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Mixings

• So far our model has the following form:

• In many BSM models the new fields are not mass 
eigenstates, but they mix, e.g.

• The gauge and mass eigenstates are then related via some 
unitary rotation,
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Mixings
• FeynRules offers the possibility to write the Lagrangian in 

terms of the gauge eigenstates, and let Mathematica 
perform the rotation.

• N.B.: Right now FeynRules does not diagoanlize the mass 
matrix for you! The diagonalization has to be performed 
by the user.

• For small mixing matrices, this can simply be done in 
Mathematica.

• For larger matrices, need to use some external numerical 
code.
➡ See tomorrow’s lecture.



Mixings
• The mixing matrix is declared as a parameter:

M$Parameter = {
   ...

    UU == {
             ComplexParameter -> True,
             Unitary -> True
	        Indices  -> {Index[Scalar], Index[Scalar]},
             Value     -> { UU[1,1]  ->  ...,
                                    UU[1,2]  ->  ...,
                                     ...}
       }
    ...
};



Mixings
• The mass eigenstates are declared as normal particles

M$ClassesDescription = {
    ....
    S[11] == {
             ClassName        -> PP,
             ClassMembers -> {PP1,PP1},
             SelfConjugate   -> False,
	        Indices               -> {Index[Scalar], Index[Gluon]},
             FlavorIndex      -> Scalar,
             Mass                   -> {{MP1, ...},  {MP2, ...}}
       }
     ...
};



Mixings
• The gauge eigenstates are declared in a similar way

M$ClassesDescription = {
    S[1] == {
             ClassName          -> phi,
             ClassMembers   -> {phi1,phi2},
             SelfConjugate    -> False,
	        Indices                -> {Index[Scalar], Index[Gluon]},
             FlavorIndex      -> Scalar,
             Mass                    -> {MS, 100}
             Unphysical         -> True,
             Definitions -> {phi[i_, a_] :> Module[{j}, UU[i,j] PP[j,a]]}
       }
};



Extending existing 
implementations



Extending the SM
• So far we have only considered our model standalone.
• For LHC phenomenology, one usually wants a BSM 

model that is an extension of the SM.
• FeynRules offers the possibility to start form the SM 

model, and to add/change/remove particles and operators.
• For this, it is enough to load our new model together with 

the SM implementation:

LoadModel[ “SM.fr“, “Phi_4_Gauged“ ];

N.B.: In the SM implementation, the gluon and the QCD 
gauge group are already defined, so no need to redefine them.

• Note that the ‘parent model’ should always be loaded first 
in order to ensure that everything is set up correctly.



Other available models

• The same procedure can be used to extend any other 
models.

• Many models can be downloaded from the FeynRules 
web page, and can serve as a start to implement new 
models (http://feynrules.irmp.ucl.ac.be/).

➡ SM (+ extensions: 4th generation, diquarks, See-saw...).

➡ MSSM, NMSSM, RPV-MSSM.

➡ Extra dimensions: UED, LED, Higgsless, HEIDI.

➡ Minimal walking Technicolor.

http://feynrules.irmp.ucl.ac.be
http://feynrules.irmp.ucl.ac.be
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Complicated models

• So far we have only discussed how to implement very 
general models, and slight variations thereof by starting 
from a ‘parent model’.

• For many phenomenological applications this is an 
overkill, as one is very often only interested in a very 
restricted scenario that serves as a benchmark for 
phenomenological studies.
➡ Example: We are only interested in models with 

massless leptons, and without flavor mixing.
• In pratise, these restricted models have the advantage that 

the number of vertices is much less, which can reduce 
considerably the run time of the MC codes.
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Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example: MSSM
105 parameters

CMSSM
mSuGra

5 parameters
MFV-MSSM



Model Restrictions

• In phenomenological applications one generally does not 
need the full model, but only a subset.

• Keeping the full model is ok, but it might make the MC 
unnecessarily slow.
➡ Example: for generic CKM, lots of flavor-violating 

vertices, that lead to diagrams that are numerically 
subleading.

• We want a way to get rid of the ‘undesired’ vertices!



Model Restrictions

• Restriction files allow to achieve this by using simple 
Mathematica replacement rules.

M$Restrictions = {
            CKM[i_,i_] -> 1,
            CKM[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j),
}

• If one or more restrictions are loaded after loading a 
model file, the corresponding replacement rules are 
applied at runtime when computing the vertices.

LoadRestriction[ “DiagonalCKM.rst“ ];



Towards LHC phenomenology:
The FeynRules interfaces



The Interfaces

• FeynRules contains interfaces to the following codes:
➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph

➡ Sherpa

➡ Whizard / Omega

• Each interface produces a set of text files that can be read 
into the existing generators.

• So far we have only discussed how to implement a model 
into FeynRules and how to obtained the vertices.

• Next we want to do phenomenology!



Running Interfaces

• The interfaces are called via the Mathematica commands

WriteCHOutput[ LSM, L ];                  (* CalcHep *)
WriteFeynArtsOutput[ LSM, L ];      (* FeynArts/FormCalc *)
WriteMGOutput[ LSM, L ];                 (*MadGraph 4 *)
WriteUFO[ LSM, L ];                             (* UFO / MadGraph 5 *)
WriteSHOutput[ LSM, L ];                  (* Sherpa *)
WriteWOOutput[ LSM, L];                  (* Whizard / Omega *)

• The files produced by FeynRules can then be processed 
by the matrix element generators.
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Running Interfaces
• It is important to note that, even though FeynRules can 

obtain the vertices of very large classes of models, not 
every model can be output to every MC generator!

• Some interfaces to some generators have the color and / or 
Lorentz structures hardwired.

N.B.: These limitations apply to the FeynRules interfaces. 
Some generators allow for more general structures that are 
however not implemented into the interface.

Spins Lorentz Color
CalcHep 0,1/2,1,2 ~all 1,3,8 (limited)
FeynArts 0,1/2,1 all all

MadGraph 0,1/2,1,3/2,2 all 1,3,6,8
Sherpa 0,1/2,1 SM - like 1,3,8

Whizard 0,1/2,1,2 MSSM - like 1,3,8



FeynRules MC conventions
• FeynRules itself does not make any assumption on the 

model, but its core is completely agnostic of any structure, 
like QCD, QED, etc.

➡ Color and electric charges of particles.

➡ Color structures of vertices.

➡ Strong and weak coupling constant.

➡ etc.

• In order for the MC generator to function properly, they 
must be able to identify in each new model some standard 
information, like for example

• Roughly speaking, each MC code needs the information 
on the SM parameters to be provided in a specific format.
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FeynRules MC conventions
• As a consequence, even though the FeynRules core is 

completely agnostic, the SM parameters must be entered 
following specific conventions.

➡ Fundamental representation matrices: T
➡ Structure constants: f
➡ Strong coupling: gs

• The SM gauge groups must be defined in the same way as 
in the SM implementation, e.g., for QCD,

• The SM input parameters should correspond to the 
SMINPUTS of the SUSY Les Houches Accord:

MZ , ↵s, ↵
�1
EW , GF



From FeynRules to MadGraph
• The FeynRules interface for MadGraph is the so called 

UFO interface.

• The UFO interface can be called via
[See tomorrow’s lecture]

WriteUFO[ L ];                          



From FeynRules to MadGraph
• The FeynRules interface for MadGraph is the so called 

UFO interface.

• The UFO interface can be called via

• The interface has a certain number of options, in 
particular all the options of FeynmanRules[ ] are 
allowed.

[See tomorrow’s lecture]

WriteUFO[ L ];                          

➡ Input: a list of vertices. Allows to input vertices directly 
rather than computing them from a Lagrangian.

➡ Output: name of the output directory, which is at the 
same time the name by which the model will be called in 
MadGraph.



From FeynRules to MadGraph
• Running the interface produces a set of text files that 

collectively go under name UFO (= Universal FeynRules 
Output).

• The content of the individual files will be explained in 
tomorrows lecture.

• For now, we consider a UFO a black box that contains 
the information about a BSM model in some specific 
format that can be understood by MadGraph.

• UFO is the default MadGraph model format, and so 
every FeynRules model can be dealt with in exactly the 
same way as all the built-in MadGraph models.



From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/ 
subdirectory of MadGraph, and the new model is ready to 
use!

$ 
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From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/ 
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• While FeynRules provides a high level of automation, it is 

very important to make sure that a model implementation 
is correct!

• There are various checks that can be made at various 
levels of the chain FR > UFO > MG5.



Checking a model
• While FeynRules provides a high level of automation, it is 

very important to make sure that a model implementation 
is correct!

• There are various checks that can be made at various 
levels of the chain FR > UFO > MG5.

• As a first check, FeynRules allows to check that a 
Lagrangian is hermitian

CheckHermiticity[ L ]

• FeynRules then computes the vertices of             . 
• The list of non-zero vertices is printed to screen.

L� L†

N.B.: Some of these vertices might still be zero, because 
Mathematica is unable to detect that expressions like   
                         vanish.                             
 
T aT a � T bT b



Checking a model

• Gauge invariance cannot be checked directly in FeynRules.

• MadGraph 5 offers the possibility to check that a matrix 
element vanishes if an external gluon is replaced by its 
momentum.

mg5> check gauge <process>

• In addition MadGraph allows to implement a model both 
in unitary and in Feynman gauge, so gauge invariance can 
be checked by comparing results in different gauges.



Checking a model

• However, we can even do better!

• As FeynRules allows to output a model to various 
different matrix element generators, we can compare 
results across different generators:
➡ Gauge invariance.

➡ Factors of i.

➡ Different ways of dealing with unitarity 
cancellations.

➡ Different ways of dealing with color.

• This comparison process can easily be automatized!



Web validation











Summary

• Implementing a New Physics into a matrix element 
generator can be a tedious and error-prone task.

• FeynRules tries to remedy this situation by providing a 
Mathematica framework where a new model can be 
implemented starting directly from the Lagrangian.

• There are no restrictions on the model, except
➡ Lorentz and gauge invariance

➡ Locality

➡ Spins: 0, 1/2, 1, 2, ghosts  (3/2 to come in the future)

• Try it out on your favorite model!
      http://feynrules.irmp.ucl.ac.be/

http://feynrules.irmp.ucl.ac.be
http://feynrules.irmp.ucl.ac.be

