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Summary of lecture II
One-loop integrals can be written as coefficients a, b, c and d times scalar 
functions and a rational part R

The traditional approach for computing one-loop diagrams (Passarino-Veltman 
reduction) becomes more and more complicated and difficult to automate when 
the number of external particles increases

The OPP reduction works at the integrand level: choosing specific values of the 
loop momentum results in a linear system of equations, which can be solved 
numerically

MadGraph has been extended to compute loops by using the OPP reduction as 
implemented in the CutTools computer code

MadLoop generates loop diagrams by cutting them open, which results in tree-
level diagrams with two extra external particles

CutTools provides the values for which the numerator should be computed 
numerically and solves the resulting system of equations numerically
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Canceling infrared 
divergences:

FKS subtraction
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NLO predictions
As an example, consider Drell-Yan production
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Divergences
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The coefficients d, c, b and a are finite and do not contain poles in 1/𝜖 and are finite

The 1/𝜖 dependence is in the scalar integrals (and the UV renormalization)

When we have solved this system (and included the UV renormalization) we have 
the full dependence on the soft/collinear divergences in terms of coefficients in 
front of the poles. These divergences should cancel against divergences in the real 
emission corrections (according to KLN theorem)
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Origin of IR 
divergences
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soft and collinear

Parton Shower basics

Matrix elements involving q →q g ( or g →  gg) are 
strongly enhanced when the final state particles are 
close in the phase space:
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Tuesday, October 25, 2011

In the virtual corrections: if a particles in the loop is soft, or collinear 
to an external particle we get soft and collinear divergences 

For the real emission it is clear where the IR divergences are coming 
from. From Johan’s lecture:
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Infrared 
cancellation

The KLN theorem tells us that divergences from virtual and 
real-emission corrections cancel in the sum (for observables 
insensitive to soft and collinear radiation)

When doing an analytic calculation in dimensional 
regularization this can be explicitly seen in the cancellation of 
the 1/𝜖 and 1/𝜖2 terms (with 𝜖 the regulator, 𝜖 ➞ 0)

In the real emission corrections, the explicit poles enter after 
the phase-space integration (in d dimensions)
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phase-space 
integration

For complicated processes we have to result to numerical 
phase-space integration techniques (“Monte Carlo 
integration”), which can only be performed in an integer 
number of dimensions

Cannot use a finite value for the dimensional regulator and 
take the limit to zero in a numerical code

But we still have to cancels the divergences explicitly

Two solutions exists

Phase-space slicing

Subtraction method
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Example
Suppose we want to compute the integral (“real emission radiation”, 
where the 1-particle phase-space is referred to as the 1-dimensional x)

where                               and             is finite everywhere

Let’s introduce a regulator

for any non-integer non-zero value for     this integral is finite

We would like to factor out the explicit poles in     so that they can be 
canceled explicitly against the “virtual corrections”
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Phase-space slicing

Introduce a small parameter 

We get the explicit pole in    and a finite integral that can be 
computed numerically
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Subtraction method

Add and subtract the same term

Like before, we have factored out the explicit divergence. The coefficient 
in front of the 1/   pole is the same in both methods (as it should be!)

According to the KLN theorem the divergence cancels against the virtual 
corrections
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Slicing vs Subtraction

Terms of order δ are neglected in the slicing method;
the subtraction method is exact

One has to proof that any observable is independent of δ when δ ➞ 0

Both methods feature cancellations between large numbers: if for an 
observable    , if                                or we choose the bin-size too small, 
instabilities render the computation useless

We already knew that! KLN is sufficient; one must have infra-red 
safe observables and cannot ask for infinite resolution

Subtraction method is more flexible -> method of choice in automation
12

� 1

0
dx

g(x)� g(0)
x

� 1

�
dx

g(x)
x

+ g(0) log �Slicing:

Subtraction:

lim
x�0

O(x) �= O(0)O

“Plus distribution”



Rikkert Frederix, University of Zurich

NLO with Subtraction

With the subtraction method this is replace by

Terms between the brackets are finite. Can integrate them numerically and 
independent from one another in 4 dimensions
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Subtraction methods

                    should be defined such that 

1) it exactly matches the singular behavior of 

2) its form is convenient for MC integration techniques

3) it is exactly integrable in d dimensions over the one-particle 
subspace                          , leading to soft and/or collinear 
divergences as explicit poles in the dimensional regulator

4) it is universal, i.e. “process independent”
➞ “overall factor” times the Born process 
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Two methods

Catani-Seymour dipole 
subtraction

Most used method
Clear written paper on how to 
use this method in practice
Method evolved from 
cancellation of the soft 
divergence
Proven to work for simple as well 
as complicated processes
Automation in publicly available 
packages: MadDipole, 
AutoDipole, Helac-Dipoles, 
Sherpa

FKS subtraction
Not so well-known
(Probably) more efficient, 
because less subtraction terms 
are needed
Collinear divergences as a 
starting point
Proven to work for simple as well 
as complicated processes
Preferred method when 
interfacing NLO to a parton 
shower
Implemented in MadFKS and 
(a)MC@NLO
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FKS subtraction

FKS subtraction: Frixione, Kunszt & Signer 1996.
Standard subtraction method in MC@NLO and POWHEG, but 
can also be used for ‘normal’ NLO computations

Also known as “residue subtraction”

Based on using plus-distributions to regulate the infrared 
divergences of the real emission matrix elements
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Phase-space partitions
Easiest to understand by starting from real emission:
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Regularized by
plus-prescription

18

d⇥̃R =
⇤

ij

�
1
�i

⇥

+

�
1

1� yij

⇥

+

�i(1� yij)Sij |Mn+1|2d⇤n+1

One event has maximally three counter events:

Soft:

Collinear:

Soft-collinear: �i � 0 yij � 1
yij � 1

�i � 0

⇤
d�

�
1
�

⇥

+

g(�) =
⇤

d�
g(�)� g(0)

�

Definition plus distribution



Rikkert Frederix, University of Zurich 19

d⇥̃R =
⇤

ij

�
1
�i

⇥

⇥cut

�
1

1� yij

⇥

�O

�i(1� yij)Sij |Mn+1|2d⇤n+1

⇤
d�

�
1
�

⇥

�cut

g(�) =
⇤

d�
g(�)� g(0)�(�cut � �)

�

Modified definition plus distribution (include counter terms 
only when event is close to being singular)

One event has maximally three counter events:

Soft:

Collinear:

Soft-collinear: �i � 0 yij � 1
yij � 1

�i � 0

Regularized by
plus-prescription



Rikkert Frederix, University of Zurich

Subtraction terms

This defines the subtraction terms for the reals

They need to be integrated over the one-parton phase space (analytically) 
to get the explicit poles 1/𝜖 and added to the virtual corrections so that 
these poles cancel

these are process-independent terms proportional to the (color-
linked) Borns

All formulae can be found in the MadFKS paper, arXiv:0908.4247
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Kinematics of 
counter events

If i and j are two on-shell particles that are present in a splitting that leads 
to an singularity, for the counter events we need to combine their momenta 
to a new on-shell parton that’s the sum of i+j

This is not possible without changing any of the other momenta in the 
process

When applying cuts or making plots, events and counter events might end-
up in different bins

Use IR-safe observables and don’t ask for infinite resolution! (KLN 
theorem)
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Example in 4 charged 
lepton production

Here is an example of a very 
recent paper (it appeared last 
monday on the arXiv!)

The NLO results shows a typical 
peak-dip structure that hampers 
fixed order calculations
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Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between

the various predictions are larger in this case. In particular, aMC@LO is closer to NLO

than to LO, which is a consequence of the more important role played by extra radiation in

this case (as one expects, the present one being a correlation between two particles rather

than a single-inclusive observable). Again, the closeness of NLO and aMC@NLO results

shows the desired perturbative behaviour. The more significant impact of extra radiation

on this variable is reflected in the slightly larger scale dependence at large pT ’s w.r.t. what

happens for the transverse momentum of the individual leptons discussed before. The two

leptonic channels agree well, also when removing the Z-id cuts.

Figure 3 shows two observables constructed after applying the Z-id cuts, namely the

pseudorapidity of lepton pairs with opposite charge which are also Z-id matched (left

panel; this is then the pseudorapidity of would-be Z bosons), and the azimuthal distance

between leptons of opposite charge which are not Z-id matched (right panel; thus, these

are leptons emerging from different would-be Z bosons). As in the case of fig. 2, there are

two entries in each histogram for any given event. These two observables are dominated

by small transverse momenta, and therefore it is not suprising that, at both O(α0
S) and
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Event unweighting?

It is not possible to generate unweighted events in this set-up

Even though the integrals are finite, they are not bounded 
(compare with                 ), so there is no maximum to unweight 
against: a single event can have an arbitrarily large weight

Furthermore, event and counter event have different kinematics: 
which one to use for the unweighted event?
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Summary
Both the virtual and real-emission corrections are IR divergent, but 
their sum is finite

We can use the slicing or subtraction methods to cancel the poles 
explicitly

Preferred method is the subtraction method (no approximations 
needed and proven to work very well for complicated processes)

This generates events and counter events with slightly different 
kinematics

When making plots or applying cuts, use only IR safe observables 
with finite resolution

Phase-space integrals are finite, but not bounded: cannot unweight 
the events
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