
Getting Started:
Mixings

Mixings

• So far our model has the following form:

L = Dµ�
†
iD

µ�i �m2�†
i�i + �(�†

i�i)
2

Mixings

• So far our model has the following form:

• In many BSM models the new fields are not mass
eigenstates, but they mix, e.g.

• The gauge and mass eigenstates are then related via some
unitary rotation,

L = Dµ�
†
iD

µ�i �m2�†
i�i + �(�†

i�i)
2

L = Dµ�
†
iD

µ�i �m2�†
i�i +�(�†

i�i)
2�m2

12(�
†
1�2 + �†

2�1)

✓
�1

�2

◆
= U

✓
�1

�2

◆

Mixings
• FeynRules offers the possibility to write the Lagrangian in

terms of the gauge eigenstates, and let Mathematica
perform the rotation.

• N.B.: Right now FeynRules does not diagoanlize the mass
matrix for you! The diagonalization has to be performed
by the user.

• For small mixing matrices, this can simply be done in
Mathematica.

• For larger matrices, need to use some external numerical
code.
➡ See tomorrow’s lecture.

Mixings
• The mixing matrix is declared as a parameter:

M$Parameter = {
 ...

 UU == {
 ComplexParameter -> True,
 Unitary -> True
	 Indices -> {Index[Scalar], Index[Scalar]},
 Value -> { UU[1,1] -> ...,
 UU[1,2] -> ...,
 ...}
 }
 ...
};

Mixings
• The mass eigenstates are declared as normal particles

M$ClassesDescription = {

 S[11] == {
 ClassName -> PP,
 ClassMembers -> {PP1,PP1},
 SelfConjugate -> False,
	 Indices -> {Index[Scalar], Index[Gluon]},
 FlavorIndex -> Scalar,
 Mass -> {{MP1, ...}, {MP2, ...}}
 }
 ...
};

Mixings
• The gauge eigenstates are declared in a similar way

M$ClassesDescription = {
 S[1] == {
 ClassName -> phi,
 ClassMembers -> {phi1,phi2},
 SelfConjugate -> False,
	 Indices -> {Index[Scalar], Index[Gluon]},
 FlavorIndex -> Scalar,
 Mass -> {MS, 100}
 Unphysical -> True,
 Definitions -> {phi[i_, a_] :> Module[{j}, UU[i,j] PP[j,a]]}
 }
};

Extending existing
implementations

Extending the SM
• So far we have only considered our model standalone.
• For LHC phenomenology, one usually wants a BSM

model that is an extension of the SM.
• FeynRules offers the possibility to start form the SM

model, and to add/change/remove particles and operators.
• For this, it is enough to load our new model together with

the SM implementation:

LoadModel[“SM.fr“, “Phi_4_Gauged“];

N.B.: In the SM implementation, the gluon and the QCD
gauge group are already defined, so no need to redefine them.

• Note that the ‘parent model’ should always be loaded first
in order to ensure that everything is set up correctly.

Other available models

• The same procedure can be used to extend any other
models.

• Many models can be downloaded from the FeynRules
web page, and can serve as a start to implement new
models (http://feynrules.irmp.ucl.ac.be/).

➡ SM (+ extensions: 4th generation, diquarks, See-saw...).

➡ MSSM, NMSSM, RPV-MSSM.

➡ Extra dimensions: UED, LED, Higgsless, HEIDI.

➡ Minimal walking Technicolor.

http://feynrules.irmp.ucl.ac.be
http://feynrules.irmp.ucl.ac.be

Model database

Model database

Model database

Model database

Model database

Complicated models

• So far we have only discussed how to implement very
general models, and slight variations thereof by starting
from a ‘parent model’.

• For many phenomenological applications this is an
overkill, as one is very often only interested in a very
restricted scenario that serves as a benchmark for
phenomenological studies.
➡ Example: We are only interested in models with

massless leptons, and without flavor mixing.
• In pratise, these restricted models have the advantage that

the number of vertices is much less, which can reduce
considerably the run time of the MC codes.

Model Restrictions

• A model restriction is a model that is obtained from a bigger
model by putting some of its parameters to zero (or 1,
etc.).

• Example:

Model Restrictions

• A model restriction is a model that is obtained from a bigger
model by putting some of its parameters to zero (or 1,
etc.).

• Example:
SM

Model Restrictions

• A model restriction is a model that is obtained from a bigger
model by putting some of its parameters to zero (or 1,
etc.).

• Example:
SM

SM
where e, mu, u,d,s,c

masses are zero

Model Restrictions

• A model restriction is a model that is obtained from a bigger
model by putting some of its parameters to zero (or 1,
etc.).

• Example:
SM

SM
where e, mu, u,d,s,c

masses are zero

SM
with diagonal CKM

Model Restrictions

• A model restriction is a model that is obtained from a bigger
model by putting some of its parameters to zero (or 1,
etc.).

• Example:
SM

SM
where e, mu, u,d,s,c

masses are zero

SM
with diagonal CKM

SM
where e, mu, u,d,s,c
masses are zero and

diagonal CKM

Model Restrictions

• A model restriction is a model that is obtained from a bigger
model by putting some of its parameters to zero (or 1,
etc.).

• Example:

Model Restrictions

• A model restriction is a model that is obtained from a bigger
model by putting some of its parameters to zero (or 1,
etc.).

• Example: MSSM
105 parameters

Model Restrictions

• A model restriction is a model that is obtained from a bigger
model by putting some of its parameters to zero (or 1,
etc.).

• Example: MSSM
105 parameters

CMSSM
mSuGra

5 parameters

Model Restrictions

• A model restriction is a model that is obtained from a bigger
model by putting some of its parameters to zero (or 1,
etc.).

• Example: MSSM
105 parameters

CMSSM
mSuGra

5 parameters
MFV-MSSM

Model Restrictions

• In phenomenological applications one generally does not
need the full model, but only a subset.

• Keeping the full model is ok, but it might make the MC
unnecessarily slow.
➡ Example: for generic CKM, lots of flavor-violating

vertices, that lead to diagrams that are numerically
subleading.

• We want a way to get rid of the ‘undesired’ vertices!

Model Restrictions

• Restriction files allow to achieve this by using simple
Mathematica replacement rules.

M$Restrictions = {
 CKM[i_,i_] -> 1,
 CKM[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j),
}

• If one or more restrictions are loaded after loading a
model file, the corresponding replacement rules are
applied at runtime when computing the vertices.

LoadRestriction[“DiagonalCKM.rst“];

Towards LHC phenomenology:
The FeynRules interfaces

The Interfaces

• FeynRules contains interfaces to the following codes:
➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph

➡ Sherpa

➡ Whizard / Omega

• Each interface produces a set of text files that can be read
into the existing generators.

• So far we have only discussed how to implement a model
into FeynRules and how to obtained the vertices.

• Next we want to do phenomenology!

Running Interfaces

• The interfaces are called via the Mathematica commands

WriteCHOutput[LSM, L]; (* CalcHep *)
WriteFeynArtsOutput[LSM, L]; (* FeynArts/FormCalc *)
WriteMGOutput[LSM, L]; (*MadGraph 4 *)
WriteUFO[LSM, L]; (* UFO / MadGraph 5 *)
WriteSHOutput[LSM, L]; (* Sherpa *)
WriteWOOutput[LSM, L]; (* Whizard / Omega *)

• The files produced by FeynRules can then be processed
by the matrix element generators.

page 1/1

Diagrams made by MadGraph5

t~

6

t 5
phis1~

t~
4

t

3

phis1

g

1

g

2

 diagram 1 QED=0, QCD=6

g

1

g

2

g

t~

6

t 5
phis1~

t~
4

t

3

phis1

 diagram 2 QED=0, QCD=6

t~
6

t

5

phis1~

t~

4

t 3
phis1

g

1

phis1~

g

2

 diagram 3 QED=0, QCD=6

t~

6

t 5
phis1~

g

1

phis1

t~
4

t

3

phis1

g

2

 diagram 4 QED=0, QCD=6

Running Interfaces
• It is important to note that, even though FeynRules can

obtain the vertices of very large classes of models, not
every model can be output to every MC generator!

• Some interfaces to some generators have the color and / or
Lorentz structures hardwired.

N.B.: These limitations apply to the FeynRules interfaces.
Some generators allow for more general structures that are
however not implemented into the interface.

Spins Lorentz Color
CalcHep 0,1/2,1,2 ~all 1,3,8 (limited)
FeynArts 0,1/2,1 all all

MadGraph 0,1/2,1,3/2,2 all 1,3,6,8
Sherpa 0,1/2,1 SM - like 1,3,8

Whizard 0,1/2,1,2 MSSM - like 1,3,8

FeynRules MC conventions
• FeynRules itself does not make any assumption on the

model, but its core is completely agnostic of any structure,
like QCD, QED, etc.

➡ Color and electric charges of particles.

➡ Color structures of vertices.

➡ Strong and weak coupling constant.

➡ etc.

• In order for the MC generator to function properly, they
must be able to identify in each new model some standard
information, like for example

• Roughly speaking, each MC code needs the information
on the SM parameters to be provided in a specific format.

FeynRules MC conventions
• As a consequence, even though the FeynRules core is

completely agnostic, the SM parameters must be entered
following specific conventions.

FeynRules MC conventions
• As a consequence, even though the FeynRules core is

completely agnostic, the SM parameters must be entered
following specific conventions.

➡ Fundamental representation matrices: T
➡ Structure constants: f
➡ Strong coupling: gs

• The SM gauge groups must be defined in the same way as
in the SM implementation, e.g., for QCD,

FeynRules MC conventions
• As a consequence, even though the FeynRules core is

completely agnostic, the SM parameters must be entered
following specific conventions.

➡ Fundamental representation matrices: T
➡ Structure constants: f
➡ Strong coupling: gs

• The SM gauge groups must be defined in the same way as
in the SM implementation, e.g., for QCD,

• The SM input parameters should correspond to the
SMINPUTS of the SUSY Les Houches Accord:

MZ , ↵s, ↵
�1
EW , GF

From FeynRules to MadGraph
• The FeynRules interface for MadGraph is the so called

UFO interface.

• The UFO interface can be called via
[See tomorrow’s lecture]

WriteUFO[L];

From FeynRules to MadGraph
• The FeynRules interface for MadGraph is the so called

UFO interface.

• The UFO interface can be called via

• The interface has a certain number of options, in
particular all the options of FeynmanRules[] are
allowed.

[See tomorrow’s lecture]

WriteUFO[L];

➡ Input: a list of vertices. Allows to input vertices directly
rather than computing them from a Lagrangian.

➡ Output: name of the output directory, which is at the
same time the name by which the model will be called in
MadGraph.

From FeynRules to MadGraph
• Running the interface produces a set of text files that

collectively go under name UFO (= Universal FeynRules
Output).

• The content of the individual files will be explained in
tomorrows lecture.

• For now, we consider a UFO a black box that contains
the information about a BSM model in some specific
format that can be understood by MadGraph.

• UFO is the default MadGraph model format, and so
every FeynRules model can be dealt with in exactly the
same way as all the built-in MadGraph models.

From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/
subdirectory of MadGraph, and the new model is ready to
use!

$

From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/
subdirectory of MadGraph, and the new model is ready to
use!

./bin/mg5$

From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/
subdirectory of MadGraph, and the new model is ready to
use!

mg5>

From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/
subdirectory of MadGraph, and the new model is ready to
use!

import model Phi_4_Theorymg5>

From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/
subdirectory of MadGraph, and the new model is ready to
use!

import model Phi_4_Theorymg5>

Kept definitions of multiparticles l- / j / vl / l+ / p / vl~
unchanged

INFO: Change particles name to pass to MG5 convention

From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/
subdirectory of MadGraph, and the new model is ready to
use!

import model Phi_4_Theorymg5>

Kept definitions of multiparticles l- / j / vl / l+ / p / vl~
unchanged

INFO: Change particles name to pass to MG5 convention

From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/
subdirectory of MadGraph, and the new model is ready to
use!

import model Phi_4_Theorymg5>

Kept definitions of multiparticles l- / j / vl / l+ / p / vl~
unchanged

• MadGraph overwrites some of the SM particle names to
its own nomenclature.

• To prevent this, use the modelname option.

INFO: Change particles name to pass to MG5 convention

From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/
subdirectory of MadGraph, and the new model is ready to
use!

import model Phi_4_Theorymg5>

• MadGraph overwrites some of the SM particle names to
its own nomenclature.

• To prevent this, use the modelname option.

From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/
subdirectory of MadGraph, and the new model is ready to
use!

import model Phi_4_Theorymg5>

• MadGraph overwrites some of the SM particle names to
its own nomenclature.

• To prevent this, use the modelname option.

--modelname

From FeynRules to MadGraph
• The output of FeynRules is a directory.

• It is enough to copy this directory into the /models/
subdirectory of MadGraph, and the new model is ready to
use!

import model Phi_4_Theorymg5>

• MadGraph overwrites some of the SM particle names to
its own nomenclature.

• To prevent this, use the modelname option.

--modelname

Kept definitions of multiparticles l- / j / vl / l+ / p / vl~
unchanged

Checking a model

Checking a model
• While FeynRules provides a high level of automation, it is

very important to make sure that a model implementation
is correct!

• There are various checks that can be made at various
levels of the chain FR > UFO > MG5.

Checking a model
• While FeynRules provides a high level of automation, it is

very important to make sure that a model implementation
is correct!

• There are various checks that can be made at various
levels of the chain FR > UFO > MG5.

• As a first check, FeynRules allows to check that a
Lagrangian is hermitian

CheckHermiticity[L]

• FeynRules then computes the vertices of .
• The list of non-zero vertices is printed to screen.

L� L†

N.B.: Some of these vertices might still be zero, because
Mathematica is unable to detect that expressions like
 vanish.

T aT a � T bT b

Checking a model

• Gauge invariance cannot be checked directly in FeynRules.

• MadGraph 5 offers the possibility to check that a matrix
element vanishes if an external gluon is replaced by its
momentum.

mg5> check gauge <process>

• In addition MadGraph allows to implement a model both
in unitary and in Feynman gauge, so gauge invariance can
be checked by comparing results in different gauges.

Checking a model

• However, we can even do better!

• As FeynRules allows to output a model to various
different matrix element generators, we can compare
results across different generators:
➡ Gauge invariance.

➡ Factors of i.

➡ Different ways of dealing with unitarity
cancellations.

➡ Different ways of dealing with color.

• This comparison process can easily be automatized!

Web validation

Summary

• Implementing a New Physics into a matrix element
generator can be a tedious and error-prone task.

• FeynRules tries to remedy this situation by providing a
Mathematica framework where a new model can be
implemented starting directly from the Lagrangian.

• There are no restrictions on the model, except
➡ Lorentz and gauge invariance

➡ Locality

➡ Spins: 0, 1/2, 1, 2, ghosts (3/2 to come in the future)

• Try it out on your favorite model!
 http://feynrules.irmp.ucl.ac.be/

http://feynrules.irmp.ucl.ac.be
http://feynrules.irmp.ucl.ac.be

