Slide 1 of 27

1 10/27/11

KIAS School on MadGraph for LHC Physics (Oct/24-29 2011)

Matrix Elements + Parton

Showers Grisha Kirilin/KEK

Literature for the third lecture:

■ S. Catani, F. Krauss, B.R. Webber, R. Kuhn, QCD matrix elements + parton showers, JHEP 11 (2001) 063 Slide 2 of 27

2 10/27/11

Jets

if we stop custering algorithm $y_{ij} > \tau_{ini} / Q^2$, i.e., all distances between pseudoparticles are grater than τ_{ini} . A bunch of particles already clustered into a single preudoparticles is called a **jet**. Slide 3 of 27

Single resolved splitting

The following statements are equivalent:

1. There is only one (the hardest) splitting with $(k_{\perp}^2)_2 > \tau_{ini}$

3 10/27/11

2. The second hardest splitting has $(k_{\perp}^2)_3 < \tau_{ini}$

Slide 4 of 27

4 10/27/11

Single resolved splitting

Slide 5 of 27

5 10/27/11

Single resolved splitting

Slide 6 of 27

Single resolved splitting

The following statements are equivalent:

1. There is only one (the hardest) splitting with $(k_{\perp}^2)_2 > \tau_{ini}$

6 10/27/11

2. The second hardest splitting has $(k_{\perp}^2)_3 < \tau_{ini}$

$$\frac{\Delta_{q}(t_{\max} \mid \tau_{ini})}{\Delta_{q}(t \mid \tau_{ini})} \times \frac{dt}{t} dz P(\alpha_{s}, z) \Theta(k_{\perp}^{2} - \tau_{ini}) \times \Delta_{q}(z^{2} t \mid \tau_{ini})$$
$$\approx \Delta_{q}(t_{\max} \mid \tau_{ini}) \times \frac{dt}{t} dz P(\alpha_{s}, z) \Theta(k_{\perp}^{2} - \tau_{ini})$$

What is about total probability?

Slide 7 of 27

Single resolved splitting

The following statements are equivalent:

1. There is only one (the hardest) splitting with $(k_{\perp}^2)_2 > \tau_{ini}$

7 10/27/11

2. The second hardest splitting has $(k_{\perp}^2)_3 < \tau_{ini}$

$$\frac{\Delta_{q}(t_{\max} \mid \tau_{ini})}{\Delta_{q}(t \mid \tau_{ini})} \times \frac{dt}{t} dz P(\alpha_{s}, z) \Theta(k_{\perp}^{2} - \tau_{ini}) \times \Delta_{q}(z^{2} t \mid \tau_{ini})$$
$$\approx \Delta_{q}(t_{\max} \mid \tau_{ini}) \times \frac{dt}{t} dz P(\alpha_{s}, z) \Theta(k_{\perp}^{2} - \tau_{ini})$$

$$\mathcal{R}_{3}(\tau_{ini}) = \Delta_{q}(t_{\max} \mid \tau_{ini}) \times \int_{0}^{t_{\max}} \frac{dt}{t} \int_{0}^{1} dz P(\alpha_{s}, z) \Theta(k_{\perp}^{2} - \tau_{ini}) \approx \Delta_{q}(t_{\max} \mid \tau_{ini}) \times \int_{\tau_{ini}}^{t_{\max}} d\tau \Gamma_{q}(t_{\max} \mid \tau)$$

$$\Gamma_{q}(\mathcal{T} \mid \tau) = \frac{\alpha_{s}(\tau) \mathcal{C}_{F}}{2 \pi} \frac{1}{\tau} \left(\ln \frac{\mathcal{T}}{\tau} - \frac{3}{2} \right)$$

$$f(\tau_3) = \frac{d R_3(\tau_3)}{d \tau_3}$$

Slide 8 of 27

Single resolved splitting

The following statements are equivalent:

1. There is only one (the hardest) splitting with $(k_{\perp}^2)_2 > \tau_{ini}$

8 10/27/11

2. The second hardest splitting has $(k_{\perp}^2)_3 < \tau_{ini}$

$$\frac{\Delta_{q}(t_{\max} \mid \tau_{ini})}{\Delta_{q}(t \mid \tau_{ini})} \times \frac{dt}{t} dz P(\alpha_{s}, z) \Theta(k_{\perp}^{2} - \tau_{ini}) \times \Delta_{q}(z^{2} t \mid \tau_{ini})$$
$$\approx \Delta_{q}(t_{\max} \mid \tau_{ini}) \times \frac{dt}{t} dz P(\alpha_{s}, z) \Theta(k_{\perp}^{2} - \tau_{ini})$$

$$\mathcal{R}_{3}(\tau_{ini}) = \Delta_{q}(t_{max} | \tau_{ini}) \times \int_{0}^{t_{max}} \frac{dt}{t} \int_{0}^{1} dz \, \mathcal{P}(\alpha_{s}, z) \,\Theta(k_{\perp}^{2} - \tau_{ini}) \approx \Delta_{q}(t_{max} | \tau_{ini}) \times \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} | \tau)$$

$$\Gamma_{q}(\mathcal{T} | \tau) = \frac{\alpha_{s}(\tau) \,\mathcal{C}_{F}}{2 \, \pi} \, \frac{1}{\tau} \left(\ln \frac{\mathcal{T}}{\tau} - \frac{3}{2} \right)$$

 $f(\tau_3) = \frac{d R_3(\tau_3)}{d \tau_3}$ Actually it is not correct because we considered only one rod.

Single resolved splitting

$$\mathcal{R}_{3}(\tau_{3}) \approx \Delta_{q}(t_{\max} \mid \tau_{3}) \times \int_{\tau_{3}}^{t_{\max}} d\tau \Gamma_{q}(t_{\max} \mid \tau) \Delta_{g}(\tau \mid \tau_{3})$$

Slide 10 of 27

10 10/27/11

Double resolved splitting

Slide 11 of 27

11 10/27/11

Double resolved splitting

Slide 12 of 27

12 10/27/11

Double resolved splitting

 $Z \rightarrow q \overline{q}$

ϔ Two-jet rate

$$\mathcal{R}_{2}(\tau_{ini}) = \Delta_{q}(\mathcal{L}_{max} \mid \tau_{ini}) \times \Delta_{q}(\mathcal{L}_{max} \mid \tau_{ini})$$

 $\bigvee Three-jet rate$ $\mathcal{R}_{3}(\tau_{ini}) \approx 2 \left[\Delta_{q}(t_{max} | \tau_{ini}) \right]^{2} \times \int_{\tau_{ini}}^{t_{max}} d\tau \Gamma_{q}(t_{max} | \tau) \Delta_{g}(\tau | \tau_{ini})$

$$\begin{aligned} \mathcal{R}_{4}(\tau_{ini}) &= 2 \,\Delta_{q}(t_{max} \mid \tau_{ini}) \times \Delta_{q}(t_{max} \mid \tau_{ini}) \\ &\times \left[\int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{t_{max}} d\tau' \,\Gamma_{q}(t_{max} \mid \tau') \,\Delta_{g}(\tau' \mid \tau_{ini}) \right] \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{g}(\tau \mid \tau') \,\Delta_{g}(\tau' \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau' \mid \tau_{ini}) \\ \end{aligned}$$

Renormalization

Actually, it is the expression for the single splitting probability for a PS generator with cutoff τ_{ini}

14 10/27/11

Renormalization

PS Gen. 1: cutoff is τ_O , $\Delta(t \mid \tau_O)$

15 10/27/11

Renormalization

PS Gen. 2: cutoff is $\tau_{ini} > \tau_0$, $\Delta(t | \tau_{ini})$

 \heartsuit If we select the nodes with $k_{\perp}^2 > \tau_{ini}$ which were generated by Gen 1, then we obtain the same distributions as those generated by Gen 2.

 \heartsuit The objects generated by Gen 2 are exclusive in the sense they are separated at least by the distance τ_{ini} , but completely inclusive with respect to all partons closer than τ_{ini} .

 \heartsuit Gen 1 can help us to reveal the exclusive structure of radiation inside the region $\tau_0 < k_{\perp}^2 < \tau_{ini}$.

Renormalization

 $k_{\perp(1)}^2$ is the transverse moment of the node which is the first on the (angular ordered) rod among resolved ones $(k_{\perp}^2 > \tau_{ini})$

Histogram is the result of Gen. 1

Red curve is the result of Gen. 2

Renormalization

PS Gen. 2: cutoff is $\tau_{ini} > \tau_O$, $\Delta(t | \tau_{ini})$

 $\sqrt[7]{}$ If we select the nodes with $k_{\perp}^2 > \tau_{ini}$ which were generated by Gen 1, then we obtain the same distributions as those generated by Gen 2.

 \heartsuit The objects generated by Gen 2 are exclusive in the sense they are separated at least by the distance τ_{ini} , but completely inclusive with respect to all partons closer than τ_{ini} .

 \circ Gen 1 can help us to reveal the exclusive structure of radiation inside the region $\tau_0 < k_{\perp}^2 < \tau_{ini}$.

By the way, why do we have to use Gen 2?

Renormalization

PS Gen. 2: cutoff is $\tau_{ini} > \tau_0$, $\Delta(t | \tau_{ini})$

 \circ If we select the nodes with $k_{\perp}^2 > \tau_{ini}$ which were generated by Gen 1, then we obtain the same distributions as those generated by Gen 2.

 \heartsuit The objects generated by Gen 2 are exclusive in the sense they are separated at least by the distance τ_{ini} , but completely inclusive with respect to all partons closer than τ_{ini} .

 \heartsuit Gen 1 can help us to reveal the exclusive structure of radiation inside the region $\tau_0 < k_{\perp}^2 < \tau_{ini}$.

By the way, why do we have to use Gen 2? We don't. Let's replace it by e.g. MadGraph

Slide 20 of 27

Bare particles and Sudakov factor

$$\hat{\nabla} \text{ Three-jet rate}$$

$$\mathcal{R}_{3}(\tau_{ini}) = \left[\Delta_{q}(t_{\max} | \tau_{ini}) \right]^{2} \times \int_{\tau_{ini}}^{t_{\max}} d\tau \, 2 \, \Gamma_{q}(t_{\max} | \tau) \, \Delta_{g}(\tau | \tau_{ini})$$

$$\begin{aligned} \mathcal{R}_{4}(\tau_{ini}) &= 2 \,\Delta_{q}(t_{max} \mid \tau_{ini}) \times \Delta_{q}(t_{max} \mid \tau_{ini}) \\ \times \left[\int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{t_{max}} d\tau' \,\Gamma_{q}(t_{max} \mid \tau') \,\Delta_{g}(\tau' \mid \tau_{ini}) \right] \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{g}(\tau \mid \tau') \,\Delta_{g}(\tau' \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau' \mid \tau_{ini}) \\ \end{aligned}$$

Slide 21 of 27

21 10/27/11

Bare particles and Sudakov factor

$$\mathcal{R}_{3}(\tau_{ini}) = \left[\Delta_{q}(t_{max} | \tau_{ini})\right]^{2} \times \int_{\tau_{ini}}^{t_{max}} d\tau 2 \Gamma_{q}(t_{max} | \tau) \Delta_{q}(\tau | \tau_{ini})$$

ϔ Four-jet rate

Ö Thurson ist usto

$$\begin{aligned} \mathcal{R}_{4}(\tau_{ini}) &= 2 \,\Delta_{q}(t_{max} \mid \tau_{ini}) \times \Delta_{q}(t_{max} \mid \tau_{ini}) \\ &\times \left[\int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{t_{max}} d\tau' \,\Gamma_{q}(t_{max} \mid \tau') \,\Delta_{g}(\tau' \mid \tau_{ini}) \right] \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{g}(\tau \mid \tau') \,\Delta_{g}(\tau' \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau \mid \tau_{ini}) \\ \end{aligned}$$

PS approximation of the matrix element squared should be replaced by the exact ME.

$$\Gamma_{q}(\mathcal{T} \mid \tau) = \frac{\alpha_{s}(\tau) \, \mathcal{C}_{F}}{2 \, \pi} \, \frac{1}{\tau} \left(\ln \frac{\mathcal{T}}{\tau} - \frac{3}{2} \right) \qquad \Gamma_{g}(\mathcal{T} \mid \tau) = \frac{\alpha_{s}(\tau) \, \mathcal{C}_{g}}{2 \, \pi} \, \frac{1}{\tau} \left(\ln \frac{\mathcal{T}}{\tau} - \frac{11}{6} \right) \qquad \Gamma_{f}(\mathcal{T}, \tau) = \frac{\alpha_{s}(\tau) \, \mathcal{N}_{f}}{2 \, \pi} \, \frac{1}{\tau} \, \frac{1}{\tau} \left(\ln \frac{\mathcal{T}}{\tau} - \frac{11}{6} \right) \qquad \Gamma_{f}(\mathcal{T}, \tau) = \frac{\alpha_{s}(\tau) \, \mathcal{N}_{f}}{2 \, \pi} \, \frac{1}{\tau} \, \frac{1}{\tau} \left(\ln \frac{\mathcal{T}}{\tau} - \frac{11}{6} \right) \qquad \Gamma_{f}(\mathcal{T}, \tau) = \frac{\alpha_{s}(\tau) \, \mathcal{N}_{f}}{2 \, \pi} \, \frac{1}{\tau} \, \frac{1}{\tau} \, \frac{1}{\tau} \left(\ln \frac{\mathcal{T}}{\tau} - \frac{1}{2} \right) \, \frac{1}{\tau} \,$$

Slide 22 of 27

22 10/27/11

Bare particles and Sudakov factor

$$\hat{\nabla} \text{ Three-jet rate}$$

$$\mathcal{R}_{3}(\tau_{ini}) = \left[\Delta_{q}(t_{max} | \tau_{ini}) \right]^{2} \times \int_{\tau_{ini}}^{t_{max}} d\tau 2 \Gamma_{q}(t_{max} | \tau) \Delta_{g}(\tau | \tau_{ini})$$

ϔ Four-jet rate

$$\begin{aligned} \mathcal{R}_{4}(\tau_{ini}) &= 2 \,\Delta_{q}(t_{max} \mid \tau_{ini}) \times \Delta_{q}(t_{max} \mid \tau_{ini}) \\ \times \left[\int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{t_{max}} d\tau' \,\Gamma_{q}(t_{max} \mid \tau') \,\Delta_{g}(\tau' \mid \tau_{ini}) \right] \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{g}(\tau \mid \tau') \,\Delta_{g}(\tau' \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{f}(\tau \mid \tau') \,\Delta_{f}(\tau \mid \tau_{ini}) \\ &+ \int_{\tau_{ini}}^{t_{max}} d\tau \,\Gamma_{q}(t_{max} \mid \tau) \,\Delta_{g}(\tau \mid \tau_{ini}) \times \int_{\tau_{ini}}^{\tau} d\tau' \,\Gamma_{q}(\tau \mid \tau') \,\Delta_{g}(\tau \mid \tau') \,\Delta_{g}(\tau$$

Exclusive nature of partons generated is taken into account by the Sudakov form factor. Sudakov form factor is just the product of the Sudakov factors for each parton: $\Delta_i(\tau_i, \tau_{ini})$, where τ_i is (approx.) k_{\perp}^2 in the "place of birth" of the parton.

$$F_{qqgg}(t_{max}, \tau, \tau' | \tau_{ini}) = \Delta_{q}(t_{max} | \tau_{ini}) \times \Delta_{q}(t_{max} | \tau_{ini}) \times \Delta_{g}(\tau | \tau_{ini}) \times \Delta_{g}(\tau' | \tau_{ini})$$

Sudakov form factor

 $\overset{\circ}{V}$ Sudakov form factors depend on parton identities $\sqrt{2}$ Sudakov form factors do not depend on topology of branching history — à la gauge invariance $\langle Q \rangle$ Sudakov form factors depend on the set of nodal values: $\{\tau_i\}$ \sqrt{Q} Each splitting can be presented as a "parent \rightarrow parent+child" processes. The scale τ_i is $(t_i)_{max}$ for the child partion, $(t_i)_{\max} \approx (k_T^2)_{i-1}$ — the value of k_T at the node where the child was born. \hat{V} Each final-state parton of type "a" yields $\Delta_{a}(\tau_{i} | \tau_{ini})$ contribution to the Sudakov form factor (except partons which were born in $g \rightarrow q \overline{q}$ splitting) $\sqrt{2}$ The factor $\Delta_a(\tau | \tau_{ini})$ accounts for the excluding radiation in the cone of size τ and $k_{Ti}^2 > \tau_{ini}$ in

branchings.

ME reweighting

1. Select parton identities $id = (q, \overline{q}, g,...)$ and multiplicity n:

$$\mathcal{P}^{(O)}(n, id) = \frac{\sigma_{n,id}^{(O)}}{\sum_{k,id'}^{k=N} \sigma_{k,id'}^{(O)}}$$

2. Generate these partons using ME generator, using fixed $\alpha_s(\tau_{ini})$ – the biggest one.

- 3. Run k_{T} -clustering algorithm to find τ -s: { $\tau_{1} = Q^{2}, \tau_{2}, \tau_{3}, ..., \tau_{n-1}$ } > τ_{ini}
- 4. Identify each parton j with its "place of birth" τ_j
- 5. Calculate the Sudakov form factor as a product of Sudakov factors:

$$F_{id}(\tau_2, \dots, \tau_{n-1}) = \prod_j \Delta_j(\tau_j \mid \tau_{ini}).$$

6. Calculate the total weight:

$$\mathcal{W}_{id}(\tau_{2}, \ \dots, \tau_{n-1}) = \mathcal{F}_{id}(\tau_{2}, \ \dots, \tau_{n-1}) \frac{\alpha_{s}(\tau_{2}) \,\alpha_{s}(\tau_{3}) \dots \alpha_{s}(\tau_{n-1})}{\left[\alpha_{s}(\tau_{ini})\right]^{n-2}}.$$

7. Generate random number $r \in [0, 1]$. If $r < W_{id}$ then accept the configuration, else goto step 1

Slide 25 of 27

Vetoed (truncated) Parton Showers

After generating partons with ME-generator, one should "dress" these partons with PS.

 \oint For each parton j we know $\tau_j = k_{\perp}^2$ in its "place of birth".

 $\sqrt[V]$ Generate "vetoed" PS for each parton with initial scale au_{j}

Vetoed" means that if we generate splitting (t, z) and min $\{z^2, \overline{z}^2\}$ $t > \tau_{ini}$ then reload your PS gun in this point, but don't append the splitting (t, z) to your branching tree.

Final comments

 $\stackrel{\circ}{V}$ Parton shower approximation (for the red points) is the singular part of the total ME squared.

 $\stackrel{\circ}{V}$ This singular part is smoothly merged with the vetoed parton shower.

 $\stackrel{\circ}{V}$ Only the nonsingular (or singular but beyond the NLL level) parts have discontinuities.

ightirrow Inclusive mode helps to overcome difficulties with the finite multiplicity available for ME generator

Summary of the third lecture

The total phase space should be clearly separated by the scale τ_{ini} into domains of applicability of ME and PS generators.

- Such separation also helps to avoid double counting.
- Smoothness of the merging is guaranteed by: on the one side ME modification by Sudakov form factors, on the other side, by implementing "vetoed" PS.

■ ME gen. tends to generate more configurations near ME singularities (although they are isolated by τ_{ini}), but these configurations are suppressed by Sudakov factors. Thus CKKW procedure is rather effective. MLM procedure looks less effective (because Sudakov f.f. are calculated on the fly) but more universal.