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KIAS School on MadGraph for LHC Physics (Oct/24-29 2011)

Matrix Elements + Parton

Showers Grisha Kivilin/KEK

Literature for the third lecture:
S. Catani, F. Krauss, B.R. Webber, R. Kuhn, , JHEP

11 (2001) 063
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Linax
already clustered into a single preudoparticles is called a jet.
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i.e., all distances between pseudoparticles
are grater than ;... A bunch of particles

Jets



Slide 3 of 27

3|110/27/11
Single resolved splitting
Zonax[ ] 1 | / | The following statements are equivalent:
\ :

| \ § /4 | 1. There is only one (the hardest) splitting with (kf) 5 > Tini
z ||\ o ,/ 777777777 [ 2. The second hardest splitting has (£7)5 < Tini
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Single resolved splitting
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The following statements are equivalent:
1. There is only one (the hardest) splitting with (£7), > Tin

2. The second hardest splitting has (47), < Tin

2?7

dt
x — dz P (a., 2)0O (kf = Tini) k7 = min {ZZ, 22} t

x A (2* €| Tini)
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Single resolved splitting

Linax The following statements are equivalent:

1. There is only one (the hardest) splitting with (&7), > Tin;

2. The second hardest splitting has (47), < Tin

‘ Aq(thax | Tini)
| || Aq(t | Tini)

dt
x — dz P (a., 2)0O (kf = Tini) k7 = min {ZZ, EZ} t

/ x Aq(z2 z | Tini)




Single resolved splitting
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The following statements are equivalent:

1. There is only one (the hardest) splitting with (&7), > Tin;

2. The second hardest splitting has (47), < Tin

A (Z Tini) dt
g% “max | Tin x dz Plas, 2) ®(A/f - Tl'm') X A?(Zz 2 | T""‘")
Aq(t | Tini) r

drt
~ Aq(tmax | Tini) X 7 dz FP(ag, 2) ®(kf - Tl'm')

What is about total probability?
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Single resolved splitting
Lonax a, i | The following statements are equivalent:
| 'x 1 ;/ | g 9
| H"-\ /| | 1. There is only one (the hardest) splitting with (£7), > Tin
£l I\\ / b 2. The second hardest splitting has (£7), < Tini
fffffff . ACErrret I ST P 9 =
| \\\‘-i___-"/o |
| 1 [
I | Aq( Z'waax | Tl'm') dt
s 2 47 P O T A2 2 | ing
| d¢
\ ! ~ Aq( Linax | Tini) X 7 dz FP(ag, 2) ®(A/f - Tim')
o I
o Z 1

z‘max d t 1 ZLW\QX
Rs(Tin) = Aq(twmx | Tini) X f - f dz FP(ag, z) G(kf - Tim') ~ Aq( Linax | Tini) X f dr rq(twmx | 7)
(0]

o

Tini

1 7 3
rq(T|r)=a‘(T)cF—(l ———)
2 T T 2
d R
/(T5)= 5(T3)

T3
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Single resolved splitting
Lonax a, i | The following statements are equivalent:
| 'x 1 ;/ | g 9
| H"-\ /| | 1. There is only one (the hardest) splitting with (£7), > Tin
£l I\\ / b 2. The second hardest splitting has (£7), < Tini
fffffff . ACErrret I ST P 9 =
| \\\‘-i___-"/o |
| 1 [
I | Aq( Z'waax | Tl'm') dt
s 2 47 P O T A2 2 | ing
| d¢
\ ! ~ Aq( Linax | Tini) X 7 dz FP(ag, 2) ®(A/f - Tim')
o I
o Z 1

z‘max d t 1 ZLW\QX
Rs(Tin) = Aq(twmx | Tini) X f - f dz FP(ag, z) G(kf - Tim') ~ Aq( Linax | Tini) X f dr rq(twmx | 7)
(0]

o

Tini

Cr 1 7 3
T A7 |7 = @50 F—(l ———)
2 T T 2
£lrs) = 4 R5(75) Actually it is not correct because we considered only one rod.

T3
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Single resolved splitting

\/

AyZ, |Tl'm') dt -
g\ “max ) .

dz Plag, 2)O(KT = Tin) x Do 27 2 | Tini) % A (27 £ Ti
Ay (Z | Ting) S (@5, 2)O(KT = Tini) x D[ 2™ | Tini) x A (27 | Ti)

dt
~ Aq( Lonax | Tini) X 7 dz P(as, 2) ®(kf - Timi) X Ag(kf | Timi)

Erna
Rs(T3) ~ Ay(ZLpax | T5) % f AT T (Cpnax | TV A 4T | 75)

T3
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Double resolved splitting

fonare [T TV |
/ | \ / | ¢ ?
| \\\ e / |
| \\»___F-"/o ! o
|| |I 0
| | o o
'|| .' @) ® -
o i A (ZL |T' ) Z'W\ax
o) g\ bmax | tini
1= =A_( Tin) €X lf drT (¢ T)
© “ * Aq(tmax“-imf) 7 W\aX| " P Tini 7 W\aX|
No resolved splittings = Ay (Zonax | Tini)
twmx
One resolved splitting +8(Zmax | Tini) o AT (Lonax | 7)
R Y j— tVV\aX 2
Two resolved splittings +A (Zpnax | Tini) Zl f drl q(l‘maxlf)]
’ . :L tmax 3
Three resolved splittings +A (Fnar | Tind) ;l f dTrq(l‘maxW] 4o
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Double resolved splitting

Lonax | | / |
| -

| | o
'|| .' ® @ °
o e A (ZL |T' ) Liax
O g\ bmax | Tini
1= =A_( Tin) €X lf drT (¢ T)
© “ * Aq (Zmax | Tini) 7 | " P Tini 7 |
No resolved splittings = Ay (Zonax | Tini)
tVV\aX
One resolved splitting +A(Zmax | Tin) o AT y(Zmax | T)
o L[ (Tona 2
Two resolved SP(ltth\gS +Aq(tmax | Tini) E lf dr rq( Lonax | 7')]
. . :L tmax 3

Three resolved splittings +A (Fnar | Tind) ;l f dTrq(tW\axlT)] 4o



Double resolved splitting

Lanax | | \

1
Ra(Tini) = A ( Lonax | Tini) z f

Tini

Z,

+Aq(twmx | Tini) dr Fq(tmax | T) X Ag(T | Tini)

Tini

Z,

+Aq(twmx | Tini) dt Fq(tmax | T) X Ag(T | Tini)

Tini
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dr I Lonax | T) At | Tini) X

Tini

Tini

dT’Fg(T|T’)><Ag(T’|T,-,,\,-)

dt'Te(r|TYxAp(T" | Ting)

12|10/27/11

dr ' ( Lonax | T) Ag(T | Tini)
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Z-99

Two-jet rate

Ro(Tini) = Aq( Cnax | Tini) % Aq(tmax | Tini)

Three-jet rate

Z

Rs(Ting) ~ Z[Aq(twmx | T{'m')]z X f W\axdT Fq( Zynax | T) Ag(T | Tin)

Tini

Four-jet rate
Ra(Tini) = 2 A ( Lonax | Tini) X A Lonax | Tini)

Zonax Ziax

Tini Tini

twmx
T Tini

ini

tVV\ﬂX
+ f dr FQ(ZLW\ax | ) Ay(T | Tini) X f dt'Tr(t | T AT | Tini)

Tini Tini

13|10/27/11
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Renormalization

Linax

‘ Aq(thax | Tini)
| | Aq(t | Tini)

dr
“ dz Plag, 2)0 (kT - Tin) ki =wmin{z*, 27| ¢

! / % A? (Z ¢ | Tl'nl')
o 3 ~— —

o) z 1 g

Actually, it is the expression for the single splitting

probability for a PS generator with cutoff 7,



Renormalization
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PS Gen. 1:

cutoff is 7o,
A(ZL | To)

15|10/27/11
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Renormalization

PS Gen. 2: | | PS Gen. 1:

| cutoff is 1,,
| A(Z | 7o)

cutoff is 1, > 70,
A(Z | Tini)

If we select the nodes with &7 > 1,,; which were generated by Gen 1, then we obtain the same

distributions as those generated by Gen 2.
The objects generated by Gen 2 are exclusive in the sense they are separated at least by the
distance 7., but completely inclusive with respect to all partons closer than 7.

Gen 1 can help us to reveal the exclusive structure of radiation inside the region 1o < k7 < Tj;.
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Renormalization
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k4, is the transverse moment of the node which is the first on the (angular ordered) rod

among resolved ones (A7 > Tin)

Histogram is the result of Gen. 1

Red curve is the result of Gen. 2
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Renormalization

PS Gen. 2: | | PS Gen. 1:

| cutoff is 1,,
| A(Z | 7o)

cutoff is 1, > 70,
A(Z | Tini)

If we select the nodes with &7 > 1,,; which were generated by Gen 1, then we obtain the same
distributions as those generated by Gen 2.

The objects generated by Gen 2 are exclusive in the sense they are separated at least by the
distance 7., but completely inclusive with respect to all partons closer than 7.

Gen 1 can help us to reveal the exclusive structure of radiation inside the region 1o < k7 < Tj;.

By the way, why do we have to use Gen 2?
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Renormalization

PS Gen. 2: | PS Gen. 1:

cutoff is 1, > 70, |

cutoff is 1,,
|
A(Z | Tini)

A(ZL | To)

If we select the nodes with &7 > 1,,; which were generated by Gen 1, then we obtain the same
distributions as those generated by Gen 2.

The objects generated by Gen 2 are exclusive in the sense they are separated at least by the

distance 7., but completely inclusive with respect to all partons closer than 7.

Gen 1 can help us to reveal the exclusive structure of radiation inside the region 1o < k7 < Tj;.

By the way, why do we have to use Gen 2? We don't. Let's replace it by e.g. MadGraph
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Bare particles and Sudakov factor

Three-jet rate

Z

Rs(Tini) = [Aq(thax | Tfm')]2 X f dr2 Fq(thax | 7) Ag(T | Tini)

Tini

Four-jet rate
Ra(Tin) = 2 Ay ( Lnax | Tini) ¥ Aq(tmax | Tini)

thax tVV\aX
X [f dt Fq( Lonax | 7) Ag(T | Ting) X f dr' Fq( Lonax | 7' Ag(T’ | Tini)

ini Tini

Zinax
+f d‘l'rq(tmax|T)Ay(T|Tl-m{-)xde’Fy(T|T’)A\q(‘rl|TI-N-)

Tini Tini

Linax
+ f dt Fq(tmax | T) Ag(T | Ting) X fd‘r‘ [A(t | TYAp(T! | Tin)

ini Tini

20(10/27/11
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Bare particles and Sudakov factor

Three-jet rate

Rs(Tini) = 2T q(thax | 7)

Four-jet rate

Ra(Tin) = 2

X Fq(tmax | 7) Fq(tmax | 7')

+ Fq(tmax | T) rg(T | 7'

+ Fq(tmax | T) [ (T | 7' l

PS approximation of the matrix element squared should be replaced by the exact ME.

LT, 1) =

1 7 3 (n
WO T 2) e S0 2, T2
T

FA7 |7) = as(m) Ny 1
.

2r T T 2n T 2r 3
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Bare particles and Sudakov factor

Three-jet rate

Rs(Tini) = [Aq(thax | Tfn{')]2 A g(T | Tini)

Four-jet rate

Ra(Tini) = Ay Lnax | Tini) ¥ Aq(tmax | Tini)

X Ag(T | Tini) ¥ Ag(T’ | Tini)
+ A 4(T | Tini) X A g(Tl | Tini)
+ A (T | Tin) % Ap(T | Ting)

Exclusive nature of partons generated is taken into account by the Sudakov form factor.

Sudakov form factor is just the product of the Sudakov factors for each parton: Az, tin), where 7, is

(approx.) k7 in the "place of birth" of the parton.

/L;]qgg(twmx) 7, 7! | Tini) = Aq(tmax | Tini) X Aq(tmax | Tini) X Ag(T | Tini) X Ag(TI | Tini)
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Sudakov form factor

Sudakov form factors depend on parton identities

A~
Sudakov form factors do not depend on @o(ogy of branching Nst@— a la gauge invariance

Sudakov form factors depend on the set of nodal values: {z,}

Each splitting can be presented as a "parent — parent+child" processes. The scale 7, S (Z)max

for the child partion, (£)max ~ (47),_, — the value of 4 at the node where the child was born.

/-
Each final-state parton of type "a" yields A,(t, | 7in) contribution to the Sudakov form factor

(except partons which were born in g - g7 splitting)

The factor A,z |1in) accounts for the excluding radiation in the cone of size T and k%- > Tin N

branchings.
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ME reweighting

1. Select parton identities id = (¢, 7, g....) and multiplicity n:
T

k=N _(©)
Zk,id’ O-k,id’

PO, id) =

2. Generate these partons using ME generator, using fixed a((t;,;) - the biggest one.
3. Run kr-clustering algorithm to find t-s: {11 = @, 12, Tz, vy Tpoa) > Tini
4. Identify each parton j with its "place of birth" z ;

5. Calculate the Sudakov form factor as a product of Sudakov factors:
Futes )= [ o
5

6. Calculate the total weight:

A (12) ¥(T3) .. A (T)_1)

[as(tin)] >

M/id(TZ) oy Tpo1) = Ffd(Tz) vy Tyt

7. Generate random number r € [0, 1]. If r < Wy, then accept the configuration, else goto step 1
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Vetoed (truncated) Parton Showers

After generating partons with ME-generator, one should "dress" these partons with PS.

‘ o Ill" ® iﬁ |
° ]IL . .f/ o]
| \ 0 / |
\ /
| AN ®/ o |
| N !

For each parton j we know 1, =47 in its "place of birth".
Generate "vetoed" PS for each parton with initial scale 7,

"Vetoed" means that if we generate splitting (¢, z) and min{z*, 2%} ¢ > 1;,; then reload your

PS gun in this point, but don't append the splitting (¢, z) to your branching tree.
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Parton shower approximation (for the red points) is the singular part of the total ME squared.

This singular part is smoothly merged with the vetoed parton shower.

Only the nonsingular (or singular but beyond the NLL level) parts have discontinuities.

Inclusive mode helps to overcome difficulties with the finite multiplicity available for ME generator
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Summary of the third lecture

The total phase space should be clearly separated by the scale t;,; into domains of

applicability of ME and PS generators.
Such separation also helps to avoid double counting.

Smoothness of the merging is guaranteed by: on the one side ME modification by

Sudakov form factors, on the other side, by implementing "vetoed" PS.

ME gen. tends to generate more configurations near ME singularities (although they
are isolated by t;,;), but these configurations are suppressed by Sudakov factors. Thus
CKKW procedure is rather effective. MLM procedure looks less effective (because

Sudakov f£.f. are calculated on the fly) but more universal.



