even though the divergence is factored, there are cancellations between 
large numbers: if for an observable    , if                                or we choose 
the bin-size too small, instabilities render the computation useless

We already knew that! KLN is sufficient; one must have infra-red 
safe observables and cannot ask for infinite resolution (need a finite 
bin-size)
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“Plus distribution”
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NLO with Subtraction

With the subtraction method this is replace by

Terms between the brackets are finite. Can integrate them numerically and 
independent from one another in 4 dimensions
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Subtraction methods

                    should be defined such that 

1) it exactly matches the singular behavior of 

2) its form is convenient for numerical integration techniques

3) it is exactly integrable in d dimensions over the one-particle 
subspace                          , leading to soft and/or collinear 
divergences as explicit poles in the dimensional regulator

4) it is universal, i.e. process independent
➞ overall factor times the Born process 
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Two methods

Catani-Seymour (CS) dipole 
subtraction

Most used method
Clear written paper on how to 
use this method in practice
Recoil taken by one (color-
connected) parton: N3 scaling
Method evolved from 
cancellation of the soft 
divergence
Proven to work for simple as well 
as complicated processes
Automation in publicly available 
packages: MadDipole, 
AutoDipole, Helac-Dipoles, 
Sherpa

Frixione-Kunszt-Signer (FKS) 
subtraction

Not so well-known
(Probably) more efficient, 
because less subtraction terms 
are needed
Recoil evenly distributed by all 
particles: N2 scaling
Collinear divergences as a 
starting point
Proven to work for simple as well 
as complicated processes
Automated in aMC@NLO & 
POWHEG BOX

27
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FKS subtraction

FKS subtraction: Frixione, Kunszt & Signer 1996.
Standard subtraction method in MC@NLO and POWHEG, but 
can also be used for ‘normal’ NLO computations

Also known as “residue subtraction”

Based on using plus-distributions to regulate the infrared 
divergences of the real emission matrix elements

28



Rikkert Frederix

FKS subtraction:
Phase-space partitions

Easiest to understand by starting from real emission:

29

d�R =
�

ij

Sij |Mn+1|2d⇥n+1

�

ij

Sij = 1
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FKS subtraction:
Regularized by plus prescription
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Kinematics of counter events

If i and j are two on-shell particles that are present in a splitting that leads 
to an singularity, for the counter events we need to combine their momenta 
to a new on-shell parton that’s the sum of i+j

This is not possible without changing any of the other momenta in the 
process

When applying cuts or making plots, events and counter events might end-
up in different bins

Use IR-safe observables and don’t ask for infinite resolution! (KLN 
theorem)
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Example in 4 charged lepton 
production

The NLO results shows a typical 
peak-dip structure that hampers 
fixed order calculations

32

Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between

the various predictions are larger in this case. In particular, aMC@LO is closer to NLO

than to LO, which is a consequence of the more important role played by extra radiation in

this case (as one expects, the present one being a correlation between two particles rather

than a single-inclusive observable). Again, the closeness of NLO and aMC@NLO results

shows the desired perturbative behaviour. The more significant impact of extra radiation

on this variable is reflected in the slightly larger scale dependence at large pT ’s w.r.t. what

happens for the transverse momentum of the individual leptons discussed before. The two

leptonic channels agree well, also when removing the Z-id cuts.

Figure 3 shows two observables constructed after applying the Z-id cuts, namely the

pseudorapidity of lepton pairs with opposite charge which are also Z-id matched (left

panel; this is then the pseudorapidity of would-be Z bosons), and the azimuthal distance

between leptons of opposite charge which are not Z-id matched (right panel; thus, these

are leptons emerging from different would-be Z bosons). As in the case of fig. 2, there are

two entries in each histogram for any given event. These two observables are dominated

by small transverse momenta, and therefore it is not suprising that, at both O(α0
S) and
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Event unweighting?

Another consequence of this kinematic 
mismatch is that we cannot generate events 
at fixed order NLO

Even though the integrals are finite, they 
are not bounded (compare with
                   ), so there is no maximum to 
unweight against: a single event can 
have an arbitrarily large weight!

Furthermore, event and counter event 
have different kinematics: which one to 
use for the unweighted event?

33
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Figure 2: Matrix element squared |MR|2 (upper plots, solid line) and the subtraction term D
(upper plots, dashed/dotted/dot-dashed lines) for (a) the process e−(p1)q(p2) → e−(p3)q(p4)g(p5)
as a function of s25/s12 = (p2.p5)/(p1.p2) and (b) the process e+(p1)e−(p2) → Z → t(p3)t̄(p4)g(p5)
as a function of xg = 1 − (p3.p4)/(p1.p2). Also plotted are the ratio D/|MR|2, the difference
|MR|2−D (averaged over 100 random points per bin) and the maximal difference max(||MR|2−D|)
per bin. The dashed lines include the dipoles for each point in phase space, α = 1, while for the
dotted α = 0.1 and dot-dashed α = 0.01 the phase space for the dipoles has been restricted to the
collinear/soft regions.

sions drawn there apply to this plot as well.

As a further check we have tested the code extensively against MCFM [10,11]. We have

generated random points in phase space and compared the subtraction terms calculated

by MCFM with the subtraction terms calculated by our code. See table 1 for a list of

processes that have been checked. We observed differences only in the case where dipoles

were introduced entirely to cancel collinear limits, which can be made independently of the

spectator particle. In our code all possible dipoles are calculated, which implies a sum over

all spectator particles. However, if there is only a collinear divergence, i.e., the unresolved

parton cannot go soft, this sum is redundant and one dipole with the appropriate coefficient

is enough to cancel the singularity. In MCFM, these special limits are implemented using

a single spectator momentum, while MadDipole sums over all spectator momenta, thereby

yielding a different subtraction term. We have checked in the relevant cases that close to

the singularities the MCFM subtraction terms behave identical to the subtraction terms

calculated by our code.

We also tested the CPU time which is needed to produce the squared matrix element and

the dipoles for a given phase space point. These checks were performed with an Intel

Pentium 4 processor with 3.20Ghz. As an example we picked out three different processes:

1) gg → gggg: |M|2: 26ms,
∑

dipoles: 68ms

2) uū → dd̄ggg: |M|2: 10ms,
∑

dipoles: 45ms

3) uū → uūggg: |M|2: 34ms,
∑

dipoles: 0.15s

– 8 –
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Event unweighting?

Another consequence of this kinematic 
mismatch is that we cannot generate events 
at fixed order NLO

Even though the integrals are finite, they 
are not bounded (compare with
                   ), so there is no maximum to 
unweight against: a single event can 
have an arbitrarily large weight!

Furthermore, event and counter event 
have different kinematics: which one to 
use for the unweighted event?
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as a function of xg = 1 − (p3.p4)/(p1.p2). Also plotted are the ratio D/|MR|2, the difference
|MR|2−D (averaged over 100 random points per bin) and the maximal difference max(||MR|2−D|)
per bin. The dashed lines include the dipoles for each point in phase space, α = 1, while for the
dotted α = 0.1 and dot-dashed α = 0.01 the phase space for the dipoles has been restricted to the
collinear/soft regions.
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Filling histograms on-the-
fly

In practice, when we do the MC integration we generate 2 sets of 
momenta

1. An m-body set (for the Born, virtual and integrated counter terms)

2. An m+1-body (for the NLO) which we map to the counter term 
momenta (for the counter terms)

We compute the above formula; and apply cuts and fill histograms using 
the momenta corresponding to each term with the weight of that 
corresponding term
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Summary

Both the virtual and real-emission corrections are IR divergent, 
but their sum is finite: We can use a subtraction methods to 
factor the divergences in the real-emission phase-space 
integration and cancel them explicitly against the terms in the 
virtual corrections

This generates events and counter events with slightly different 
kinematics. This means we cannot generate unweighed events 
(integrals are not bounded), but we can fill plots with weighted 
events: MC integrator (not an MC event generator)

When making plots or applying cuts, use only IR safe 
observables with finite resolution

37
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one-loop integral

Consider this m-point 
loop diagram with n 
external momenta

The integral to compute is

39

k1 k2

k3

k4
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k6

kn

D0 D1

D2

D3

Dm�1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3
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ddl

N(l)
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What is the goal

Any one-loop integral can be written as:

Reduce a general integral to “scalar integrals”, with at 
most 4 denominator factors Di

To compute the virtual corrections, we “only” need to find 
the values of the coefficients multiplying the scalar integrals

40

Z
ddl

N(l)

D0D1D2 · · ·Dm�1
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X

i
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Z
ddl

1
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Basis of scalar integrals

The a, b, c, d and R 
coefficients depend only 
on external parameters 
and momenta

41
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• All these scalar integrals are known and available in computer libraries 
(FF [v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])
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New loop techniques

The “loop revolution”: new techniques for computing one-loop matrix 
elements are now established:

Generalized unitarity (e.g. BlackHat, Njet, ...)
[Bern, Dixon, Dunbar, Kosower, 1994...; Ellis Giele Kunst 2007 + Melnikov 2008; Badger...]  

Integrand reduction (OPP method) (e.g. MadLoop (aMC@NLO), 
GoSam)
[Ossola, Papadopoulos, Pittau 2006; del Aguila, Pittau 2004; Mastrolia, Ossola, Reiter, 
Tramontano 2010;...]

Tensor reduction (e.g. Golem, Openloops)
[Passarino, Veltman 1979; Denner, Dittmaier 2005; Binoth Guillet, Heinrich, Pilon, Reiter 2008; 
Cascioli, Maierhofer, Pozzorini 2011;...]
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Integrand Reduction

Of course the above equation does no longer hold when we 
take away the integral

But we can fix it by introducing “spurious terms” (that 
depend on the loop momenta)
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Functional form of the 
spurious terms

The functional form of the spurious terms is known (it 
depends on the rank of the integral and the number of 
propagators in the loop) [del Aguila, Pittau 2004]

for example, a box coefficient from a rank 1 numerator is

(remember that pi is the sum of the momentum that has 
entered the loop so far, so we always have p0 = 0)

The integral is zero
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OPP decomposition

Multiplying both sides by the product of all the Di’s leaves:
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Numerical evaluation

N(l) is known from the diagrams; also the function form of the spurious 
terms is known, so:

By choosing specific values for the loop momentum l, we end up with a 
system of linear equations that we can solve easily

In a renormalizable theory, the rank of the integrand is always smaller 
(or equal) to the number of particles in the loop (with a conveniently 
chosen gauge)

We can straight-forwardly set the it up by sampling the numerator 
numerically for various values of the loop momentum l

By choosing l smartly, the system greatly reduces

In particular when we chose l to be a complex 4-vector
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How it works...

To solve the OPP reduction, choosing special 
values for the loop momenta helps a lot

For example, choosing l such that

sets all the terms in this equation to zero 
except the first line

There are two (complex) solutions to this 
equation due to the quadratic nature of the 
propagators
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How it works...

Two values are enough given the functional form for the 
spurious term. We can immediately determine the Box 
coefficient

By choosing other values for l, that set other combinations of 
4 “denominators” to zero, we can get all the Box coefficients
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How it works...

Now that we have all the Box coefficients we can start choosing values 
for l that set 3 “denominators” to zero to get the Triangle coefficients. Of 
course, now both the first and the second lines contribute.

We already have solved the coefficients of the first line in the previous 
iteration, so also here there is only a simple system of equations to solve

Once we have all the Triangle coefficients, we can continue to determine 
the Bubble coefficients; and finally the Tadpole coefficients
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How it works...

For each phase-space point we have to solve the system of 
equations numerically

Due to the fact that the system reduces when picking special 
values for the loop momentum, the system greatly reduces

We can decompose the system at the level of the squared matrix 
element, amplitude, diagram or anywhere in between. As long as 
we provide the corresponding numerator function

For a given phase-space point, we have to compute the numerator 
function several times (~50 or so for a 4-point loop diagram)
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Complications in d 
dimensions

In the previous consideration I was very sloppy in considering if 
we are working in 4 or d dimensions

In general, external momenta and polarization vectors are in 4 
dimensions; only the loop momentum is in d dimensions

To be more correct, we compute the integral
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Z
ddl

N(l, l̃)

D̄0D̄1D̄2 · · · D̄m�1

D̄i = (l̄ + pi)
2 �m2

i = (l + pi)
2 �m2

i + l̃2 = Di + l̃2

l̄ = l + l̃

4 dim epsilon dimd dim

l̄ · pi = l · pi l̄ · l̄ = l · l + l̃ · l̃l · l̃ = 0
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Implications

The decomposition in 
terms of scalar integrals 
has to be done in d 
dimensions

This is why the rational 
part R is needed
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Figure 1: An n-point one-loop diagram with m propagators in the loop. The dark blob represents
a tree structure.

The values of the integers Mi depend on the particular diagram considered (e.g. in fig. 1

we have M1 = 1, M2 = 3, M3 = 6), but they must always fulfill the following conditions:

1 ≤ Mi < Mi+1 , Mm = n =⇒ p0 = 0 , (3.5)

where the last equality of eq. (3.5) follows from eq. (3.2). The inverses of the loop propa-

gators in d and four dimensions we denote by D̄ and D respectively. Hence:

D̄i = (!̄+ pi)
2 −m2

i = Di + !̃2 ≡ (!+ pi)
2 −m2

i + !̃2 , 0 ≤ i ≤ m− 1 , (3.6)

which follows from eq. (3.3), and from the fact that the (−2ε)-dimensional parts of the

external four-vectors are equal to zero, since the ’t Hooft-Veltman scheme is adopted. Note

that mi is the mass of the particle flowing in the ith propagator, and therefore in general

p2i %= m2
i . As is known [14], the one-loop integral C can be expressed as a cut-constructible

part, i.e. a linear combination of scalar boxes, triangles, bubbles, and tadpoles, plus a (non

cut-constructible) remainder term R, called rational part:

C =
m−1∑

0≤i0<i1<i2<i3

d(i0i1i2i3)

∫
dd!̄

1

D̄i0D̄i1D̄i2D̄i3

+
m−1∑

0≤i0<i1<i2

c(i0i1i2)

∫
dd!̄

1

D̄i0D̄i1D̄i2

+
m−1∑

0≤i0<i1

b(i0i1)

∫
dd!̄

1

D̄i0D̄i1

+
m−1∑

i0=0

a(i0)

∫
dd!̄

1

D̄i0

+ R . (3.7)

The essence of the OPP method is that of computing C by determining (in a numerical

manner) the set of coefficients and the rational part

d(i0i1i2i3), c(i0i1i2), b(i0i1), a(i0), R, (3.8)

– 10 –
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Rational terms

The main difference is how we get the rational terms (we 
already saw them in the Passarino-Veltman reduction)

In the OPP method, they are split into two contributions, 
generally called

Both have their origin in the UV part of the model, but only 
R1 can be directly computed in the OPP reduction
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R = R1 +R2



Rikkert Frederix

R1

The origin of R1 is coming is the denominators of the 
propagators in the loop

Of course, the propagator structure is known, so these 
contributions can be included in the OPP reduction

They give contributions proportional to
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R2

The other origin of rational terms is the numerator itself. For integrals 
with rank > 2 we can have dependence in the numerator that is 
proportional to 

Unfortunately, this dependence can be quite hidden; maybe it is only 
explicitly there after doing the Clifford algebra

Because we want to solve the system without doing this algebra 
analytically (we want to solve it numerically) we cannot get these 
contributions directly within the OPP reduction

Within a given model, there is only a finite number of sources that can 
give these contributions; They have all been identified within the SM, 
and can be computed with the “R2 counter terms”
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R2 Feynman rules

Given that the R2 contributions are of UV origin, only up to 4-point 
functions contribute to it (in a renormalizable theory)

They can be computed using special Feynman rules, similarly to the 
UV counter term Feynman rules needed for the UV renormalization, 
e.g.

Unfortunately these Feynman rules are model dependent, which 
means the need to be explicitly computed when going to BSM (just 
like the UV renormalisation)
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=

ig2Ncol

48π2
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(
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)
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Nf
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q) gµ1µ2

]
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µ3,a3

= −
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48π2

(

7

4
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Nf
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fa1a2a3 Vµ1µ2µ3(p1, p2, p3)

µ3,a3µ4,a4

µ2,a2µ1,a1

= −
ig4Ncol

96π2

∑

P (234)

{

[ δa1a2δa3a4 + δa1a3δa4a2 + δa1a4δa2a3

Ncol

+ 4Tr(ta1ta3ta2ta4 + ta1ta4ta2ta3) (3 + λHV )

−Tr({ta1ta2}{ta3ta4}) (5 + 2λHV )
]

gµ1µ2gµ3µ4

+12
Nf

Ncol
Tr(ta1ta2ta3ta4)

(

5

3
gµ1µ3gµ2µ4 − gµ1µ2gµ3µ4 − gµ2µ3gµ1µ4

)}

µ, a

k

l

=
ig3

16π2

N2
col − 1

2Ncol
taklγµ (1 + λHV )

p

l k
=

ig2

16π2

N2
col − 1

2Ncol
δkl(−/p + 2mq)λHV

Figure 2: Effective vertices contributing to R2 in pure QCD.
∑

P (234) stands for a summation over
the six permutations of the indices 2, 3 and 4, and {taitaj} ≡ taitaj + taj tai . λHV = 1 in the HV
scheme and λHV = 0 in the FDH scheme. Ncol is the number of colors and Nf is the number of
fermions running in the quark loop.
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Summary

There has been an enormous amount of progress in computing 
loops during the last 5 years

For the one-loop corrections, we need to find the coefficients 
multiplying the scalar integrals

OPP or integrand reduction is an efficient numerical method to 
get those. However, need to be careful due to the need of 
dimensional regularization.

OPP method implemented in MadLoop, which can generate 
QCD virtual corrections for any process within the SM

For BSM, a bit of work is needed in the model file, because 
the renormalisation (and R2 contribution) is not completely 
automated
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Master equation for hadron 
colliders

Parton-level cross section from matrix elements: model 
and process dependent

Parton density (or distribution) functions: process 
independent

Differences between colliders given by parton 
luminosities

59

Parton density 
functions

Parton-level 
(differential) 
cross section

fa(x1, µF )fb(x2, µF )
�

a,b
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dx1dx2d� = d⇥̂ab�X(ŝ, µF , µR)
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Going NLO

At NLO the dependence on the renormalization and factorization scales is 
reduced

First order where scale dependence
in the running coupling and the
PDFs is compensated for via the loop
corrections: first reliable estimate
of the total cross section

Better description of final state:
 impact of extra radiation included
(e.g. jets can have substructure)

Opening of additional initial state
partonic channels
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NLO...?

Are all (IR-safe) observables that we can compute using a NLO code 
correctly described at NLO? Suppose we have a NLO code for pp ⟶ ttbar

Total cross section

Transverse momentum of the top quark

Transverse momentum of the top-antitop pair

Transverse momentum of the jet

Top-antitop invariant mass

Azimuthal distance between the top and anti-top
61

LO VirtReal

NLO?
✔

✔

✘

✘

✔

✘
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Event unweighting?

Another consequence of this kinematic 
mismatch is that we cannot generate events 
at fixed order NLO

Even though the integrals are finite, they 
are not bounded (compare with
                   ), so there is no maximum to 
unweight against: a single event can 
have an arbitrarily large weight!

Furthermore, event and counter event 
have different kinematics: which one to 
use for the unweighted event?
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   Copenhagen, 17-19 Nov 2010                                                                                                                          Fabio Maltoni

Event generator

MC integrator

Acceptance-Rejection

O

dσ

dO

O

dσ

dO

Event generation

   Copenhagen, 17-19 Nov 2010                                                                                                                          Fabio Maltoni

Event generator

MC integrator

Acceptance-Rejection

O

dσ

dO

O

dσ

dO

Event generation

not possible 
at NLO

R 1
0 dx

1p
x

(a) (b)

Figure 2: Matrix element squared |MR|2 (upper plots, solid line) and the subtraction term D
(upper plots, dashed/dotted/dot-dashed lines) for (a) the process e−(p1)q(p2) → e−(p3)q(p4)g(p5)
as a function of s25/s12 = (p2.p5)/(p1.p2) and (b) the process e+(p1)e−(p2) → Z → t(p3)t̄(p4)g(p5)
as a function of xg = 1 − (p3.p4)/(p1.p2). Also plotted are the ratio D/|MR|2, the difference
|MR|2−D (averaged over 100 random points per bin) and the maximal difference max(||MR|2−D|)
per bin. The dashed lines include the dipoles for each point in phase space, α = 1, while for the
dotted α = 0.1 and dot-dashed α = 0.01 the phase space for the dipoles has been restricted to the
collinear/soft regions.

sions drawn there apply to this plot as well.

As a further check we have tested the code extensively against MCFM [10,11]. We have

generated random points in phase space and compared the subtraction terms calculated

by MCFM with the subtraction terms calculated by our code. See table 1 for a list of

processes that have been checked. We observed differences only in the case where dipoles

were introduced entirely to cancel collinear limits, which can be made independently of the

spectator particle. In our code all possible dipoles are calculated, which implies a sum over

all spectator particles. However, if there is only a collinear divergence, i.e., the unresolved

parton cannot go soft, this sum is redundant and one dipole with the appropriate coefficient

is enough to cancel the singularity. In MCFM, these special limits are implemented using

a single spectator momentum, while MadDipole sums over all spectator momenta, thereby

yielding a different subtraction term. We have checked in the relevant cases that close to

the singularities the MCFM subtraction terms behave identical to the subtraction terms

calculated by our code.

We also tested the CPU time which is needed to produce the squared matrix element and

the dipoles for a given phase space point. These checks were performed with an Intel

Pentium 4 processor with 3.20Ghz. As an example we picked out three different processes:

1) gg → gggg: |M|2: 26ms,
∑

dipoles: 68ms

2) uū → dd̄ggg: |M|2: 10ms,
∑

dipoles: 45ms

3) uū → uūggg: |M|2: 34ms,
∑

dipoles: 0.15s

– 8 –
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Filling histograms on-the-
fly

In practice, when we do the MC integration we generate 2 sets of 
momenta

1. An m-body set (for the Born, virtual and integrated counter terms)

2. An m+1-body (for the NLO) which we map to the counter term 
momenta (for the counter terms)

We compute the above formula; and apply cuts and fill histograms using 
the momenta corresponding to each term with the weight of that 
corresponding term
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Obstacles

Let us focus on NLO... there are already enough steps to be taken:

Virtual amplitudes: how to compute the loops automatically in a 
reasonable amount of time

How to deal with infra-red divergences: virtual corrections and real-
emission corrections are separately divergent and only their sum is 
finite (for IR-safe observables) according to the KLN theorem

How to match these processes to a parton shower without double 
counting
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improving MC’s

There are two ways to improve a Parton Shower Monte 
Carlo event generator with matrix elements:

ME+PS merging: Include matrix elements with more final 
state partons to describe hard, well-separated radiation 
better (already discussed by Johan)

NLO+PS matching: Include full NLO corrections to the 
matrix elements to reduce theoretical uncertainties in the 
matrix elements. The real-emission matrix elements will 
describe the hard radiation
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Limitations of Fixed Order 
calculations

In fact, for the observables that are not described at NLO accuracy, 
the situation is actually a bit worse:

In the small transverse
momentum region, this calculation
breaks down (it’s even negative in
the first bin!), and anywhere else it
is purely a LO calculation for V+1j

67
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Difficulty: avoid double counting, ensure smooth distributions

Approaches are complementary: merge them!

Matrix Elements vs. Parton Showers

ME

1. Fixed order calculation
2. Computationally expensive
3. Limited number of particles
4. Valid when partons are hard and 

well separated
5. Quantum interference correct
6. Needed for multi-jet description

Shower MC

1. Resums logs to all orders
2. Computationally cheap
3. No limit on particle multiplicity
4. Valid when partons are collinear 

and/or soft
5. Partial interference through 

angular ordering
6. Needed for hadronization

105
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At NLO

We have to integrate the real emission over the complete 
phase-space of the one particle that can go soft or collinear to 
obtain the infra-red poles that will cancel against the virtual 
corrections

We cannot use the same matching procedure: requiring that 
all partons should produce separate jets is not infrared safe

We have to invent a new procedure to match NLO matrix 
elements with parton showers

69
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Naive (wrong) approach

In a fixed order calculation we have contributions with m 
final state particles and with m+1 final state particles

We could try to shower them independently

Let               be the parton shower spectrum for an observable 
O, showering from a k-body initial condition

We can then try to shower the m and m+1 final states 
independently
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Naive (wrong) approach

In a fixed order calculation we have contributions with m 
final state particles and with m+1 final state particles

We could try to shower them independently

Let               be the parton shower spectrum for an observable 
O, showering from a k-body initial condition

We can then try to shower the m and m+1 final states 
independently
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Double counting

But this is wrong!

If you expand this equation out up to NLO, there are more terms then 
there should be and the total rate does not come out correctly

Schematically               for 0 and 1 emission is given by

And Δ is the Sudakov factor
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Sources of double counting

72

Parton shower

Born+Virtual:

Real emission:
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Sources of double counting
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Sources of double counting

There is double counting between the real emission matrix 
elements and the parton shower: the extra radiation can come 
from the matrix elements or the parton shower

There is also an overlap between the virtual corrections and the 
Sudakov suppression in the zero-emission probability

72

Parton shower
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Real emission:
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Double counting in virtual/
Sudakov

The Sudakov factor Δ (which is responsible for the resummation of all 
the radiation in the shower) is the no-emission probability

It’s defined to be Δ = 1 - P, where P is the probability for a branching to 
occur

By using this conservation of probability in this way, Δ contains 
contributions from the virtual corrections implicitly

Because at NLO the virtual corrections are already included via explicit 
matrix elements, Δ is double counting with the virtual corrections

In fact, because the shower is unitary, what we are double counting in 
the real emission corrections is exactly equal to what we are double 
counting in the virtual corrections (but with opposite sign)!
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Avoiding double counting

There are two methods to circumvent this double counting

MC@NLO (Frixione & Webber)

POWHEG (Nason)
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MC@NLO procedure

To remove the double counting, we can add and subtract the 
same term to the m and m+1 body configurations

Where the MC are defined to be the contribution of the 
parton shower to get from the m body Born final state to the 
m+1 body real emission final state
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MC@NLO procedure
Parton shower

...

...Born+Virtual:

Real emission:

Double counting is explicitly removed by including the 
“shower subtraction terms”
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MC@NLO properties

Good features of including the subtraction counter terms

1. Double counting avoided: The rate expanded at NLO coincides 
with the total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the parton 
shower in the soft/collinear region, while it agrees with the NLO in 
the hard region

3. Stability: weights associated to different multiplicities are separately 
finite. The MC term has the same infrared behavior as the real 
emission (there is a subtlety for the soft divergence)

Not so nice feature (for the developer):

1. Parton shower dependence: the form of the MC terms depends on 
what the parton shower does exactly. Need special subtraction terms 
for each parton shower to which we want to match
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Double counting avoided

Expanded at NLO
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Smooth matching

Smooth matching:

Soft/collinear region:

Hard region (shower effects suppressed), ie. 
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Stability & unweighting

The MC subtraction terms are defined to be what the shower does 
to get from the m to the m+1 body matrix elements. Therefore the 
cancellation of singularities is exact in the (R - MC) term: there is no 
mapping of the phase-space in going from events to counter events 
as we saw in the FKS subtraction

The integral is bounded all over phase-space; we can therefore 
generate unweighted events!

“S-events” (which have m body kinematics)

“H-events” (which have m+1 body kinematics)
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FKS subtraction

The MC counter terms render the real emission finite

So, do we still need the FKS subtraction terms?
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FKS subtraction

The MC counter terms render the real emission finite

So, do we still need the FKS subtraction terms?
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FKS subtraction

We cannot do the one-particle integral over the MC terms analytically: 
we do not get the explicit poles in 1/𝜖 and 1/𝜖2 to cancel the poles in the 
virtual corrections. So we need to extract them using a subtraction 
method G
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Negative weights

We generate events for the two terms between the square brackets (S- and 
H-events) separately

There is no guarantee that these contributions are separately positive 
(even though predictions for infra-red safe observables should always be 
positive!)

Therefore, when we do event unweighting we can only unweight the 
events up to a sign. These signs should be taken into account when doing 
a physics analysis (i.e. making plots etc.)

The events are only physical when they are showered
83

d�NLOwPS

dO
=


d�m(B +

Z

loop

V +

Z
d�1MC)

�
I
(m)
MC (O)

+


d�m+1(R�MC)

�
I
(m+1)
MC (O)



Rikkert Frederix

POWHEG

Consider the probability of the first emission of a leg (inclusive over 
later emissions)

One could try to get NLO accuracy by replacing B with the NLO 
rate (integrated over the extra phase-space)

This naive definition is not correct: the radiation is still described only 
at leading logarithmic accuracy, which is not correct for hard 
emissions. 
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POWHEG

This is double counting.
To see this, expand the equation up to the first emission

which is not equal to the NLO

In order to avoid double counting, one should replace the definition 
of the Sudakov form factor with the following:

corresponding to a modified differential branching probability

Therefore we find for the POWHEG differential cross section

85

d�POWHEG = d�B


B + V +

Z
d�(+1)R

� 
�̃(Q2, Q2

0) + �̃(Q2, t) d�(+1)
R

B

�

dp̃ = d�(+1)R/B

�(Q2, Q2
0) = exp

"
�
Z Q2

Q2
0

d�(+1)
MC

B

#
! ˜

�(Q2, Q2
0) = exp

"
�
Z Q2

Q2
0

d�(+1)
R

B

#

d�B


B + V +

Z
d�(+1)R

� 
1�

Z
d�(+1)

MC

B
+ d�(+1)

MC

B

�



Rikkert Frederix

Properties

The term in the square brackets integrates to one (integrated over 
the extra parton phase-space between scales Q02 and Q2)
(this can also be understood as unitarity of the shower below scale t)

POWHEG cross section is normalized to the NLO

Expand up to the first-emission level:

so double counting is avoided

Its structure is identical an ordinary shower, with normalization 
rescaled by a global K-factor and a different Sudakov for the first 
emission: no negative weights are involved. 
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MC@NLO/POWHEG
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The MC@NLO and POWHEG procedures can be cast in a single formula:

and we have split the Real emission matrix elements in a singular and finite part:

where

The difference between MC@NLO and POWHEG is in the way the real matrix 
elements are split:

Rs(�) = F R(�), Rf (�) = (1� F )R(�)

MC@NLO

POWHEG

Need exact mapping (ΦR,ΦB)⇒Φ
in MC subtraction term Rs

Default is F = 1 : exponentiate the 
full real; it can be damped by hand

Rs(�) = P (�R|B)B(�B) = MC
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MC@NLO vs POWHEG

88

MC@NLO POWHEG

Parton showers are (usually) not exact in the soft 
limit: MC@NLO needs an artificial smoothing ☹ ☺
MC@NLO does not exponentiate the non-singular 
part of the real emission amplitudes ☺ ☹
MC@NLO does not require any tricks for treating 
Born zeros ☺ ☹
POWHEG is independent from the parton shower 
(although, in general the shower should be a truncated vetoed) ☹ ☺
POWHEG has (almost) no negatively weighted 
events ☹ ☺
Automation of the methods:
http://amcatnlo.cern.ch, http://powhegbox.mib.infn.it, 
http://www.sherpa-mc.de

☺ ☺

http://amcatnlo.cern.ch
http://amcatnlo.cern.ch
http://powhegbox.mib.infn.it
http://powhegbox.mib.infn.it
http://www.sherpa-mc.de
http://www.sherpa-mc.de
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Four-lepton production

4-lepton invariant mass is almost insensitive to parton shower effects. 
4-lepton transverse moment is extremely sensitive

Including scale uncertainties
89

Figure 1: Four-lepton invariant mass (left panel) and transverse momentum (right panel), as pre-
dicted by aMC@NLO(solid black), aMC@LO(solid blue), and at the (parton-level) NLO (dashed
red) and LO (dashed magenta). The middle insets show the aMC@NLO scale (dashed red) and
PDF (black solid) fractional uncertainties, and the lower insets the ratio of the two leptonic channels,
eq. (3.5). See the text for details.

These have very different behaviours w.r.t. the extra radiation provided by the parton

shower, with the former being (almost) completely insensitive to it, and the latter (almost)

maximally sensitive to it. In fact, the predictions for the invariant mass are basically

independent of the shower, with NLO (LO) being equal to aMC@NLO (aMC@LO) over

the whole range considered. The NLO corrections amount largely to an overall rescaling,

with a very minimal tendency to harden the spectrum. The four-lepton pT , on the other

hand, is a well known example of an observable whose distribution at the parton-level LO

is a delta function (in this case, at pT = 0). Radiation, be it through either showering or

hard emission provided by real matrix elements in the NLO computation, fills the phase

space with radically different characteristics, aMC@LO being meaningful at small pT and

NLO parton level at large pT – aMC@NLO correctly interpolates between the two. The

different behaviours under extra radiation of the two observables shown in fig. 1 is reflected

in the scale uncertainty: while in the case of the invariant mass the band becomes very

marginally wider towards large M(e+e−µ+µ−) values, the corresponding effect is dramatic

in the case of the transverse momentum. This is easy to understand from the purely

perturbative point of view, and is due to the fact that, in spite of being O(αS) for any

pT > 0, the transverse momentum in this range is effectively an LO observable (the NLO

effects being confined to pT = 0). The matching with shower blurs this picture, and in

particular it gives rise to the counterintuitive result where the scale dependence increases,

rather than decreasing, when moving towards large pT [18]. Finally, the lower insets of

fig. 1 display the ratio defined in eq. (3.5) which, in agreement with the results of table 2,

is equal to one half in the whole kinematic ranges considered. The only exception is the

small invariant mass region, where off-resonance effects become relevant.

– 13 –

RF, Frixione, Hirschi, maltoni, Pittau & Torrielli (2011)
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Four-lepton production

Differences between Herwig (black) and Pythia (blue) showers large in 
the Sudakov suppressed region (much larger than the scale uncertainties)

Contributions from gg initial state (formally NNLO) are of 5-10%
90

Figure 4: Same observables as in fig. 1, for aMC@NLO+gg HERWIG (solid black) and Pythia

(dashed blue) results. The rescaled gg contributions withHERWIG (open black boxes) and Pythia

(open blue circles) are shown separately. Middle insets: scale (dashed red) and PDF (solid black)
fractional uncertainties. Lower insets: aMC@LO/(aMC@NLO+gg) with HERWIG (solid black)
and Pythia (dashed blue).

O(αS), the predictions are quite independent of whether a shower is generated or not.

Slight differences can be seen in the case of the ∆φ distribution, which is indeed known to

be more sensitive than pseudorapidity to extra radiation. The small-pT dominance ensures

that scale and PDF uncertainties are flat over the whole kinematic ranges, and of the order

of those relevant to total cross section.

We now discuss the impact of the O(α2
S) gg channel on our predictions. The argument

for considering such a channel, despite its being of the same perturbative order as all other

NNLO contributions which cannot be included, is the dominance of its parton luminosity

over those of the qq̄ and qg channels. This dominance grows stronger with decreasing

final-state invariant masses, and hence the O(α2
S) versus NLO comparison is significantly

influenced by the cut in eq. (3.3) – by lowering such a cut, the relative importance of the

gg contribution will grow bigger than the 5%-ish reported in table 2. We also discuss in the

following the differences that arise when matching our calculation to Pythia6 rather than

toHERWIG. We remind the reader that, depending on input parameters, Pythia is rather

effective in producing radiation in the whole kinematically-accessible phase space. This is

not particularly useful in the context of a matched computation, where hard radiation

is provided (in a way fully consistent with perturbation theory) by the underlying real-

emission matrix elements. Therefore, we have set the maximum virtuality in Pythia

equal to the four-lepton invariant mass. For consistency, this setting has been used also

when showering the gg-initiated contribution.

Figures 4, 5 and 6 present the same observables as figs. 1, 2 and 3 respectively. In

the main frame, we show the aMC@NLO predictions plus the gg contribution (including

shower), as resulting from HERWIG (solid black) and Pythia (dashed blue) – we shall

– 16 –
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aMC@NLO joint venture

91
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aMC@NLO joint venture
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MadGraph 5
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aMC@NLO joint venture
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MadGraph 5

aMC@NLO
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aMC@NLO joint venture
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MadGraph 5

aMC@NLO

MadLoop (+CutTools)
for the one-loop virtual corrections

-- also possible to use external tools via 
Binoth-LHA

MC@NLO method
to match NLO to parton shower

(Herwig(++) & Pythia6/8)

MadFKS
to factor out IR divergences in 

phase-space integrals

MadSpin
to keep spin-correlations in 

particle decays
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Is NLO+PS always the 
preferred method?

It is the preferred method if the observable is described at NLO 
accuracy

But there are many observables for which a given NLO+PS code 
has only zeroth order accuracy.
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Figure 7: Uncertainty bands for the transverse momentum spectrum of the Higgs bo-
son at LHC, 7 TeV, for a higgs mass mH = 120 GeV. On the upper plots, the
MC@NLO+PYTHIA result obtained using the non-default value of the reference scale
equal to MH. The bare PYTHIA result rescaled by a K-factor is also shown.

Figure 8: Comparison of MC@NLO and ALPGEN in top production, for a 14 TeV LHC,
from ref. [64]. On the left, the transverse momentum of the top quark. On the right, the
jet multiplicity.

NLO+PS and ME+PS methods, in such a way that higher jet multiplicities are described at
tree-level accuracy while inclusive observables maintain NLO accuracy. A further goal is the
full extension of the ME+PS method to NLO, and several proposals in this direction have
appeared in the literature [72, 73, 74, 75, 76]. Fixed-order NNLO calculations have become
available for some collider processes, and their implementation in a shower framework would
be welcome. Finally, a full extension of the shower algorithm to NLO, i.e. including NLO
splitting kernels is being pursued [77, 78].

Besides pursuing new approaches, one can also investigate to what extent some of these
objectives can be approached by simply merging event samples obtained with available tools.
In ref. [79], a recipe for merging a POWHEG together with a MadGraph ME+PS sample
is given for the cases of W and tt̄ production, and in ref. [80] a practical recipe is presented
for merging the Z and Z + 1-jet POWHEG samples.
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Summary

We want to match NLO computations to parton showers to keep the 
good features of both approximations

In the MC@NLO method:
by including the shower subtraction terms in our process we avoid 
double counting between NLO processes and parton showers

In the POWHEG method:
apply an overall K-factor, and modify the (Sudakov of the) first 
emission to fill the hard region of phase-space according to the 
real-emission matrix elements

First studies to combine NLO+PS matching with ME+PS merging 
have been made and result look very promising..., see next slides
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Merging ME+PS at 
NLO accuracy

(will become available in a couple of weeks)
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Four-lepton production

95

Figure 2: Same as in fig. 1, for the inclusive pT of the positively-charged leptons (left panel), and
the inclusive pT of the same-charge lepton pairs (right panel), both with Z-id cuts.

A gauge-invariant way to suppress off-resonance effects, and to select doubly-resonant

contributions, is that of imposing:

∣∣M(!+!−)−mZ

∣∣ ≤ 10 GeV (3.6)

on all equal-flavour lepton pairs; we call the cut of eq. (3.6) the Z-id cut. Lepton pairs that

pass the Z-id cut are called Z-id matched, and can be roughly seen as coming from the

decay of a (generally off-shell) Z boson. While in the case of the e+e−µ+µ− channel there

is only one way to choose two same-flavour lepton pairs, there are two different pairings in

e+e−e+e− production. In the case both of these pairings result in lepton pairs that fulfill

eq. (3.6), we choose that with the smallest pair invariant mass, and assign the Z-id matched

pairs according to this choice; in practice, this is a rare event. By imposing the Z-id cuts

the M(!+!−!(′)+!(′)−) distribution falls steeply below threshold and gets no contributions

below 160 GeV.

In fig. 2 we present two transverse momentum distributions, relevant to the positively-

charged leptons (left panel), and to same-charge lepton pairs (right panel); hence, there are

two entries in each histogram for any given event. These results are obtained by applying

the Z-id cuts, but we have in fact verified that without such cuts we obtain exactly the

same patterns. In the case of the pT of the individual lepton, the aMC@NLO (aMC@LO)

prediction is fairly close to the NLO (LO) one, but tends to be slightly harder, owing to

the extra radiation generated by the shower. This effect is more pronounced at the LO

than at the NLO, which is the sign of a behaviour consistent with perturbation theory

expectations. In fact, at the LO all hadronic transverse momentum is provided by the

shower, while at the NLO this is not the case; therefore, at the NLO the shower will have

less necessity to “correct” the prediction obtained at the parton level, a tendency which is

naturally embedded in a matching prescription such as aMC@NLO. The scale dependence

– 14 –
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Four-lepton production

95

In the tail of the pT spectrum, 
there are large theoretical 
uncertainties. This is no surprise! 
Here the NLO calculation has 
actually only LO accuracy, 
because there must be a hard 
parton/jet recoiling against the 4-
lepton system.

Figure 2: Same as in fig. 1, for the inclusive pT of the positively-charged leptons (left panel), and
the inclusive pT of the same-charge lepton pairs (right panel), both with Z-id cuts.
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the extra radiation generated by the shower. This effect is more pronounced at the LO

than at the NLO, which is the sign of a behaviour consistent with perturbation theory
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Four-lepton production

95

In the tail of the pT spectrum, 
there are large theoretical 
uncertainties. This is no surprise! 
Here the NLO calculation has 
actually only LO accuracy, 
because there must be a hard 
parton/jet recoiling against the 4-
lepton system.

Can we include the NLO corrections to
4 leptons + 1 (hard) jet here?

Figure 2: Same as in fig. 1, for the inclusive pT of the positively-charged leptons (left panel), and
the inclusive pT of the same-charge lepton pairs (right panel), both with Z-id cuts.
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contributions, is that of imposing:
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on all equal-flavour lepton pairs; we call the cut of eq. (3.6) the Z-id cut. Lepton pairs that

pass the Z-id cut are called Z-id matched, and can be roughly seen as coming from the

decay of a (generally off-shell) Z boson. While in the case of the e+e−µ+µ− channel there

is only one way to choose two same-flavour lepton pairs, there are two different pairings in

e+e−e+e− production. In the case both of these pairings result in lepton pairs that fulfill

eq. (3.6), we choose that with the smallest pair invariant mass, and assign the Z-id matched

pairs according to this choice; in practice, this is a rare event. By imposing the Z-id cuts

the M(!+!−!(′)+!(′)−) distribution falls steeply below threshold and gets no contributions

below 160 GeV.

In fig. 2 we present two transverse momentum distributions, relevant to the positively-

charged leptons (left panel), and to same-charge lepton pairs (right panel); hence, there are

two entries in each histogram for any given event. These results are obtained by applying

the Z-id cuts, but we have in fact verified that without such cuts we obtain exactly the

same patterns. In the case of the pT of the individual lepton, the aMC@NLO (aMC@LO)

prediction is fairly close to the NLO (LO) one, but tends to be slightly harder, owing to

the extra radiation generated by the shower. This effect is more pronounced at the LO

than at the NLO, which is the sign of a behaviour consistent with perturbation theory

expectations. In fact, at the LO all hadronic transverse momentum is provided by the

shower, while at the NLO this is not the case; therefore, at the NLO the shower will have

less necessity to “correct” the prediction obtained at the parton level, a tendency which is

naturally embedded in a matching prescription such as aMC@NLO. The scale dependence
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Limitations

96

There are more observables very sensitive to theory uncertainties -- all 
related to hard emissions in the real-emission matrix elements and even 
stronger if they are emitted by the shower.

Even though our NLO
computation is “inclusive in all extra
radiation” (which is made explicit by
the parton shower), the shower is
only correct in the strict collinear
approximation. It cannot generate
hard extra jets correctly (i.e. jets beyond
the first, which is included in the real
emission corrections of the NLO computation
and therefore already has a large uncertainty
associated with it)
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Limitations
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There are more observables very sensitive to theory uncertainties -- all 
related to hard emissions in the real-emission matrix elements and even 
stronger if they are emitted by the shower.

Even though our NLO
computation is “inclusive in all extra
radiation” (which is made explicit by
the parton shower), the shower is
only correct in the strict collinear
approximation. It cannot generate
hard extra jets correctly (i.e. jets beyond
the first, which is included in the real
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Merging ME with PS

At LO this has been solved ~10 years ago: use tree-level matrix elements of 
various multiplicities to generate hard radiation, and the parton shower for the 
collinear and soft

Double counting no problem: we simply throw events away when the matrix-
element partons are too soft, or when the parton shower generates too hard 
radiation

Applying the matrix-element cut is easy: during 
phase-space integration, we only generate events
with partons above the matching scale

For the cut on the shower, there are two methods. Throwing events away after 
showering is not very efficient, although it is working (“MLM method”)

Instead we can also multiply the Born matrix elements by suitable product of 
Sudakov factors (i.e. the no-emission probabilities) Δ(Qmax, Qc) and start the 
shower at the scale Qc (“CKKW method”):

For a given multiplicity we have 
97

kT > Qc

kT < Qc

�LO
n,excl = Bn⇥(kT,n �Qc)�n(Qmax, Q

c)

CKKW (2004) and MLM (2004)



Rikkert Frederix

Merging at NLO

To make a LO prediction exclusive in the number of jets, we need to 
multiply it by a Sudakov damping factor; this is CKKW method:

This makes the prediction exclusive at leading logarithmic accuracy

Similarly we can make an NLO prediction exclusive at leading logarithm

We can improve here and use the real-emission matrix elements instead 
of just the Sudakov:
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Exclusive MC@NLO:
FxFx merging

Converting the NLO exclusive predictions in the number of jets to 
the MC@NLO event generation is straight-forward:

Indeed, that doesn’t look very hard...
                 It’s a simple extension of the LO meging method, isn’t it?
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The devil is in the details...

What to choose for the renormalization scale (it does not only 
enter as argument of the strong coupling at NLO)?

What to choose for the factorization scale (it does not only enter 
in the PDFs at NLO)?

What to do for the PDF reweighting (NLO PDF counter 
terms)?

What to choose for the starting scales of the parton shower?

How to apply the Sudakov suppression (MLM or CKKW)?

How to treat the extra parton in the real-emission? Do we need 
a Sudakov?

What to do with the matching scale (fixed or a smooth 
function)?

...
100
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FxFx merging: Higgs boson 
production

Transverse momentum of the Higgs and of the 1st jet. 
Agreement with H+0j at MC@NLO and H+1j at MC@NLO in their respective 
regions of phase-space; Smooth matching in between; Small dependence on 
matching scale
Alpgen (LO matching) shows larger kinks
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Figure 3: As in fig. 1, with Sudakov reweighting.

the lower insets of fig. 2). On the one hand, this overestimates the systematics, since the

contributions due to scales close to the end-points of the merging range are less important

(in the effective average performed by the smooth D function) than those at its center. On

the other hand, this is not equivalent to assessing the effect of changing the position and

width of the merging range, which should probably also be done. In any case, these appear

to be pretty minor issues, given that the theoretical systematics associated with merging

cannot be given a precise statistical meaning, and some degree of arbitrariness is always

present.

We now study the effect of the Sudakov reweighting, following the procedure described

in sect. 2.2.3. We start by considering again the N = 1 case, which we generate with a

sharp D function, and the three values µQ = 30, 50, and 70 GeV already employed. In

fig. 3 we plot the same observables as in fig. 1 and 2; a few more jet-related observables are
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Differential jet rates for 1->0 and 2->1
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Figure 4: As in fig. 3, for the pseudorapidity of the hardest jet (upper left), the pseudorapidity
(upper right) and pT (lower left) of the second-hardest jet, and d2 (lower right). In the case of
η(jk), we have imposed a pT (jk)>30 GeV cut.

displayed in figs. 4 and 5. In all these figures, the main frame presents the µQ = 50 GeV

results, our “central” predictions henceforth. The histograms in the lower insets are the

ratios of the Sudakov-reweighted µQ = 30 GeV and 70 GeV results over the central ones

(in other words, there are no merged predictions in these plots that do not include the

Sudakov reweighting). Also shown there are the ratios computed using Alpgen in the

numerator, over the central NLO-merged results.

The comparison of fig. 3 with figs. 1 and 2 shows that the Sudakov reweighting on top

of a sharp D function is as effective as the use of a smooth D function (without Sudakov

reweighting) in removing the kinks. There are quite small residual wiggles11, which may be

11These can be eliminated with a smooth D function (plus Sudakov reweighting). We did not test this
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Differential jet rates
Matching up to 2 jets at NLO
Results very much consistent with matching up to 1 jet at NLO
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Figure 6: As in fig. 3, with N = 2.

to disappear, and the merging-parameter dependence reduced, when pcut
T

becomes large.

We finally turn to discussing the case of the N = 2, sharp-D function, Sudakov-

reweighted merging; that is, we increase the largest multiplicity by one unit w.r.t. what

was done before. The settings are the same as in the N = 1 case, and figs. 6, 7, and 8 are

the analogues of figs. 3, 4, and 5 respectively (with the exception of one panel in fig. 8).

The numerators of the ratios that appear in the upper insets are the same as before for

the H + 0j and H + 1j cases; that for H + 2j is obviously specific to N = 2. In the lower

insets, together with the ratios that allow one to assess the merging systematics, we have

plotted (as histograms overlaid with open circles) the ratios of the N = 1 results over the

N = 2 ones, both for µQ = 50 GeV. We have also recomputed the Alpgen predictions, by

adding the H + 3 parton sample, for consistency with N = 2. The corresponding results

will not be shown in the plots, since these are already quite busy, and there is no difference
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Figure 7: As in fig. 4, with N = 2.

at all in the patterns discussed above, except in a very few cases which we shall comment

upon when appropriate.

The common feature of all but one of the observables presented in figs. 6–8 is that

they are extremely close, in both shape and normalization, to their N = 1 counterparts

of figs. 3–5. This is highly non-trivial, since the individual i-parton contributions are

different in the two cases. The exception is the pseudorapidity of the second-hardest jet

(upper right panel of fig. 7), which the inclusion of the 2-parton sample turns into a more

central distribution, as anticipated in the discussion relevant to fig. 4, and brings it very

close to the Alpgen result obtained with the same µQ.

The small impact of the increase of the largest multiplicity is also generally in agree-

ment with what is found in Alpgen, where the inclusion of the H +3 parton contribution

changes the fully-inclusive rate by +0.3%. The effects on differential observables are also
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Four-lepton production

104

In the tail of the pT spectrum, 
there are large theoretical 
uncertainties. This is no surprise! 
Here the NLO calculation has 
actually only LO accuracy, 
because there must be a hard 
parton/jet recoiling against the 4-
lepton system.

Can we include the NLO corrections to
4 leptons + 1 (hard) jet here?

Figure 2: Same as in fig. 1, for the inclusive pT of the positively-charged leptons (left panel), and
the inclusive pT of the same-charge lepton pairs (right panel), both with Z-id cuts.

A gauge-invariant way to suppress off-resonance effects, and to select doubly-resonant

contributions, is that of imposing:

∣∣M(!+!−)−mZ

∣∣ ≤ 10 GeV (3.6)

on all equal-flavour lepton pairs; we call the cut of eq. (3.6) the Z-id cut. Lepton pairs that

pass the Z-id cut are called Z-id matched, and can be roughly seen as coming from the

decay of a (generally off-shell) Z boson. While in the case of the e+e−µ+µ− channel there

is only one way to choose two same-flavour lepton pairs, there are two different pairings in

e+e−e+e− production. In the case both of these pairings result in lepton pairs that fulfill

eq. (3.6), we choose that with the smallest pair invariant mass, and assign the Z-id matched

pairs according to this choice; in practice, this is a rare event. By imposing the Z-id cuts

the M(!+!−!(′)+!(′)−) distribution falls steeply below threshold and gets no contributions

below 160 GeV.

In fig. 2 we present two transverse momentum distributions, relevant to the positively-

charged leptons (left panel), and to same-charge lepton pairs (right panel); hence, there are

two entries in each histogram for any given event. These results are obtained by applying

the Z-id cuts, but we have in fact verified that without such cuts we obtain exactly the

same patterns. In the case of the pT of the individual lepton, the aMC@NLO (aMC@LO)

prediction is fairly close to the NLO (LO) one, but tends to be slightly harder, owing to

the extra radiation generated by the shower. This effect is more pronounced at the LO

than at the NLO, which is the sign of a behaviour consistent with perturbation theory

expectations. In fact, at the LO all hadronic transverse momentum is provided by the

shower, while at the NLO this is not the case; therefore, at the NLO the shower will have

less necessity to “correct” the prediction obtained at the parton level, a tendency which is

naturally embedded in a matching prescription such as aMC@NLO. The scale dependence
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Four-lepton production
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Conclusions

In the last couple of years the accuracy of event generation has greatly 
improved, and full automation has been achieved at NLO accuracy

A lot of freedom in tuning has been replaced by accurate theory 
descriptions:

More predictive power

Better control on uncertainties

Greater trust in the measurements

The only public tool that can generate events at NLO accuracy (in QCD) 
for any process in the SM (or simple extensions) is the aMC@NLO project. It 
is only limited in CPU time available

Latest developments include the FxFx merging, which allows for the 
combination of various multiplicity matrix elements at NLO into a single 
inclusive sample
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