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SUMMARY OF LECTURE II =

¢ One-loop integrals can be written as coethcients a, b, c and d times scalar
functions and a rational part R

¢ The traditional approach for computing one-loop diagrams (Passarino-Veltman
reduction) becomes more and more complicated and difficult to automate when
the number of external particles increases

% The OPP reduction works at the integrand level: choosing specific values of the
loop momentum results in a linear system of equations, which can be solved
numerically

% MadGraph has been extended to compute loops by using the OPP reduction as

implemented in the CutTools computer code

% MadLoop generates loop diagrams by cutting them open, which results in tree-
level diagrams with two extra external particles

¢ CutTools provides the values for which the numerator should be computed
numerically and solves the resulting system of equations numerically
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan production
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DIVERGENCES
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% The coethcients d, ¢, b and a are finite and do not contain poles in 1/€ and are finite

% The 1/e dependence is 1n the scalar integrals (and the UV renormalization)

% When we have solved this system (and included the UV renormalization) we have
the full dependence on the soft/collinear divergences in terms of coefficients in
front of the poles. These divergences should cancel against divergences in the real
emission corrections (according to KLLN theorem)

. U1 (90
Virtual ~ vg 4 |
€ € .

Rikkert Frederix, University of Zurich



ORIGIN OF IR
DIVERGENCES

% In the virtual corrections: if a particles in the loop 1s soft, or collinear
to an external particle we get soft and collinear divergences

% For the real emission it 1s clear where the IR divergences are coming

from. From Johan’s lecture:

Matrix elements involving g ?qg (or g = gg) are
strongly enhanced when the final state particles are

close in the phase space:

1 1 1
(pp +pe)? 2Bl — cosh)
soft and

divergencies
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INFRARED
CANCELLATION

S

¢ The KLN theorem tells us that divergences from virtual and
real-emission corrections cancel in the sum (for observables
insensitive to soft and collinear radiation)
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When doing an analytic calculation in dimensional
regularization this can be explicitly seen 1n the cancellation of

the 1/e and 1/€? terms (with € the regulator, € = 0)

Al

% In the real emission corrections, the explicit poles enter after
the phase-space integration (in d dimensions)
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PHASE-SPACE
INTEGRATION

A

% For complicated processes we have to result to numerical
phase-space integration techniques (“Monte Carlo
integration”), which can only be performed 1n an integer
number of dimensions

NA

¢ Cannot use a hnite value for the dimensional regulator and
take the limit to zero in a numerical code

Al

¢ But we still have to cancels the divergences explicitly

Al

5% Two solutions exists

Al

¢ Phase-space slicing

% Subtraction method
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EXAMPLE

¢ Suppose we want to compute the integral (“real emission radiation”,
where the 1-particle phase-space 1s referred to as the 1-dimensional )

/O do f(2) ) ..

where f (Qj) — @ and g({,l?) 1s finite everywhere
L

2

¢ Let’s introduce a regulator

o fl)
!1_1)1(1) dexHe—ll_I)]% dex f(x)

for any non-integer non-zero value for € this integral is finite

\

% We would like to factor out the explicit poles in € so that they can be

canceled explicitly against the “virtual corrections”
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PHASE-SPACE SLICING

1

lim [ dexz™°f(x) f(x) = 9(z)

e—0 0 X

% Introduce a small parameter 0

1 - 6 1
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% We get the explicit pole in € and a finite integral that can be
computed numerically
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SUBTRACTION METHOD

1

lim [ dexz™°f(x) f(x) = 9(z)

e—0 0 X

% Add and subtract the same term

1 1 _
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= lim _9(0)+/d:13 9(z) ~ 9(0)

e—0 € 0 T

#* Like before, we have factored out the explicit divergence. The coethcient
in front of the 1/€ pole 1s the same 1n both methods (as it should be!)

% According to the KLLN theorem the divergence cancels against the virtual

corrections
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SLICING VS SUBTRACT]ON\

X

1 B _| “Plus distribution”J
Subtraction: / dx g(:lj) g(O) « L
0

1
Slicing: /daj 9(z) - g(0) logd
)

X

R

% Terms of order J are neglected in the slicing method;
the subtraction method 1s exact

R

% One has to proof that any observable 1s independent of § when § = 0

/A

¢ Both methods feature cancellations between large numbers: if for an
observable O, if };IL% O (w ) -+ O(O) or we choose the bin-size too small,

instabilities render the computation useless

A

Al

¢ We already knew that! KLLN 1s suthcient; one must have infra-red
safe observables and cannot ask for infinite resolution

A

s Subtraction method 1s more flexible -> method of choice 1n automation
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NLO WITH SUBTRACTION —

SNLO /d4<I> B(® /d4 / A1V (® /ddq)m+1 R(Ppy1)
loop

¢ With the subtraction method this 1s replace by

oV O / d*®,, B(®,,)

+ / d*®,, /1 dlV (®,,) + / d°® G (P p1)
_ J loop de—0

+ /d4q)m+1 R((I)m—H) o G(aerl)

¢ Terms between the brackets are finite. Can integrate them numerically and
independent from one another in 4 dimensions
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SUBTRACTION METHODS

G ((I)m—l—l) should be defined such that

A\

N
K

)

wN

1) it exactly matches the singular behavior of R((I)m—l—l)

2) its form 1s convenient for MC integration techniques

3) it 1s exactly integrable in d dimensions over the one-particle
subspace / d'® G (D,,.1), leading to soft and/or collinear

divergences as explicit poles in the dimensional regulator

4) 1t 1s universal, 1.e. “process independent”
— “overall factor” times the Born process
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TWO METHODS

¢ Catani-Seymour dipole
subtraction

™M Most used method

™ Clear written paper on how to
use this method 1n practice

M Method evolved from

cancellation of the soft
divergence

™ Proven to work for simple as well
as complicated processes

M Automation in publicly available
packages: MadDipole,
AutoDipole, Helac-Dipoles,
Sherpa
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% FKS subtraction

™ Not so well-known
M (Probably) more efhicient,

because less subtraction terms
are needed

M Collinear divergences as a
starting point

M Proven to work for simple as well
as complicated processes

M Preferred method when

interfacing NLO to a parton
shower

M Implemented in MadFKS and
(a)MC@NLO
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FKS SUBTRACTION

% FKS subtraction: Frixione, Kunszt & Signer 1996.
Standard subtraction method in MC@NIL.O and POWHEG, but

can also be used for ‘normal’ NLO computations

o < “ ° U »
2% Also known as “residue subtraction

A

* Based on using plus distributions to regulate the infrared
dlvergences of the real emission matrix elements
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PHASE-SPACE PARTITIONS™

¢ Fasiest to understand by starting from real emission:

do' = |M" " Pdgni
11 & =E; V3

5 - Wlth
fi L — Y5 Yi; = COS 97;3'

¢ Partition the phase space in such a way that each partition has at most one

e |M ntl ‘2 blows up like

soft and one collinear singularity

dO’R — Z Sij‘Mn+1‘2d¢n_|_1 ZSZ] — 1
y 55

¥

¢ Use plus distributions to regulate the singularities

d(}R:Z(é> < : ) Ei(1 = yig)Sig | M™ 2 P dp 1
i/ 4 +

” 1 — yij
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REGULARIZED BY
PLUS-PRESCRIPTION

d‘?R:Z(é) ( 1 ) &i(1 — yiz)Sij M 2dpr 41
i/ + +

> 1 — vy

% Dehinition plus distribution

/d§ <§>+g(5) _ /dg 9(&) gg(())

% One event has maximally three counter events:

¢ Soft: fz — 0

% Collinear: Yij — 1

s Soft-collinear: fz — 0 Yij — 1
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REGULARIZED BY
PLUS-PRESCRIPTION

. 1 1 n
A5 = <€_> ( ) §i(1 = i) Sig [ M" [ depn 1
v gcut 00

” 1 — vy

¢ Modified definition plus distribution (include counter terms
only when event 1s close to being singular)

/ g (1>€Cut 9(¢) = /dg 9(€) = g(0)O(Ecur — &)

§ §

% One event has maximally three counter events:
¢ Soft: fz — 0
* Collinear: Yi; — 1
% Soft-collinear: & — 0 Yiz — 1
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SUBTRACTION TERMS

oV O / d*®,, B(P,,)

+/d4c1>m{/l AUV (®,,) +/dd¢1G($m+1)}

oop e—0

b [ @i R®i) = G i)

% This defines the subtraction terms for the reals

¢ They need to be integrated over the one-parton phase space (analytically)
to get the explicit poles 1/€ and added to the virtual corrections so that

these poles cancel

¢ these are process-independent terms proportional to the (color-

linked) Borns
¢ All formulae can be found in the MadIFKS paper, arXiv:0908.4247
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KINEMATICS OF
COUNTER EVENTS

¢ > L+]

(2

% If { and j are two on-shell particles that are present in a splitting that leads
to an singularity, for the counter events we need to combine their momenta
to a new on-shell parton that’s the sum of ¢+/

Al

% This 1s not possible without changing any of the other momenta in the
process

% When applying cuts or making plots, events and counter events might end-
up in different bins

¢ Use IR-safe observables and don't ask for infinite resolution! (KLN

theorem)
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EXAMPLE IN 4 CHARGED

LEPTON PRODUCTION
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% Here 1s an example of a very
recent paper (it appeared last
monday on the arXiv!)

peak-dip structure that hampers
fixed order calculations

22



EVENT UNWEIGHTING?

\I
|

% It 1s not possible to generate unweighted events in this set-up

Al

¢ Even though the integrals are finite, they are not bounded
: 1 : : :
(compare with f o dx % ), so there 1s no maximum to unweight

against: a single event can have an arbitrarily large weight

A

% Furthermore, event and counter event have different kinematics:
which one to use for the unweighted event?

do do
do 1 FTORE S
[] L
=i BN LE=eR.
a5 o - o
N N

O O
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SUMMARY

S

¢ Both the virtual and real-emission corrections are IR divergent, but
their sum 1s finite

% We can use the slicing or subtraction methods to cancel the poles

explicitly

KA

¢ Preferred method 1s the subtraction method (no approximations
needed and proven to work very well for complicated processes)

A

# This generates events and counter events with slightly different
kinematics

% When making plots or applying cuts, use only IR safe observables

with finite resolution

A

¢ Phase-space integrals are finite, but not bounded: cannot unweight
the events
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