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MASTER EQUATION FOR HADRON
COLLIDERS

o — Eb: / dydzy fo(21s 1im) oo, for) dBapx (5s 1 1)

Parton density Parton-level
functions (differential)

Cross section

% Parton-level cross section from matrix elements: model
and process dependent

# Parton density (or distribution) functions: process
independent

¢ Differences between colliders given by parton
luminosities
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PERTURBATIVE EXPANSION

dGap—x (S, uF, hr) Parton-level cross section
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PERTURBATIVE EXPANSION

d(Afab_>X (§, UE, ,uR) Parton-level cross section

¢ The parton-level cross section can be computed as a series 1n
perturbation theory, using the coupling constant as an expansion
parameter, schematically:

G = oo 1 &Sa<1>+(&8) <2)+( ) o 4.
2T 2T
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PERTURBATIVE EXPANSION
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% Including higher corrections improves predictions and reduces
theoretical uncertainties
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PERTURBATIVE EXPANSION

d@'ab_gg (§, UE, ,uR) Parton-level cross section

/A

¢ The parton-level cross section can be computed as a series in
perturbation theory, using the coupling constant as an expansion
parameter, schematically:
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PERTURBATIVE EXPANSION
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PERTURBATIVE EXPANSION

d@'ab_gg (§, UE, ,uR) Parton-level cross section

/A

¢ The parton-level cross section can be computed as a series in
perturbation theory, using the coupling constant as an expansion
parameter, schematically:

~ _ _Born , () ( > (2) ( ) (3)
14 .
o= ( 27T T 2T T 27T T

A

Al

A

theoretical uncertainties
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LO NLO NNLO NNNLO
predictions \corrections corrections \corrections

% Including higher corrections improves predictions and reduces



IMPROVED PREDICTIONS

do = E;/dmd@ folx1, ur)fo(xo, ir) doar—x (8, pr, LR)

A Born | (1) ( ) (2) ( ) (3)
1
o= ( 27T * 2T * 2T T >

Al

¢ Remember, predictions are inclusive: also at LO initial state radiation
1s included via the PDF; final state radiation by the definition of the
parton, which represents all final state evolutions

¢ Can be made explicit by using a parton shower (which 1s unitary)

Al

¢ Due to these approximations, Leading Order predictions can depend
strongly on the renormalization and factorization scales

Al
ns

% Including higher order corrections reduces the dependence on these
scales
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A

reduced

N

in the running coupling and the

PDF's 1s compensated for via the loop

% First order where scale dependence

corrections: first reliable estimate

of the total cross section

¢ Better description of final state:

impact of extra radiation included

(e.g. jets can have substructure)

Al

partonic channels

Rikkert Frederix

% Opening of additional initial state

% At NLO the dependence on the renormalization and factorization scales 1s

o |
Top produstisn va g, V3=14Ta¥

LD, ctegBll, (M )=0.130

LA, ctegf_m, oM )=0.1156




NLO CORRECTIONS

Al

% NLO corrections have three parts:

A

¢ The Born contribution, 1.e. the Leading order.

S

s Virtual (or Loop) corrections: formed by an amplitude with a
closed loop of particles interfered with the Born amplitudes

¢ Real emission corrections: formed by amplitudes with one
extra parton compared to the Born process

Al

% Both Virtual and Real emission have one power of a5 extra
compared to the Born process

o LO doP + doV —+ dott

™m m m-+1
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan Z/y* production

A

Rikkert Frederix



NLO PREDICTIONS

¢ As an example, consider Drell-Yan Z/y* production

Rikkert Frederix



NLO PREDICTIONS

¢ As an example, consider Drell-Yan Z/y* production
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan Z/y* production

6:03‘“’“(1 | &80(1)4—...)

e

4 )

2

2 Re
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% NNLO 1s the current state-of-the-art. There are only a few complete results

available, but this year great progress has been made and NNLO results for
ttbar, H+1j, dijet appeared

% Why do we need 1t?

\\/
7\

Al
Z\\

\\/
7\

Al
Z\\y

A
Ny

An NNLO calculation gives control

of the uncertainties 1n a calculation

It 1s “mandatory” it NLO corrections are

very large to check the behavior of the

perturbative series

[t 1s the best we have! It 1s needed for
Standard Candles and very precise tests

d?c/dM/dY [pb/GeV]
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/M

of perturbation theory, exploiting all the available information, e.g. for

determining NNLO PDF sets
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HIGGS PREDICTIONS AT NNLO
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HIGGS PREDICTIONS AT LHC

9
t,b 4 >----- H
| | | | | | | | o
g | | B a
GluonFusion _8- \ S= 7 TeV ] %
q > > [ T— ] :
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¢ — g Q
vector boson fusion 3
(VBF) o)

associated production with
vector bosons
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associated production
with heavy quarks
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NNNLO?
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NNNLO?

Al

% Nothing known here... Too complicated!
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KA

S

1LO...7

% Are all (IR-safe) observables that we can compute using a NLO code

correctly described at NLO? Suppose we have a NLO code for pp — ttbar

9 BOOOOO— ‘ 9 BOTOOO— : 7 7000000)

RN

Y

Born

¢ Total cross section
. ,
¢ Transverse momentum of tl

L T ]
% Transverse momentum of t

E Virtual

he top quark

ne top-antitop pair

A ro\ ]
s Transverse momentum of t

- : : :
lop-antitop iInvariant mass

Rikkert Frederix

ne jet

¢ Azimuthal distance between the top and anti-top
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NLO...”?

KA

% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

9 TTOOOO— ‘ 9 BTV — ‘ 7 70050500

i
E Virtual
w%z: ‘ I TBouTO—

NLO?

Y

Born
o 9

¢ Total cross section
¢ Transverse momentum of the top quark

rm ] ° °
% Transverse momentum of the top-antitop pair

R ) :
 Transverse momentum of the jet

- : : :
lop-antitop iInvariant mass

¢ Azimuthal distance between the top and anti-top
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NLO...”?

KA

% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

9 BECTOO - t 9 BT - t 9 BB0000) = ‘
|Born Real E [ Virtual
9 OO L—r I BT~ T — t I TOouTO—
,
NLO?
s¢ Total cross section 4

¢ Transverse momentum of the top quark

rm ] ° °
% Transverse momentum of the top-antitop pair

R ) :
 Transverse momentum of the jet

- : : :
lop-antitop iInvariant mass

¢ Azimuthal distance between the top and anti-top
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Al

% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

9 TOOOO0— ‘ 9 TTTTOO— g 7 7000000)
Born Real E Virtual
9 TETTOO > g W%?; > 9 D0ouDdO >
NLO?
¢ Total cross section 4
N b [ V
¢ Transverse momentum of the top quark

Ve ]

; ﬂ : :
% Transverse momentum of the top-antitop pair

Al
Z\\y

R ) :
 Transverse momentum of the jet

" e L .
- lop-antitop mnvariant mass
¢ Azimuthal distance between the top and anti-top
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NLO...?

Al

% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

I TTOOOO ‘ 9 BTV ‘ 7 7000500 ‘
Born Real E Virtual
9 OO0000 — ‘ g wa‘%j . t 9 BB L— t
NLO?
¢ Total cross section v
8 | V
¢ Transverse momentum of the top quark
w ™ : : : X
% Transverse momentum of the top-antitop pair
R b ] :
¢ Transverse momentum of the jet

¢ Top-antitop 1nvariant mass
¢ Azimuthal distance between the top and anti-top
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NLO...?

Al

% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

9 BVOOVO— f I DTV —s t 7 00000 ‘
Born Real E Virtual
9 OO0000 — ‘ g wa‘%j . t 9 BB L— t
NLO?
¢ Total cross section v
N ]

% Transverse momentum of the top quark

¢ Transverse momentum of the top-antitop pair X

e ) :
 Transverse momentum of the jet

¢ Top-antitop 1nvariant mass
¢ Azimuthal distance between the top and anti-top
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NLO...?

Al

% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

9 BT ‘ 9 BT ‘ BRCLELII) f
Born Real E Virtual
9 OO0000 — ‘ g wa‘%j . t 9 BB L— t
NLO?
¢ Total cross section v
e m ] V
¢ Transverse momentum of the top quark
o ™ i : : X
= lransverse momentum of the top-antitop pair
RS b f ) : x
= lransverse momentum of the jet
. L . v
- lop-antitop mnvariant mass

¢ Azimuthal distance between the top and anti-top
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NLO...?

Al

% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

I BOOOOO—— ! 9 TTEOEOO——— ¢ 9 BTOOOOO——— !

E Virtual t

NLO?

¢ Total cross section
¢ Transverse momentum of the top quark

N b ) : :
% Transverse momentum of the top-antitop pair

e ) :
 Transverse momentum of the jet

w T . . .
Aop-antltop Invariant mass

X A\ %X X | N

¢ Azimuthal distance between the top and anti-top
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>.VW =>«/vvv + @rvvvv Z:m +O(oc52)
+ anything

\/

% Let us focus on NLO... there are already enough steps to be taken:

NA
Z\J

Virtual amplitudes: how to compute the loops automatically in a
reasonable amount of time

R
K

* How to deal with infra-red divergences: virtual corrections and real-
emission corrections are separately divergent and only their sum 1s

finite (for IR-safe observables) according to the KLLN theorem

Al
N}

How to match these processes to a parton shower without double
counting

Rikkert Frederix 5



WHY AN AUTOMATIC TOOL?

A

2¢ To save time

Trade human time and expertise on computing one process at the
time with time on physics and phenomenology.

N

s¢ Robustness
Modular code structure means that elements can be checked
systematically and extensively once and for all. Trust can easily be

build.

# Wide accessibility
One framework for all. Available to everybody for an unlimited
set of applications. Suitable for Experimental collaborations.

Rikkert Frederix =
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan production

a_:O_Born<1 |
4 /\ )
S 2
1\ J

Rikkert Frederix

8}
s (1)
27’(‘0 —I—)
9 N
g + .
— .
2 Re @*\/\N\/ X>V\/W
gs
- — Y,

17
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A

% In the soft and collinear region, the branching of a gluon from a quark can
be written as

- ) il g g aSCF de dk?
= h4+g = Oh
- S0 +g 76 ]. — 2 k?

where £, 1s the transverse momentum of the gluon, &= sin®.

Al

% The singularities cancel against the singularities in the virtual corrections,
which result from the integral over the loop momentum of the function

N /
\ /
) p p N asCr dz dk?
Oh = = Oh+V = —0Op 2
|

% The sum 1s finite for observables that cannot distinguish between two

collinear partons (k; — 0); a hard and a soft parton (z — 1); and a single

parton (in the virtual contributions)
18



INFRARED CANCELLATION

oV O / d*®,, B(P / d*® / dlV (® / d®,, 1 R(®,, 1)
loop

% The KLLN theorem tells us that divergences from virtual and
real-emission corrections cancel in the sum for observables
insensitive to soft and collinear radiation (“IR-safe observables”)

% When doing an analytic calculation in dimensional
regularization this can be explicitly seen 1n the cancellation of
the 1/e and 1/¢? terms (with e the regulator, e = 0)

¢ In the real emission corrections, the ex licit oles enter after the
P P
phase-space integration (in d dimensions)

Rikkert Frederix 19



INFRARED SAFE OBSERVABLES

KA

¢ For an observable to be calculable 1n fixed-order perturbation
theory, the observable should be infrared safe, 1.e., it should be
insensitive to the emission of soft or collinear partons.

A

% In particular, if p; 1s a momentum occurring in the definition of an
observable, it most be invariant under the branching

pi — pj + Phs

whenever p; and p¢ are collinear or one of them 1s soft.

e Examples

Al
wN

“The number of gluons” produced in a collision 1s not an
infrared safe observable

Al
W

“The number of hard jets defined using the £7 algorithm with a
transverse momentum above 40 GeV,” produced 1n a collision 1s

an infrared safe observable

Rikkert Frederix



PHASE-SPACE INTEGRATION

o0 / d*®,, B(P / d*® / A1V (®,,) + / d°®,, 1 R(®pyp1)
loop

Al

% For complicated processes we have to result to numerical phase-space
Integration techniques (“Monte Carlo integration’), which can only be
performed in an integer number of dimensions

% Cannot use a finite value for the dimensional regulator and take the

limit to zero in a numerical code

Al

¢ But we still have to cancel the divergences explicitly
% Use a subtraction method to explicitly factor out the divergences from the

phase -space integrals

Rikkert Frederix 21



r—\
—_— [—‘

NA

* Suppose we want to compute the integral (“real emission radiation”,
where the 1-particle phase-space 1s referred to as the 1-dimensional )

/O iz f(2) ..

where f (Qj) — @ and g(,’,l?) is finite everywhere
L

2

¢ Let’s introduce a regulator

1 1
. glx) . iy
i | do 55 = iy [ o /0

for any non-integer non-zero value for € this integral is finite

A\

% We would like to factor out the explicit poles in € so that they can be

canceled explicitly against the virtual corrections

Rikkert Frederix 2



SUBTRACTION METHOD

lim [ dex™ € f(x) f(z) = 9(z)

e—0 0 X

% Add and subtract the same term

lim da: ZE_Ef( ) — T 1da: € _9(0) | f(:z:) 9(0)_

e—0 0 e—0 0 | X xr
L B _
e z=¢ | g(z) —g(0)
— 21_{1’(1) OdCIZ‘ _g(O) . | le+€
—1 ! — ¢(0
= lim —g¢(0) + /dm 9(z) ~ 9(0)
e—0 € 0 £z

% We have factored out the 1/€ divergence and are left with a finite integral

% According to the KLLIN theorem the divergence cancels against the virtual
corrections

Rikkert Frederix e



( “Plus distribution” J
1 I =N
Subtraction: /dm g(x) 9(0) «
0

A

¢ Even though the divergence 1s factored, there are cancellations between
large numbers: if for an observable (), if liﬂ% O(x) # O(0)or we choose
€T —

the bin-size too small, instabilities render the computation useless

A

% We already knew that! KLLN 1s suftficient; one must have infra-red
safe observables and cannot ask for infinite resolution (need a finite
bin-size)

Rikkert Frederix
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NLO WITH SUBTRACTION

SNLO /d4<I> B(® /d4 / A1V (® /ddq)m+1 R(Ppy1)
loop

¢ With the subtraction method this 1s replace by

o O~ / d*®,, B(®,)

+/d4<I>m /ldle(CI)m)Jr/ddCI)lG@mH)
_ J loop de—0

b [ @i [R@i1) = G@)

¢ Terms between the brackets are finite. Can integrate them numerically and
independent from one another in 4 dimensions

Rikkert Frederix 25



SUBTRACTION METHODS

#* (5 ((I)m+1) should be defined such that
1) it exactly matches the singular behavior of R((I)m—l—l)

2) its form 1s convenient for numerical integration techniques

3) it 1s exactly integrable in d dimensions over the one-particle
subspace / d°® G (P,, 1), leading to soft and/or collinear

divergences as explicit poles in the dimensional regulator

4) 1t 1s universal, 1.e. process independent
— overall factor times the Born process

Rikkert Frederix

26



Catani-Seymour (CS) dipole

subtraction
M Most used method

M Clear written paper on how to
use this method 1n practice

™ Recoil taken by one (color-

connected) parton: N? scaling

M Method evolved from

cancellation of the soft
divergence

™ Proven to work for simple as well
as complicated processes

M Automation in publicly available
packages: MadDipole,
AutoDipole, Helac-Dipoles,
Sherpa

Rikkert Frederix

Frixione-Kunszt-Signer (FKS)

subtraction

M Not so well-known
M (Probably) more efficient,

because less subtraction terms
are needed

M Recoil evenly distributed by all
particles: N? scaling

M Collinear divergences as a
starting point

™ Proven to work for simple as well
as complicated processes

™M Automated in aMC@NLO &
POWHEG BOX

27



% FKS subtraction: Frixione, Kunszt & Signer 1996.
Standard subtraction method in MC@NIL.O and POWHEG, but

can also be used for ‘normal’ NLO computations

Al

. “ . o )
" AISO KNowin as reSldue SUbtraCtlon

\I2

¢ Based on using plus-distributions to regulate the infrared
divergences of the real emission matrix elements

Rikkert Frederix
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FKS SUBTRACTION:
PHASE-SPACE PARTITIONS

% Easiest to understand by starting from real emission:

do' = |M" " Pdgni
1 1 & =FEi/V53

with
€z2 1 — yij Y;5 = COS (97;]'

|Mn+1 ‘2 blows up like

¢ Partition the phase space in such a way that each partition has at most one soft and
one collinear singularity

do™ = " Sij|M" ! Pdgni > S =1
ij ]
% Use plus distributions to regulate the singularities
. 1 1
A" =) (§_> ( ) §i(1 = i) Sig [ M" [ depn 1
i/ +

Iy 1 — yij
J
Rikkert Frederix 29




FKS SUBTRACTION:
REGULARIZED BY PLUS PRESCRIPTION

d‘}R:Z(§> ( : ) Ei(1 = yij) Sif | M™ P dd 11
i/ +

i 1 — yi;

% Dehinition plus distribution

/d§ <§>+g(g) _ /dg 9(&) gg(())

% One event has maximally three counter events:

s Soft: fz — 0

% Collinear: Yij — 1

% Soft-collinear: fz — () Yij — 1

Rikkert Frederix
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KINEMATICS OF COUNTER EVENTS

; > L+
;

Real emission Subtraction term

(2

% If { and j are two on-shell particles that are present in a splitting that leads
to an singularity, for the counter events we need to combine their momenta
to a new on-shell parton that’s the sum of ¢+/

% This 1s not possible without changing any of the other momenta in the
process

KA

* When applying cuts or making plots, events and counter events might end-
up in different bins

¢ Use IR-safe observables and don't ask for infinite resolution! (KLN

theorem)
Rikkert Frederix It



EXAMPLE IN 4 CHARGED LEPTON
PRODUCTION

L i L
1.00 | ol/bin [fb] at|LHC 7 TeV

0.50 |

0.10 |
0.05 |

0.01

1.1F

Lo b— ] % The NLO results shows a typical
0.9) _ —— pdfunc. . . . peak-dip structure that hampers

fixed order calculations

Rikkert Frederix 32



EVENT UNWEIGHTING?

Al

% Another consequence of this kinematic

mismatch 1s that we cannot generate events

at fixed order NLLO

AU

are not bounded (compare with

1 . .
f dr -1 ), so there is no maximum to

0% 7z

unweight against: a single event can

have an arbitrarily large weight!

\/
7\

Al
Z/\y

have different kinematics: which one to

use for the unweighted event?

Rikkert Frederix

% Even though the integrals are finite, they

Furthermore, event and counter event

10°

100

10~°

—4 matrix element [M_|? (in GeV~?)
10 =1 -—---
subtr. term D (in GeV™?3) a,=0.1 --------

10-6 0 =0.01------

.\~

ete™ > Z > ttg
soft limit for g

1.2
1.1
1.0

0.9

-Illlllllllllllllt: I I I ) I ) I ) I

0.0004
0.0002
0.0000

1072
10~3
10~4
10~9 - max. diff. |[M

—D| (in GeV~?)
10-6

|2
R
|||||||| ]

- .
- -
| "~~~ =

-
1 L1 1 111 1 1 1 111

10—R

X

10—4 10~3

10—-1 100
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¢ é'g{pptional Taiwan University

Event generation

%A

& This is possible only if f(x)<co AND has definite sign! O

2nd Taipei MG/FR School, Sept 4-8,2013 Event Generation with MadGraph 5 Johan Alwall 37



EVENT UNWEIGHTING?

Al

% Another consequence of this kinematic

mismatch 1s that we cannot generate events

102 O ete™ > Z > ttg ]
at ﬁxed order NLO 100 — soft limit for g |
: : 2 |
¢ Even though the integrals are finite, they " [ e _
n matrix element [My|® (in GeV™®) ——
- 10 B =1 ---- ]
are not bounded (compare with ;[ subtr. term D (in GeV?) 2=0.1 - |
107° — 2, =0.01------ .
]. o L4 II| [ [ IIIIII| [ Iﬁllllll [ [ IIIII;Il [ I"IIIIII
f daj—l ), so there 1s no maximum to LR ES| T T T A
0 \/E 1L1E= —3
. . . 1.0 —
unwelght agalnSt: a Slngle event Can 0.9 E_Il | | L1 11 II| | | L1 11 II| | | L1 1 III| | | L1l III—§
. . . 0‘0004 I| ) ) ) IIIII| ) ) ) IIIII| ) ) IIIIII| ) ) LI
have an arbitrarily large weight! 0.0002
0.0000
\\/ lo—g
% Furthermore, event and counter event -4 i -
. . . . 10~9 ax. diff. ||[M_|?-D| (in GeV~2 T T T
have different kinematics: which one to  10-6 [ % @ Ma-fltmeevm 7 mreeg e
. 10~4 103 10~% 10~1 100
use for the unwelghted event? x,
do do
do 4 OB |
u 0
] o
=0 (= not possible MO
] D DEI at NLO I
j==1 e CoOE0o
O O 35
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FILLING HISTOGRAMS ON-THE-
FLY

o0 / d*®,,, B(®,,)

+/d4q)m[/1 AUV (D) +/dd¢1G($m+1)]

oop e—0

b [ @i | R Opi) = GEit)

# In practice, when we do the MC integration we generate 2 sets of
momenta

1. An m-body set (for the Born, virtual and integrated counter terms)

2. An m+1-body (for the NLO) which we map to the counter term

momenta (for the counter terms)

% We compute the above formula; and apply cuts and fll histograms using

the momenta corresponding to each term with the weight of that
corresponding term

Rikkert Frederix I
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K\§

A
K\§

Al
N}

Rikkert Frederix

SUMMARY

Both the virtual and real-emission corrections are IR divergent,
but their sum 1s finite: We can use a subtraction methods to
factor the divergences in the real-emission phase-space
integration and cancel them explicitly against the terms in the
virtual corrections

This generates events and counter events with slightly different
kinematics. This means we cannot generate unweighed events
(integrals are not bounded), but we can fill plots with weighted
events: MC integrator (not an MC event generator)

When making plots or applying cuts, use only IR safe

observables with finite resolution
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ONE-LOOP INTEGRAL

ko

Z

% Consider this m-point
loop diagram with »
external momenta

A

% The integral to compute 1s

[N
DoD1 Dy -+ Dyp—q

D; = +p)*—m:

1

39




WHAT IS THE GOAL

=

.
7N\

\

\/

AN

Any one-loop integral can be written as:

N(I) 1
d E : T d

A

% Reduce a general integral to “scalar integrals”, with at

most 4 denominator factors D;

Al

% To compute the virtual corrections, we “only” need to find
the values of the coefficients multiplying the scalar integrals

Rikkert Frederix L



BASIS OF SCALAR INTEGRALS

A 1-loop _ Z d. . . % The a, b, ¢, d and R

20212223B0Xi0i1’i2i3 .
coefﬁments depend only

10 <t1<t2<13
on external parameters
- Z Cigiyis Trlangleioq;lz‘Q and momenta
’l:o<7:1<’i2 D l—|—pz) 2
+ ) b;,i, Bubble;,,
o o ot Tadpole; /
10<1?1
+ Z a;, Ladpole;_ Bubble;;, = /
10
Triangle; ; ;. = dl
+R + O(e) - D D D
1
BoXiyiigis = [ dl
OX 0t1¢62¢3 Dio DilDiQ Di3

e All these scalar integrals are known and available in computer libraries
(FF [v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])

Rikkert Frederix L



NEW LOOP TECHNIQUES

Al

¢ The “loop revolution”: new techniques for computing one-loop matrix
elements are now established:

¢ Generalized unitarity (e.g. BlackHat, Njet, ...)
[Bern, Dixon, Dunbar, Kosower, 1994...; Ellis Giele Kunst 2007 + Melnikov 2008; Badger...]

“¢ Integrand reduction (OPP method) (e.g. MadLoop (aMC@NLO),
GoSam)

[Ossola, Papadopoulos, Pittau 2006; del Aguila, Pittau 2004; Mastrolia, Ossola, Reiter,
Tramontano 2010;...]

“¢ Tensor reduction (e.g. Golem, Openloops)
[ Passarino, Veltman 1979; Denner, Dittmaier 2005; Binoth Guillet, Heinrich, Pilon, Reiter 2008;
Cascioli, Maierhofer, Pozzorini 2011;...]

Rikkert Frederix =



NEW LOOP TECHNIQUES

¢ The “loop revolution”: new techniques for computing one-loop matrix
elements are now established:

¢ Generalized unitarity (e.g. BlackHat, Njet, ...)
[Bern, DIXOH, Dunbar Kosower, 1?94 ; Ellis Giele Kunst 2007 + Melnikov 2008; Badger...]

B e ——

-
—— ——1

e Integrand reduction (OPP method) %.g. MadLoop (aMC@NLO),

o= - .;.St-a .. —
[Ossola, Papa opou 0S, fttaau 2006 del Agulla, Pittau 2004; Mastrolia, Ossola, Reiter,
Tramontano 2010;...]

Al

“¢ Tensor reduction (e.g. Golem, Openloops)
[ Passarino, Veltman 1979; Denner, Dittmaier 2005; Binoth Guillet, Heinrich, Pilon, Reiter 2008;
Cascioli, Maierhofer, Pozzorini 2011;...]

Rikkert Frederix =



INTEGRAND REDUCTION

N (1) 1
d L | d
/d ZDODlDQ..-Dm_l —;COGEZ/CZ ZD,,;ODZ'l

% Of course the above equation does no longer hold when we
take away the integral

N (1) coeff
DoDiDsy--- D, #Z

¢ But we can fix it by introducing “spurious terms” (that
depend on the loop momenta)

N (1) Z coeft; + Spurlous (1)
DoD1Dy--- D1

Rikkert Frederix
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FUNCTIONAL FORM OF THE
SPURIOUS TERMS

% The functional form of the spurious terms is known (it
depends on the rank of the integral and the number of
propagators in the loop) [del Aguila, Pittau 2004]

¢ for example, a box coethcient from a rank 1 numerator 1s

7 _J Vpo VP oo

igiyizis (1) = digiyizis €7P7 1 PYP2P3
(remember that Pi 1S the sum of the momentum that has
entered the loop so far, so we always have po = 0)

5% The integral 1S Z€ero

~

ddl dioi1i2i3(l) 7 /ddle,ul/pa l'upﬁpgpg — 0

DoDyDyDs ofatzis DoD Do D

Rikkert Frederix .



OPP DECOMPOSITION

N(1) Z coeft; —|— spurlous (1)
g iy oo i g

¢ Multiplying both sides by the product of all the D/’s leaves:

Rikkert Frederix

m—1 m—1
N(l) - Z {dioilizis + dioi1i2i3 (l)} D;
10<t1<i2<is 171%0,%1,%2,%3
m—1 m—1
+ E | [Cioiﬂé +Cioi1i2(l)}
10<11 <12 1#£10,21,12
m—1

+ Z [bioil + by, (1) } H D;

10<11 110,21
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NUMERICAL EVALUATION

Al

% N(1) 1s known from the diagrams; also the function form of the spurious
terms 1s known, so:

A

s By choosing specific values for the loop momentum /, we end up with a
system of linear equations that we can solve easily

Al

¢ In a renormalizable theory, the rank of the integrand 1s always smaller

(or equal) to the number of particles in the loop (with a conveniently
chosen gauge)

L

\

¢ We can straight-forwardly set the it up by sampling the numerator

Al

A

numerically for various values of the loop momentum /

R

#* By choosing [ smartly, the system greatly reduces

Al
N

=
—

I\

In particular when we chose / to be a complex 4-vector

Rikkert Frederix 6



m—1 m—1

NO= ) [dz’oz‘lmg + Jioilizig(l)} D;
10<11<12<13 17#10,11,12,13
m—1 m—1
4 Z [Cioilz‘z - Eioilz’g(l)} H D;
10<t1<ig 1%#1%0,%1,%2
~ , ; To solve the OPP reduction, choosing special
+ ; { ioin T Diia ] H Di values for the loop momenta helps a lot
10<1?1 { 'LO 11
m—1 For example, choosing / such that
+ Z {CL@'O + a;, (l)} H D; . p . g N N
s Do) = Dy (I%) = Dy(i*) = Ds(i*) = 0
m—1
+P(1) [] D: sets all the terms in this equation to zero
i except the first line

There are two (complex) solutions to this
equation due to the quadratic nature of the
propagators

Rikkert Frederix .



N (1) = doras + dor2s(IF

R

)

¢ Two values are enough given the functional form for the

spurious term. We can immediately determine the Box

coefthicient

1

do123 = 5

A

N(T)

N(I™)

[

m—1
1#£0,1,2,3 Di(l+)

[l

m—1
1#0,1,2,3

D;(1)

¢ By choosing other values for /, that set other combinations of

4 “denominators” to zero, we can get all the Box coefhicients

Rikkert Frederix
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[ | S Al / / _/ _f—i r_:) » © @

A

¢ Now that we have all the Box coefthicients we can start choosing values
for / that set 3 “denominators” to zero to get the Triangle coetficients. Of
course, now both the first and the second lines contribute.

m—1 m—1

N(l) - Z [di0i1i2i3 + d~’io?31’i2i3 (l)} D;

10<11<12<13 1#10,21,12,13

m—1
T Z [Cioil’&é T EioiliQ (l)} H Dz

10<11<12 120,21 ,12

A

% We already have solved the coethcients of the first line in the previous
iteration, so also here there is only a simple system of equations to solve

Al

% Once we have all the Triangle coefhicients, we can continue to determine

the Bubble coethcients; and finally the Tadpole coethicients

Rikkert Frederix &



A

¢ For each phase-space point we have to solve the system of
equations numerically

% Due to the fact that the system reduces when picking special
values for the loop momentum, the system greatly reduces

Al

% We can decompose the system at the level of the squared matrix
element, amplitude, diagram or anywhere in between. As long as

we provide the corresponding numerator function

Alx

% For a given phase-space point, we have to compute the numerator
function several times (~50 or so for a 4-point loop diagram)

Rikkert Frederix
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COMPLICATIONS IN D
DIMENSIONS

“¢ In the previous consideration | was very sloppy in considering if
we are working in 4 or d dimensions

# In general, external momenta and polarization vectors are in 4
dimensions; only the loop momentum 1s in d dimensions

¢ To be more correct, we compute the integral

/ddl o / \
DoD1D3 -+ - Dy, g d dim 4 dim epsilon dim

Di=(l+p)2 —m?=(1+p)?—m2+1?=D, +[?

. 1=0 [-p; =1 p; L l=1-1+1-1

P S ol
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QA
~

=
—

I\

The decomposition in
terms of scalar integrals

has to be done in d
dimensions

% This 1s why the rational
part R 1s needed

52



R

% The main difference 1s how we get the rational terms (we
already saw them 1in the Passarino-Veltman reduction)

% In the OPP method, they are split into two contributions,

generally called
R=R;+ R5

¢ Both have their origin in the UV part of the model, but only
Ri1 can be directly computed in the OPP reduction

Rikkert Frederix
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24

\V

The origin of Ri 1s coming 1s the denominators of the
propagators in the loop

1 L1 P
D;, D; D D,

% Of course, the propagator structure i1s known, so these

~

contributions can be included in the OPP reduction

Al

#* They give contributions proportional to

& i (pi — p;)°
dl — — |m? 2 _ b b O
DZDJ 2 mZ—I_m,] 3 —|— (6)
o in?
dN=—e==——+0
/ D; D, Dy y TOl
- /4 G2
==+ 0
/ DD, Dy D g OO
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Al

% The other origin of rational terms 1s the numerator itself. For integrals
with rank > 2 we can have dependence in the numerator that 1s
proportional to [

Al

# Unfortunately, this dependence can be quite hidden; maybe it is only
explicitly there after doing the Clifford algebra

Al

¢ Because we want to solve the system without doing this algebra

analytically (we want to solve it numerically) we cannot get these
contributions directly within the OPP reduction

\l

Q
7

¢ Within a given model, there 1s only a finite number of sources that can
give these contributions; They have all been 1dentified within the SM,
and can be computed with the “Ro counter terms”

Rikkert Frederix

55



¢ Given that the Ro contributions are of UV origin, only up to 4-point
functions contribute to it (in a renormalizable theory)

¢ They can be computed using special Feynman rules, similarly to the
UV counter term Feynman rules needed for the UV renormalization,

e.g. .
) 2
£, 1g° N, — 1
—@— — < Or7(— 2 A
I I 1672 2N,.; k(=P + 2mq) Ay
k
3 2
tg N col a
— t 1+ )
[ [ Draggiotis, Garzelli, Papadopoulos, Pittau]

¢ Unfortunately these Feynman rules are model dependent, which
means the need to be explicitly computed when going to BSM (Just

like the UV renormalisation)
Rikkert Frederix



KA

¢ There has been an enormous amount of progress in computing
loops during the last 5 years

Al

¢ For the one-loop corrections, we need to find the coethcients
multiplying the scalar integrals

KA

% OPP or integrand reduction 1s an ethicient numerical method to
get those. However, need to be careful due to the need of
dimensional regularization.

A

% OPP method implemented in Madl.oop, which can generate
QCD virtual corrections for any process within the SM

% For BSM, a bit of work 1s needed in the model file, because

the renormalisation (and R2 contribution) 1s not completely
automated

Rikkert Frederix
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MASTER EQUATION FOR HADRON
COLLIDERS

o — Eb: / dydzy fo(21s 1im) oo, for) dBapx (5s 1 1)

Parton density Parton-level
functions (differential)

Cross section

% Parton-level cross section from matrix elements: model
and process dependent

# Parton density (or distribution) functions: process
independent

¢ Differences between colliders given by parton
luminosities

Rikkert Frederix 5



A

reduced

N

in the running coupling and the

PDF's 1s compensated for via the loop

% First order where scale dependence

corrections: first reliable estimate

of the total cross section

¢ Better description of final state:

impact of extra radiation included

(e.g. jets can have substructure)

Al

partonic channels

Rikkert Frederix

% Opening of additional initial state

% At NLO the dependence on the renormalization and factorization scales 1s

o |
Top produstisn va g, V3=14Ta¥

LD, ctegBll, (M )=0.130

LA, ctegf_m, oM )=0.1156
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NLO...?

Al

% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

I TTOOO0 — ‘ I TTOTOO — f 9 DOOOO0— t

O [ Real E Virt

wa‘%j t 7 TBouTO

¢ Total cross section

% Transverse momentum of the top quark

e ) :
 Transverse momentum of the jet

w T . . .
Aop-antltop Invariant mass

v
v
# Transverse momentum of the top-antitop pair X
X
v
X

¢ Azimuthal distance between the top and anti-top

Rikkert Frederix 6l



EVENT UNWEIGHTING?

Al

% Another consequence of this kinematic

mismatch 1s that we cannot generate events

102 O ete™ > Z > ttg ]
at ﬁxed order NLO 100 — soft limit for g |
: : 2 |
¢ Even though the integrals are finite, they " [ e _
n matrix element [My|® (in GeV™®) ——
- 10 B =1 ---- ]
are not bounded (compare with ;[ subtr. term D (in GeV?) 2=0.1 - |
107° — 2, =0.01------ .
]. o L4 II| [ [ IIIIII| [ Iﬁllllll [ [ IIIII;Il [ I"IIIIII
f daj—l ), so there 1s no maximum to LR ES| T T T A
0 \/E 1L1E= —3
. . . 1.0 —
unwelght agalnSt: a Slngle event Can 0.9 E_Il | | L1 11 II| | | L1 11 II| | | L1 1 III| | | L1l III—§
. . . 0‘0004 I| ) ) ) IIIII| ) ) ) IIIII| ) ) IIIIII| ) ) LI
have an arbitrarily large weight! 0.0002
0.0000
\\/ lo—g
% Furthermore, event and counter event -4 i -
. . . . 10~9 ax. diff. ||[M_|?-D| (in GeV~2 T T T
have different kinematics: which one to  10-6 [ % @ Ma-fltmeevm 7 mreeg e
. 10~4 103 10~% 10~1 100
use for the unwelghted event? x,
do do
do 4 OB |
u 0
] o
=0 (= not possible MO
] D DEI at NLO I
j==1 e CoOE0o
O O 62
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FILLING HISTOGRAMS ON-THE-
FLY

o0 / d*®,,, B(®,,)

+/d4q)m[/1 AUV (D) +/dd¢1G($m+1)]

oop e—0

b [ @i | R Opi) = GEit)

# In practice, when we do the MC integration we generate 2 sets of
momenta

1. An m-body set (for the Born, virtual and integrated counter terms)

2. An m+1-body (for the NLO) which we map to the counter term

momenta (for the counter terms)

% We compute the above formula; and apply cuts and fll histograms using

the momenta corresponding to each term with the weight of that
corresponding term

Rikkert Frederix =



>.VW =>«/vvv + @rvvvv Z:m +O(oc52)
+ anything

\/

% Let us focus on NLO... there are already enough steps to be taken:

NA
Z\J

Virtual amplitudes: how to compute the loops automatically in a
reasonable amount of time

R
K

* How to deal with infra-red divergences: virtual corrections and real-
emission corrections are separately divergent and only their sum 1s

finite (for IR-safe observables) according to the KLLN theorem

Al
N}

How to match these processes to a parton shower without double
counting

Rikkert Frederix e






R

¢ There are two ways to improve a Parton Shower Monte
Carlo event generator with matrix elements:

A

% ME+PS merging: Include matrix elements with more final
state partons to describe hard, well-separated radiation

better (already discussed by Johan)
% NLO+PS matching: Include tull NLO corrections to the

matrix elements to reduce theoretical uncertainties in the
matrix elements. The real-emission matrix elements will

describe the hard radiation

Rikkert Frederix
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LIMITATIONS OF FIXED ORDER
CALCULATIONS

% In fact, for the observables that are not described at NLLO accuracy,
the situation 1s actually a bit worse:

6000 | L v'ect<'>r ]:;osco'n p'T N

- >WW:

% In the small transverse L e )
momentum region, this calculation | |
breaks down (it’s even negative 1n 0-— ....................................................... 3 -
the first bin!), and anywhere else 1t 1 |

1s purely a LO calculation for V+1j : ransverse hoomentum [GeV] 20

P S S
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Matrix Elements vs. Parton Showers

Shower MC

|. Resums logs to all orders

2. Computationally cheap

3. No limit on particle multiplicity

4. Valid when partons are collinear
and/or soft

5. Partial interference through
angular ordering

6. Needed for hadronization

|. Fixed order calculation

2. Computationally expensive

3. Limited number of particles

4. Valid when partons are hard and
well separated

5. Quantum interference correct

6. Needed for multi-jet description

Approaches are complementary: merge them!

Difficulty: avoid double counting, ensure smooth distributions

2nd Taipei MG/FR School, Sept 4-8,2013 Event Generation with MadGraph 5
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Matrix Elements vs. Parton Showers

Shower MC

4

|. Fixed order calculation
2. Computationally expensive

| 4. Valid when partons are hard and
well separated

|. Resums logs to all orders

2. Computationally cheap

3. No limit on particle multiplicity

4. Valid when partons are collinear
and/or soft

oh

6. Needed for multi-jet description§ No lOIlgeI’ true

at NLO! |

Approaches are compMg

Difficulty: avoid double counting, ensure smooth distributions

2nd Taipei MG/FR School, Sept 4-8,2013 Event Generation with MadGraph 5
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gs + LI )

A
7

% We have to integrate the real emission over the complete
phase-space of the one particle that can g0 soft or collinear to
obtain the infra-red poles that will cancel against the virtual
corrections

N

% We cannot use the same matching procedure: requiring that
all partons should produce separate jets 1s not infrared safe

A

% We have to invent a new procedure to match NLO matrix
elements with parton showers
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PSS

% In a fixed order calculation we have contributions with m

NAIVE (WRONG) APPROACH

final state particles and with m+1 final state particles

o O~ / d*®,, B(P / d*® / dlV (® / d®,, 11 R(®pyy1)
loop

% We could try to shower them independently

w* Let [ &% (O) be the parton shower spectrum for an observable
0, showering from a k-body initial condition

¢ We can then try to shower the m and m+1 final states
independently

Irntours_ {dq>m(3+ / v)} I53(0) + {dcbmHR} e (0)
loop

Rikkert Frederix
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NAIVE (WRONG) APPROACH

PSS Sl o

% In a fixed order calculation we have contributions with m

final state particles and with m+1 final state particles

oV O / d*®,, B(P / d*® / dlV (® / d®,, 11 R(®pyy1)
loop

% We could try to shower them independently

% Let [ ﬁf()j (O) be the parton shower spectrum for an observable
0, showering from a k-body initial condition

¢ We can then try to shower the m and m+1 final states
independently

dON;SWPS — [dCI)m(B+/ V)} Iyie (0) + {dq)m-l—lR} Iie (0)
loop

Rikkert Frederix

70



DOUBLE COUNTING

d W m m
UN;S PS _ {d@m(3+ / V)] IiM(0) + {d@mHR} i (o)
1

oop

% But this 1s wrong!

% If you expand this equation out up to NLO, there are more terms then
there should be and the total rate does not come out correctly

% Schematically Iy, (k) o(O) for 0 and 1 emission 1s given by
k
Ii:(0) ~Aa(Q%, QF)

dt do as(t)
Zdz 21 2w Farbe(2)

% And A 1s the Sudakov factor
@ d t/
Aa(@27t) :eXp{_Z/ —dz ¢048( )Pa%bc}
bc t

t/ 2T 27

Rikkert Frederix 71



SOURCES OF DOUBLE COUNTING

Parton shower
_—

Born+Virtual: >’VVVV
Real emission: zvxm

Rikkert Frederix
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SOURCES OF DOUBLE COUNTING

Parton shower

-
Born+Virtual: >'VVVV 2/"/"”
Real emission: 25\/\/\/ Z\M

Rikkert Frederix
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SOURCES OF DOUBLE COUNTING

Parton shower

s S oo G
b S

Real emission:

Rikkert Frederix
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SOURCES OF DOUBLE COUNTING

Parton shower

Born+Virtual: >'WVV zfv"” ZN\N
o i /
Real emission: z/\/\/v g\A

Rikkert Frederix
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SOURCES OF DOUBLE COUNTING

Parton shower

Born+ Virtual: >WVV\« 2}“"’”
o i /
Real emission: zjvvv zw

¢ There 1s double counting between the real emission matrix

Al
N

elements and the parton shower: the extra radiation can come
from the matrix elements or the parton shower

/A
N}

% There 1s also an overlap between the virtual corrections and the
Sudakov suppression in the zero-emission probability

Rikkert Frederix
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DOUBLE COUNTING IN VIRTUAL/
SUDAKOV

A

% The Sudakov factor A (which is responsible for the resummation of all
the radiation in the shower) is the no-emission probability

¢ It's defined to be A = 1 - P, where P 1s the probability for a branching to

occur

¢ By using this conservation of probability in this way, A contains
contributions from the virtual corrections imphcitly

Al

¢ Because at NLO the virtual corrections are already included via explicit
matrix elements, A i1s double counting with the virtual corrections

Al

% In fact, because the shower 1s unitary, what we are double counting in
the real emission corrections is exactly equal to what we are double

counting 1n the virtual corrections (but with opposite sign)!

Rikkert Frederix 4



AVOIDING DOUBLE COUNTING

% There are two methods to circumvent this double counting
% MC@NLO (Frixione & Webber)
% POWHEG (Nason)

Rikkert Frederix
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MCE@NLO PROCEDURE

Frixione & Webber (2002)

% To remove the double counting, we can add and subtract the

Rikkert Frederix

same term to the m and m+1 body configurations

L 1 )

oop

+ [dP i1 (R-MCO) | I (0)

Where the J/C are-deﬁned to be the c-ontribution of the
parton shower to get from the m body Born final state to the
m+1 body real emission final state
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MCE@NLO PROCEDURE

Born+Virtual: >NVV\« zwv

Parton shower

o

e L
Real emission kw zm

doNLOW %
ONLOWPS _ diD B+/ +/d<I>1MC) Iid (0)
loop -

dO

_|_

01<I>m+1 (R—MC)

Iie " (0)

% Double counting 1s explicitly removed by including the

({1 ° »
shower subtraction terms

Rikkert Frederix
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MC@RNLO PROPERTIES

¢ Good features of including the subtraction counter terms

1. Double counting avoided: The rate expanded at NLO coincides
with the total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the parton
shower 1n the soft/collinear region, while it agrees with the NLO in
the hard region

3. Stability: weights associated to ditferent multiplicities are separately
finite. The //C term has the same infrared behavior as the real

emission (there 1s a subtlety for the soft divergence)

¢ Not so nice feature (for the developer):

1. Parton shower dependence: the form of the //C terms depends on
what the parton shower does exactly. Need special subtraction terms

for each parton shower to which we want to match

Rikkert Frederix 77



DOUBLE COUNTING AVOIDED

dO'NLOWPS _ dq) B_|_/ —|—/dq)1MC) [ﬁ/[’ffé)(O)
dO loop -

+ d@mH (R—MC)| 1LY (0)

% Expanded at NLO

MC MC
7im —1— [ dd - dd -
1 (0)dO /d 1~ +dP—
daNLOWpS—{dCID (B + +/d<1>1MC)}I§g’g(O)dO
loop

+ {d@mH(R—MC)}

~ d®,, (B + / V) +d®p1 R = donro

loop
Rikkert Frederix
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SMOOTH MATCHING

dO’NLOWPS _ dq) B_|_/ —|—/dq)1MC) [ﬁ/[Tr(Lj)(O)
dO loop -

+ d<I>m+1 (R—MC) I(W(LJH)(O)

% Smooth matching:

Rikkert Frederix

¢ Soft/collinear region: R ~ MC => doycenno ~ Iﬁaﬂg (0)dO
¢ Hard region (shower effects suppressed), 1e.
(m+1) A~
MC ~0 ]ﬁ'g(O) ~0 Iye (0)~1

= dovcaNLo ~ AP 1 R
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STABILITY & UNWEIGHTING

dO’NLOWPS _ dq) B_|_/ —I—/dq)lMC) Ilg/[Tr(Lj)(O)
dO loop

+ d@mH (R—MC)| 1LY (0)

4 Tl 40 sulbiisaeion tomms ame delfned o o it the ghower doss
to get from the m to the m+1 body matrix elements. Therefore the
cancellation of singularities 1s exact in the (R - //C) term: there 1s no
mapping of the phase-space in going from events to counter events
as we saw 1n the FKS subtraction

¢ The integral 1s bounded all over phase-space; we can therefore
generate unweighted events!

¢ “S-events” (which have m body kinematics)

% “H-events” (which have m+1 body kinematics)
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FKS SUBTRACTION

doNLOw |1
ONLOwPS _ dq) B_|_/ —|—/dq)1MC) [ﬁ/[(j)(O)
loop -

dO

% The //C counter terms render t!

#* So, do we still need the FKS sul

+ d@mH (R—MC)| 1LY (0)

he real emission finite

btraction terms?
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FKS SUBTRACTION

doNLOw %
ONLOwPS _ dq) B_|_/ —|—/dq)1MC) [ﬁ/[(j)(O)
loop -

dO

_I_

% The //C counter terms render t!

#* So, do we still need the FKS sul

dq)m—l-l (R—MC)

YES!

Iie " (0)

he real emission finite

btraction terms?
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FKS SUBTRACTION

dO’NLOWPS _ dq) B_|_/ —|—/dq)1MC) Ilg/[Tr(Lj)(O)
dO loop

+ d@mH (R—MC)| 1LY (0)

% We cannot do the one-particle integral over the MC terms analytically:
we do not get the explicit poles in 1/€ and 1/€? to cancel the poles in the

virtual corrections. So we need to extract them using a subtraction

method &

d w m
JN;S PS = {d@m(B + (/ 1% +/d<1>1G) +/d<1>1(MC — G)} 1™ 0)
loop

+ {dq)mﬂ (R—MC)} Le(0)

Rikkert Frederix
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doNLOWPS _ d<I> B+/ +/d<I>1MC)
loop

I (0)

+ d<I>m+1 (R—MC)| 1LY (0)

#* We generate events for the two terms between the square brackets (S- and

H-events) separately

% There 1s no guarantee that these contributions are separately positive

(even though predictions for infra-red sate observables should always be

positivel)

% Therefore, when we do event unweighting we can only unweight the

events up to a sign. These signs should be taken into account when doing

a physics analysis (1.e. making plots etc.)

% The events are only physical when they are showered

Rikkert Frederix
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POWHRHEG

Nason (2004)

¢ Consider the probability of the first emission of a leg (inclusive over
later emissions)

do = d®,, B {A(sz Q(Q)) + A(Q?, t)d® 1) MTF}

¢ One could try to get NLO accuracy by replacing B with the NLLO

rate (integrated over the extra phase-space)

# This naive definition 1s not correct: the radiation 1s still described only
at leading logarithmic accuracy, which is not correct for hard

emissions.

Rikkert Frederix
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POWHRHEG

% This 1s double counting.
To see this, expand the equation up to the first emission

MC MC

which 1s not equal to the NLO

% In order to avoid double counting, one should replace the definition
of the Sudakov form factor with the following:

Q’ MC . Q7 R
AQ Q) =exp |- [ by g | AQMQ)) e |- [ by
| o o |

0 i i 0

corresponding to a modified differential branching probability
dp = d®(, R/ B

% Therefore we find for the POWHEG differential cross section

5 5 R
dooownee = AP p [B +V + / d<I>(+1)R] [A(QQ, Q3) + A(Q4, ) d<I>(+1)E]
Rikkert Frederix 85



PROPERTIES

R

U eowmmnne = O E [B + V + /dq)(—l—l)R] [A(Q27 Qg) T A(Q2, t) dq)(+1)§

A

% The term 1n the square brackets integrates to one (integrated over
the extra parton phase-space between scales QOQ and QQ)

(this can also be understood as unitarity of the shower below scale t)

POWHEG cross section 1s normalized to the NLO

Al

¢ Expand up to the first-emission level:

R R

dO-POWHEG — d(I)B [B =+ V + /d(I)(+1)R] [1 — /d(b(—l—l)g + d(I)(_H)E — dO‘NLO

so double counting 1s avoided

rescaled by a global K-factor and a different Sudakov for the first

emission: no negative weights are involved.
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MCE@NLO/POWHEG

The MC@NLO and POWHEG procedures can be cast in a single formula:

_ . R (D
doxLoses = dBaB*(Ba) | A(™) + dBrin i A%(pr(®) | + dRR! (@)

where

B5(®p) = B(®g) + |V(®p) + / 0 gy R (P )

and we have split the Real emission matrix elements in a singular and finite part:
R(®R) = R*(®r) + R (PR)
The difference between MC@NLO and POWHEG is in the way the real matrix

elements are split:

. Need exact mapping (Or Op)=D
MC@NLO R ((I)) — P((I)RIB)B((I)B) = MC in MC subtraction term RS

s Default is F =1 : I h
POWHEG ((I)) B FR((I))j Rf((b) a (1 a F)R((I)) fuﬁ i:ailii can be dZ}I(lF;:deIll);aﬁZ;de

Rikkert Frederix 4



MCENLO vs POWHEG

MC@NLO | POWHEG

Parton showers are (usually) not exact in the soft

limit: MC@NLO needs an artificial smoothing

MC@NLO does not exponentiate the non-singular
part of the real emission amplitudes

MC@NLO does not require any tricks for treating

Born zeros

POWHERG is independent from the parton shower

(although, in general the shower should be a truncated vetoed)

POWHEG has (almost) no negatively weighted

events

Automation of the methods:
http://amcatnlo.cern.ch, http://powhegbox.mib.infn.it,

ORNBI NI ROl NG D
OOl O G

http://www.sherpa-mc.de
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REF, Frixione, Hirschi, maltoni, Pittau & Torrielli (2011)
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o/bin [fb] at LHC 7 TeV -

3
= aMC@NLO =
SRR NLO :
e aMC@LO
SRR LO
£ P | PR
- ---- scale unc. S I—HJ‘
.:;-:ﬁ_ il il L____ -
- — pdf unc. . :' -__._Lﬁ_“xl%

ee"ete JeteTutu” K

4 -lepton transverse moment 1S extremely sensitive

Rikkert Frederix

% Including scale uncertainties

log,o(pr(ete ' u™)/GeV)

¢ 4-lepton invariant mass 1s almost insensitive to parton shower eftfects.
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~OUR-LEPTON PRODUCTION

1 "~ T T " T T ] — T T T ]
100 & g/bin [fb] at LHC 7 TeV - 100 a/b1n [fb] at LHC 7 TeV
aMC@NLO+gg HW ; I
----- aMC@NLO+gg PY | 44-1
1071 £ e gg HW (x10) o
o gg PY (x10) 10—2
1 )
107 | 10-3 ks aMC@NLO+gg HW
£ aMC@NLO+gg PY
11074 ---e-- gg HW (x20)
1073 £ q 5 - oo gg PY (x20)
I + + I I ! E.;:! F'h: 10
1.5 ----ggscaleunc. ] 1.5
1.0} —— { 10 .
05L | — &g pdf unc. T oeb g e e g
1.00F — aMC@NLO/aMC@NLO+gg HW | | 1.00 p— aMC@N_I__.(L)h/aMC@NLO+gg HW ________
0.95 | { 0.95 TR, 7 §
0.90F  1---- aMC@NLO/aMC@NLO+gg PY | 1 090F  ---- aMCeNLO/aMC@NLO+gg PY :
0 200 400 600 800 0 1 2
M(eTe " u" 1) [GeV] logo(pr(e’e ™ u™)/GeV)

¢ Differences between Herwig (black) and Pythia (blue) showers large 1in

the Sudakov suppressed region (much larger than the scale uncertainties)

% Contributions from gg initial state (formally NNLO) are of 5-10%
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AMCGRNLO JOINT VENTURE
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AMCGRNLO JOINT VENTURE

MadGraph 5

Rikkert Frederix
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AMCGENLO JOINT VENTURE

MadGraph 5

Rikkert Frederix
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AMCGERNLO JOINT VENTURE

MadGraph 5

Rikkert Frederix

MC@NLO method

to match NLO to parton shower
(Herwig(++) & Pythia6/8)

MadLoop (+CutTools)

for the one-loop virtual corrections
-- also possible to use external tools via

Binoth-LHA

MadFKS

to factor out IR divergences in
phase-space integrals

MadSpin
to keep spin-correlations 1n
particle decays
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IS NLO+PS ALWAYS THE
PREFERRED METHOD?

% It 1s the preferred method if the observable 1s described at NLLO

accuracy

/A

¢ But there are many observables for which a given NLO+PS code

has only zeroth order accuracy. . .
top pair productlon
S N I - A T B R R

LH 3 - —X LHC

do/dpy® (pb/GeV) {10 L 2 o[Nj] (Pb) =

100 E

1071 ¢

X

10~° —Solid: ALPGEN, S, | Solid: ALPGEN, S; (MLM matching)

- X: MC@NLO 100 _)i: MC@NLO x|
I I R T R ‘ :sslsssslsssslssss::::lssssls.-
AL L L L 3 T T T T T T =
0’2; X X X X 0.2 — X =
W‘m—ﬂwij—mﬂ—ﬁ—x Xy X 3 : H =
?_x KR X O T X x 4 —o02F ):( E
—0Rg L 3 e l ol ! ! X ! =
0 200 400 600 800 0 1 2 3 4 5
t
pTop (GeV) Njets

P S 2.



SUMMARY

% We want to match NLO computations to parton showers to keep the
good features of both approximations

% In the MC@NIT.O method:

by including the shower subtraction terms in our process we avoid
double counting between NLO processes and parton showers

% In the POWHEG method:
appi y an overall K-factor, and modify the (Sudakov of the) first

emission to fill the hard region of phase-space accordlng to the

real-emission matrix elements

¢ First studies to combine NLO+PS matchmg with ME+PS merging

have been made and result look very promlsmg..., see next slides

Rikkert Frederix =



“J ACCURACY

(WILL BECOME AVAILABLE IN A COUPLE OF WEEKS)
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150
pr(1*1%) [GeV]
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Rikkert Frederix

In the tail of the pT spectrum,
there are large theoretical
uncertainties. This 1s no surprise!
Here the NLO calculation has
actually only LO accuracy,
because there must be a hard
parton/jet recoiling against the 4-
lepton system.
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FOUR-LEPTON PRODUCTION

(] ]
"™ g/bin [fb] at LHC 7 TeV -

—
---- scale unec.

L1

— pdf unc.

+ T + + + +
—e'eTete Jete T utu”

50 100 150
pr(1*1%) [GeV]

In the tail of the pT spectrum,
there are large theoretical
uncertainties. This 1s no surprise!
Here the NLO calculation has
actually only LO accuracy,
because there must be a hard
parton/jet recoiling against the 4-
lepton system.

Can we include the NLO corrections to

4 leptons + 1 (hard) jet here?

Rikkert Frederix
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LIMITATIONS

There are more observables very sensitive to theory uncertainties -- all
related to hard emissions in the real-emission matrix elements and even
stronger 1f they are emitted by the shower.

CMS Preliminary, L=5 fb' at (s=7 TeV
L A

Even though our NLO g‘{ e tthar ]
computation is “inclusive 1n all extra PN = .
radiation” (which 1s made explicit by S e TR
the parton shower), the shower 1s e - — ]
only correct in the strict collinear 10% |- 77 EMGENLOsHorwi E
approximation. [t cannot generate C —— POWHEGHPy j?
hard extra jets correctly (.e. jets beyond B ———— .
the first, which 1s included in the real § S :
emission corrections of the NLO computation osF

and therefore already has a large uncertainty Jet Multiplicity

associated with it)

Rikkert Frederix =19



LIMITATIONS

There are more observables very sensitive to theory uncertainties -- all
related to hard emissions in the real-emission matrix elements and even
stronger 1f they are emitted by the shower.

CMS Preliminary, L=5 fb' at (s=7 TeV
L A

Even though our NLO S ITZ'{ e tthar ]
. . . . . o
computation is “inclusive 1n all extra 1o .
o . o . o o - ® Data (combined) P sy ]
radiation” (which 1s made explicit by i :
the parton shower), the shower 1s | eGPy —— ]
only correct in the strict collinear 10% |- 77 EMGENLOsHorwi E
approximation. [t cannot generate C —— PoWHEGHPys IR
hard extra jets correcﬂy (i.e. jets beyond 7] Se—————————” .-
the first, which 1s included in the real SR o
emission corrections of the NLO computation o | | o s
. ' 3 4 5
and t}.lereforé already has a large uncertainty Jet Multiplicity
associated with it) [Large dependence on the shower/scales

Rikkert Frederix =19
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MERGING ME WITH PS
CKKW (2004) and MLM (2004)

At LO this has been solved ~10 years ago: use tree-level matrix elements of
various multiplicities to generate hard radiation, and the parton shower for the
collinear and soft

Double counting no problem: we simply throw events away when the matrix-
element partons are too soft, or when the parton shower generates too hard
radiation

Applying the matrix-element cut 1s easy: during
phase-space Integration, we only generate events

with partons above the matching scale

For the cut on the shower, there are two methods. Throwing events away after

showering 1s not very ethcient, although it 1s working (“MLM method”)

Instead we can also multiply the Born matrix elements by suitable product of
Sudakov factors (i.e. the no-emission probabilities) A(Q™*, Q°) and start the
shower at the scale Q¢ (“"CKKW method”):

For a given multiplicity we have O%gxcl = Bn@(kT,n — Q)AL (Qmax, Q)
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¢ To make a LO prediction exclusive in the number of jets, we need to

multiply it by a Sudakov damping factor; this 1s CKKW method:
U?%gxcl = B,O(krn — Q°)An(Qmax, @)

This makes the prediction exclusive at leading logarithmic accuracy

¢ Similarly we can make an NLO prediction exclusive at leading logarithm

O-rrl\LT’Ile()C], LL — {Bn + Vi, + /dq)l Rn—l—l} (kT n QC) (Qmaxv QC)

% We can improve here and use the real-emission matrix elements instead

of just the Sudakov:
QC
0-711];?(;1, LL — {Bn - Vn - / ch)l Rn—i—l — BnArSLl) (Qmaxa QC)}
0

(kT n QC) (Qmaxa QC)

Rikkert Frederix =



EXCLUSIVE MCARNLO:

FXFX MERGING
RF & Frixione, 2012

¢ Converting the NLO exclusive predictions in the number of jets to

the MC@NLO event generation 1s straight-forward:

S-events: {Bn + ¥, + /()ch@l MC — B, AW (Quax, QC)}
O(kT., — Q°)An(Qmax, Q°)
H-events: {Rn+1@(k"1@,n - Q°) — MC @(k’lff,n — QC)}
O(Q° — k7 1) An(Quiax: Q°)

¢ Indeed, that doesn’t look very hard...
[t's a simple extension of the LO meging method, 1sn't 1t?

P S 2



A

¢ What to choose for the renormalization scale (it does not only
enter as argument of the strong coupling at NLO)?

Al

% What to choose for the factorization scale (it does not only enter

in the PDFs at NLO)?
% What to do for the PDF reweighting (NLO PDF counter

terms)?

A

¢ What to choose for the starting scales of the parton shower?

% How to apply the Sudakov suppression (MLM or CKKW)?

A

¢ How to treat the extra parton in the real-emission? Do we need
a Sudakov?

% What to do with the matching scale (fixed or a smooth
function)?

\/
/'\ L

Al
Z\
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FXFX MERGING: HIGGS BOSON
PRODUCTION

RE & Frixione, 2012

LA pp » H @ LHC 8 TeV in pb/bin § 100 pp » H @ LHC 8 TeV in pb/bin 7
O‘5OO; pq=50 GeV ——N=1 1 0.50f Hq=50 GeV —— N=1
----- i=0 | L -----i=0 1
s 4 —
0.100 | T 0207
0.050 3 R 1. 010F
0.05 [ :
0.010F & _ I |
L o '-L 3 1 |
0.005 - . ] — '
[ aMC@NLO L 1 0021 cento :
N R RS N DU TEUIUN P PRI R e - N u
"7 | Ratio over N=1: ----H - H+1j ’ Ratlo over N=1: ----H - H+1j
1.0 _-‘..‘5'5"‘:-'-"-'w—:::--.:'."-_:;:.‘.?,7»:.-.“-.,,,,;'..;',-__,-_._3"_:.1""'.:"'.:"'""':--':':-1""-3.“2,.--"'3_;-"'"'1-‘.‘ 1.0 _—-:i'----:"-..-""**:.-..-r.:,::,7.'.::-’--.‘.r-l,..a.,_,m._,..--..",,-,.,. ......... ‘:
0.7F ; S, o1 o T
?g :Ratio over N=1: 1q=30 GeV  ---- ug=70 GeV : ?g F Ratio ovler N=1: I [,LQ=I30 GeV - /,LQ=I70 GeV i
1.0 brosmimmmrste ., or iR ey TN v S ST AN AP AR AT: 1.0 b e TS S o T &3
0.8+ _ > 0.8F ]
, ,  Alpgen x 1.5 (uq=30 GeV) , : | ' Alpgen x 1.5 (uq=30 GeV) '
0O 20 40 60 80 100 120 140 160 0 50 40 60 80 100 120
pr(H) [GeV] p(y) [GeV]

A

% Transverse momentum of the Higgs and of the Ist jet.

% Agreement with H+0j at MC@NLO and H+1j at MC@NLO 1n their respective

regions of phase-space; Smooth matching in between; Small dependence on
matching scale

Al

# Alpgen (ILO matching) shows larger kinks
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FXFX MERGING: HIGGS BOSON
PRODUCTION

RF & Frixione, 2012
T T T T T ] T I LA I I I
pp - H @ LHC 8 TeV in pb/bin | pp » H @ LHC 8 TeV in pb/binj
[1q=50 GeV —— N=1 }

----- i=0
-------- i=1

1.00 Hq=50 GeV —— N=1 _
e i=0 3
050F 000 TR e i=1

3

0.10 |
0.05 |

| aMC@NLO

2.0_!!!!!!!!

.
[ i P

N
o
T

...............

1.0 E_"i__________::._”._.'."".-..‘,:.-.E.':.]“ ....... ez VE S

0.7F |

?:2-...:....:1\1..:.:....:....:....:....:.!-.a.-},_:; 92_Rat1<l)overlN

1.2 3 . -

1.0 %*W*W@@aﬁ “““ i i Y
: 1 o8}

0-8¢ (uq=30 GeV) ]
050 076 100 195 150 175 200 225 0.50 0.75 1.00 1.25 150 1.75 200 2.25
T T T (@I logo(dg/[GeV])

1°g1o(d1/[GeV])

- e —

> Alpgen x 1.5 (,u,q=30 G?V)

I..I...I...A.].Pg.e.n..l...

¢ Differential jet rates for 1->0 and 2->1
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FXFX MERGING: HIGGS BOSON

PRODUCTION
RF & Frixione, 2012

i IR IR I IR I I I
pp—>H@LHCBTeV1npb/b1n:

pq=50 GeV ——N=2 }

T ]
pp » H @ LHC 8 TeV in pb/bin ]

1,00 4q=50 GeV —— N=2 _| 100
o 3 i=0

T e

0.50 i ]
i 11071

0.10
0.05 f

{107 & o TR T A

s |
" aMC@NLO : ] F i
2.0__:::.,::::,:_:.::,::::,:::.,::.:.,::::,.::::,::_ ) e ———

' bog
- .- LY -

oo % oG :
o bog _ jon -4 oo oog R i e T Po0o¢

Sttt il St Ry LU - -teat boooy ccooooooaisoooon SRt PR | oo T e

. 5 . om0 o o RRPRR R - . g e B Tt oS oo
0 o - L i .
- - = eeo= -d

0.7 T e 1 ovr el The

?2-...|....|....|....|....|....|....| il e P LY : : n n n o N £
¢ 3 I I I I I I I I Kk o ——t —t—t—t T —r—tt —t—tt —t—tt —t—tt —t—t—t —+t +——
“* I Ratio over N=2: Hq=30 GeV ==~ =70 GeV ?2 F Ratio over N=2: 1o=30 GeV E
1.2 F 1 12} ¢ 3
1.0 59‘9%99'&9+99%99‘9%9MW%M 1.0 [eoor o000 0T B0 0 0a B 66 0ta o 0 o0 il —u -a_ém--j

[l I,

0.8F = a2
. o N=1 e “-o- jug=70 GeV  —o— N=1 _

050 0.75 1.00 125 1560 1.76 2.00 2.25 050 0.75 1.00 125 150 1.75 2.00 2.25
logyo(d,/[GeV]) log,0(d>/[GeV])

Al

% Differential jet rates

% Matching up to 2 jets at NLO

Al

% Results very much consistent with matching up to 1 jet at NLO
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In the tail of the pT spectrum,
there are large theoretical
uncertainties. This 1s no surprise!
Here the NLO calculation has
actually only LO accuracy,
because there must be a hard
parton/jet recoiling against the 4-
lepton system.

Can we include the NLO corrections to

4 leptons + 1 (hard) jet here?
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CONCLUSIONS

A

#¢ In the last couple of years the accuracy of event generation has greatly
improved, and full automation has been achieved at NLLO accuracy

A

¢ A lot of freedom 1n tuning has been replaced by accurate theory
descriptions:

¢ More predictive power

wy

Al

Better control on uncertainties

AU

% Greater trust in the measurements

2

% The only public tool that can generate events at NLO accuracy (in QCD)

for any process in the SM (or simple extensions) 1s the aMC@NLO project. It
1s only limited in CPU time available

¢ Latest developments include the FxFx merging, which allows for the
combination of various multiplicity matrix elements at NLLO into a single
inclusive sample
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