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Perturbative 
expansion

The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter

Including higher corrections improves predictions and reduces 
theoretical uncertainties
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NLO predictions
As an example, consider Drell-Yan production
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Standard Approach

Passarino-Veltman reduction:

Reduce a general integral to “scalar integrals” by 
“completing the square”

Let’s do an example:
Suppose we want to calculate this triangle integral
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =









. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .









, Ycollinear =









. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .









. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ε.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ε

s12s23

×
{

2

ε2

(

(−s12)
−ε + (−s23−)−ε

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ε) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ε. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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Basis of scalar 
integrals

The a, b, c, d and R 
coefficients depend only 
on external parameters 
and momenta
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All these scalar integrals are known and available in computer libraries 
(FF [v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])
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Divergences

6

The coefficients d, c, b and a are finite and do not contain poles in 1/𝜖 and are finite

The 1/𝜖 dependence is in the scalar integrals (and the UV renormalization)

When we have solved this system (and included the UV renormalization) we have 
the full dependence on the soft/collinear divergences in terms of coefficients in 
front of the poles. These divergences should cancel against divergences in the real 
emission corrections (according to KLN theorem)
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Automation

Advantage:

The method above can be straight-forwardly generalized to 
any one-loop integral (appearing in a renormalizable theory)

Disadvantage:

For relatively simple processes, the number of terms already 
explodes (several 100 MB of code is no exception for the matrix elements of a 

2 → 3 process); simplifications require hard work and are 
difficult to do in a general way

Does only work when the integrals are known analytically

7
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The “NLO revolution”
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New loop techniques

The “loop revolution”: new techniques for computing one-loop 
matrix elements are now established:

Generalized unitarity (e.g. BlackHat, Rocket, ...)
[Bern, Dixon, Dunbar, Kosower, 1994...; Ellis Giele Kunst 2007 + Melnikov 2008;...]  

Integrand reduction (e.g. CutTools, Sumarai)
[Ossola, Papadopoulos, Pittau 2006; del Aguila, Pittau 2004; Mastrolia, Ossola, Reiter, 
Tramontano 2010;...]

Tensor reduction (e.g. Golem)
[Passarino, Veltman 1979; Denner, Dittmaier 2005; Binoth Guillet, Heinrich, Pilon, 
Reiter 2008]

9
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Integrand reduction

Any one-loop integral can be decomposed in scalar integrals

The task is to find these coefficients efficiently (analytically 
or numerically)

The integrand (or OPP [Ossola, Papadopoulos, Pittau 2006]) 
reduction method is a method that has been automated in the 
CutTools program to find these coefficients in an automated 
way

The integrand reduction technique is what we have adopted 
to use in MadGraph to compute the loop diagrams

10
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At the integrand 
level

The decomposition to scalar integrals
presented before works at the level of
the integrals

If we would know a similar relation at
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals

This is exactly what the OPP reduction does

The decomposition is the same, except that there might be 
contributions that integrate to zero
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At the integrand level
Consider, e.g., the Box coefficient:

And similarly for the c, b, a and R terms

The contributions that vanish when doing the integral are called 
“spurious terms”
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one-loop integral

Consider this m-point 
loop diagram with n 
external momenta

The integral to compute 
is
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OPP decomposition
For the numerator of any integrand of a one-
loop computation we can therefore write
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Numerical 
evaluation

By choosing specific values for the loop momentum l, we end up 
with a system of linear equations

In a renormalizable theory, the rank of the integrand is always 
smaller (or equal) to the number of particles in the loop (with 
a conveniently chosen gauge)

We can straight-forwardly set the it up by sampling the 
numerator numerically for various values of the loop 
momentum l

By choosing l smartly, the system greatly reduces

In particular when we chose l to be a complex 4-vector

15
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Functional form of 
the spurious terms
The functional form of the spurious terms is known (it 
depends on the rank of the integral and the number 
propagators in the loop) [del Aguila, Pittau 2004]

for example, a box coefficient from a rank 1 numerator is

(remember that pi is the sum of the momentum that has 
entered the loop so far, so we always have p0 = 0)

The integral is zero
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How it works...

To solve the OPP reduction, choosing special 
values for the loop momenta helps a lot

For example, choosing l such that

sets all the terms in this equation to zero 
except the first line

There are two (complex) solutions to this 
equation due to the quadratic nature of the 
propagators
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How it works...

Two values are enough given the functional form for the 
spurious term. We can immediately determine the Box 
coefficient

By choosing other values for l, that set other combinations of 
4 “denominators” to zero, we can get all the Box coefficients
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How it works...
Now that we have all the Box coefficients we can start choosing values 
for l that set 3 “denominators” to zero to get the Triangle coefficients. Of 
course, now both the first and the second lines contribute.

We already have solved the coefficients of the first line in the previous 
iteration, so also here there is only a simple system of equations to solve

Once we have all the Triangle coefficients, we can continue to determine 
the Bubble coefficients; and finally the Tadpole coefficients
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How it works...

For each phase-space point we have to solve the system of 
equations

Due to the fact that the system reduces when picking special 
values for the loop momentum, the system greatly reduces

We can decompose the system at the level of the amplitude, 
diagram or in between. As long as we provide the corresponding 
numerator function. In MadGraph we decompose diagram by 
diagram, but we are considering improvements

For a given phase-space point, we have to compute the numerator 
function several times (~50 or so for a 2 → 3 process)

20
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A classical example
Suppose we want to
compute this integral

So we that the numerator is 

We know that we need only Box, Triangle, Bubble (and Tadpole) 
contributions. Let’s find the first Box integral coefficient.

Take the two solutions of

And use the relation we found before and we directly have
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Complications in d 
dimensions

In the previous consideration I was very sloppy in considering if 
we are working in 4 or d dimensions

In general, external momenta and polarization vectors are in 4 
dimensions; only the loop momentum is in d dimensions

To be more correct, we compute the integral
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Implications

The decomposition in 
terms of scalar integrals 
has to be done in d 
dimensions

This is why the rational 
part R was needed

23
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Figure 1: An n-point one-loop diagram with m propagators in the loop. The dark blob represents
a tree structure.

The values of the integers Mi depend on the particular diagram considered (e.g. in fig. 1

we have M1 = 1, M2 = 3, M3 = 6), but they must always fulfill the following conditions:

1 ≤ Mi < Mi+1 , Mm = n =⇒ p0 = 0 , (3.5)

where the last equality of eq. (3.5) follows from eq. (3.2). The inverses of the loop propa-

gators in d and four dimensions we denote by D̄ and D respectively. Hence:

D̄i = (!̄+ pi)
2 −m2

i = Di + !̃2 ≡ (!+ pi)
2 −m2

i + !̃2 , 0 ≤ i ≤ m− 1 , (3.6)

which follows from eq. (3.3), and from the fact that the (−2ε)-dimensional parts of the

external four-vectors are equal to zero, since the ’t Hooft-Veltman scheme is adopted. Note

that mi is the mass of the particle flowing in the ith propagator, and therefore in general

p2i %= m2
i . As is known [14], the one-loop integral C can be expressed as a cut-constructible

part, i.e. a linear combination of scalar boxes, triangles, bubbles, and tadpoles, plus a (non

cut-constructible) remainder term R, called rational part:
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The essence of the OPP method is that of computing C by determining (in a numerical

manner) the set of coefficients and the rational part

d(i0i1i2i3), c(i0i1i2), b(i0i1), a(i0), R, (3.8)

– 10 –
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Rational terms

The main difference is that we get the rational terms (we 
already saw them in the Passarino-Veltman reduction)

In the OPP method, they are split into two contributions, 
generally called

Both have their origin in the UV part of the model, but only 
R1 can be directly computed in the OPP reduction and is 
given by the CutTools program

24

R = R1 +R2
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R1

The origin of R1 is coming is the denominators of the 
propagators in the loop

Of course, the propagator structure is known, so these 
contributions can be included in the OPP reduction

They give contributions proportional to
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R2

The other origin of rational terms is the numerator itself. For integrals 
with rank > 2 we can have dependence in the numerator that is 
proportional to 

Unfortunately, this dependence can be quite hidden; maybe it is only 
explicitly there after doing the Clifford algebra

Because we want to solve the system without doing this algebra 
analytically (we want to solve it numerically) we cannot get these 
contributions directly within the OPP reduction

Within a given model, there is only a finite number of sources that can 
give these contributions; They have all been identified within the SM, 
and can be computed with the “R2 counter terms”

26
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R2 Feynman rules
Given that the R2 contributions are of UV origin, only up to 4-point 
functions contribute to it (in a renormalizable theory)

They can be computed using special Feynman rules, similarly to the 
UV counter term Feynman rules needed for the UV renormalization, 
e.g.

Unfortunately these Feynman rules are model dependent.
⇒ Maybe we can use FeynRules+FeynArts to compute them for any 
model?
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Figure 2: Effective vertices contributing to R2 in pure QCD.
∑

P (234) stands for a summation over
the six permutations of the indices 2, 3 and 4, and {taitaj} ≡ taitaj + taj tai . λHV = 1 in the HV
scheme and λHV = 0 in the FDH scheme. Ncol is the number of colors and Nf is the number of
fermions running in the quark loop.

– 5 –

[Draggiotis, Garzelli, Papadopoulos, Pittau]



Rikkert Frederix, University of Zurich

improvement over 
Passarino-Veltman

In PV reduction, we need analytic expressions for all the integrals. Possible 
to automate, but in practice too many terms which are difficult to simplify

In OPP reduction we reduce the system at the integrand level.

We can solve the system numerically: we only need a numerical function 
of the (numerator of) integrand. We can set-up a system of linear 
equations by choosing specific values for the loop momentum l, 
depending on the kinematics of the event

Choosing l such that internal propagators go on-shell, enormously 
simplifies the resulting system

OPP reduction is implemented in CutTools (publicly available). Given 
the integrand, CutTools provides all the coefficients in front of the scalar 
integrals and the R1 term

Analytic information is needed for the R2 term, but can be compute once 
and for all for a given model
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In MadGraph

MadGraph is very good at giving numerical 
expressions for matrix elements. Exactly what is 
needed by CutTools to get the coefficients of the scalar 
integrals

However, it is only tree-level...

Needed to create an add-on to MadGraph to generate 
loop diagrams: MadLoop!
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MadLoop
Instead of writing a new code to generate loop diagrams, we use the existing, 
well-tested MadGraph code to generate tree-level diagrams

A loop diagrams with the loop cut open has to extra external particles. 
Consider e+e- ➞ u* ubar* u ubar (loop particles are denoted with a star). 
MadGraph will generate 8 L-cut diagrams. Here are two of them:

30

All diagrams with two extra 
particles are generated and the 
ones that are needed are 
filtered out

Each diagram gets an unique 
tag: any mirror and/or cyclic 
permutations of tags of 
diagrams already in the set are 
taken out

Additional filter to eliminate 
tadpoles and bubbles attached 
to external lines

≡

≡

Diag 1 = [u⇤(6)g⇤(5)u⇤(A)]

Diag 3 = [u⇤(A)u⇤(6)g⇤(5)]
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MadLoop
Several new features needed to be implemented in MadGraph

Recognition of the loop topologies in order to filter L-cut diagrams

Structure to deal with two MadGraph processes simultaneously (L-cut 
and Born-like)

Treat the color to obtain the correct interference between the Born and 
the loop diagrams

Special form of the integrand for CutTools: no propagator denominators, 
complex momenta and reconstruction of the missing propagator for 
sewed particles (e.g., when L-cut particle is a gluon, ∑ϵµ(p)ϵν(p) ➞ gµν )

Implementation of QCD ghosts

Implementation of the special vertices for the rational part R1 and the 
UV renormalization
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There are (almost) always phase-space points for which the 
numerical reduction to determine the coefficients in front of the scalar 
integrals does not work due to numerical instabilities

CutTools has build-in routines to determine if a phase-space point is 
exceptional or not

CT can ask MadLoop to evalutate the integrand at a given loop 
momentum and check if the result is close enough to the one from 
the reconstructed integrand

By sending                         CT has an independent reconstruction 
of the numerator and can check if both match

Using quadruple precision numerics in the reduction helps, but not 
always

MadLoop:
Exceptional PS points
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When CutTools assigns a phase-space point to be unstable, MadLoop 
tries to cure it

Check if the Ward Identity holds at a satisfactory level

Shift the phase-space point by rescaling one of the components of 
the 3-momenta (for all particles), e.g.                              , and 
adjusting the energy components to keep the point on-shell

Provide an estimate of the virtual of the original phase-space 
point (with uncertainty)                                           where

If all shifts fail (very rarely) use the median of the results of the last 
100 stable points and the median absolute deviation (MAD (!)) to 
determine the associated uncertainty
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MadLoop:
Exceptional PS points
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MadLoop: limitations
Of course, there are some limitations on what the code cannot do yet...

No four-gluon vertex at the Born level: the special vertex to compute 
the remainder is too complicated to implement in MadGraph v4

If EW bosons appear in the loops, the reduction by CutTools might 
not work because we use gauge a physical gauge (rank of diagrams 
can become too large) 

No finite-width effects for massive particles also appearing in the loops

All Born contributions must factorize the same power of all coupling 
orders
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Figure 2: Effective vertices contributing to R2 in pure QCD.
∑

P (234) stands for a summation over
the six permutations of the indices 2, 3 and 4, and {taitaj} ≡ taitaj + taj tai . λHV = 1 in the HV
scheme and λHV = 0 in the FDH scheme. Ncol is the number of colors and Nf is the number of
fermions running in the quark loop.
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On-going improvements
The MadLoop code is being rewritten in MadGraph v5. This will:

remove the limitations presented on the previous slide

make it faster:

Recycling of tree-structures attached to the loops

Identify identical contributions (e.g. massless fermion loops of 
different flavors)

Call CutTools not per diagram, but per set of diagrams with the 
same loop kinematics

Use recursion relations (will mostly help the real-emission 
corrections)

allow for the automatic generation of UV renormalization and 
remainder vertices using FeynRules [Christensen, Duhr et al.] for BSM physics
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Local checks

36

Ref. [33]: A. van Hameren et al. arXiv:0903.4665

The numerics are pin-point on analytical 
data, even with several mass scales.

Analytic computation via an 
implementation of the formulae found in  
a paper by J.J. van der Bij & N. Glover

~25 processes checked against known 
results (24 pages appendix of MadLoop 
paper, arXiv:1103.0621)

We believe the code is very robust - e.g., 
MadLoop helped to find mistakes in 
published NLO computations 
implementations (pp ➞ Zjj, pp ➞ W+W+jj)
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Integrated results
Errors are the MC integration 
uncertainty only

Cuts on jets, γ*/Z decay products 
and photons, but no cuts on b 
quarks (their mass regulates the 
IR singularities)

Efficient handling of exceptional 
phase-space points: their 
uncertainty always at least two 
orders of magnitude smaller than 
the integration uncertainty

Running time: two weeks on 
~150 node cluster leading to 
rather small integration 
uncertainties

MadFKS+MadLoop results are 
fully differential in the final states 
(but only parton-level)

Process µ nlf Cross section (pb)

LO NLO

a.1 pp→ tt̄ mtop 5 123.76±0.05 162.08±0.12

a.2 pp→ tj mtop 5 34.78±0.03 41.03± 0.07

a.3 pp→ tjj mtop 5 11.851±0.006 13.71± 0.02

a.4 pp→ tb̄j mtop/4 4 25.62±0.01 30.96± 0.06

a.5 pp→ tb̄jj mtop/4 4 8.195±0.002 8.91± 0.01

b.1 pp→ (W+ →)e+νe mW 5 5072.5±2.9 6146.2±9.8

b.2 pp→ (W+ →)e+νe j mW 5 828.4±0.8 1065.3±1.8

b.3 pp→ (W+ →)e+νe jj mW 5 298.8±0.4 300.3± 0.6

b.4 pp→ (γ∗/Z →)e+e− mZ 5 1007.0±0.1 1170.0±2.4

b.5 pp→ (γ∗/Z →)e+e− j mZ 5 156.11±0.03 203.0± 0.2

b.6 pp→ (γ∗/Z →)e+e− jj mZ 5 54.24±0.02 56.69± 0.07

c.1 pp→ (W+ →)e+νebb̄ mW + 2mb 4 11.557±0.005 22.95± 0.07

c.2 pp→ (W+ →)e+νett̄ mW + 2mtop 5 0.009415±0.000003 0.01159±0.00001

c.3 pp→ (γ∗/Z →)e+e−bb̄ mZ + 2mb 4 9.459±0.004 15.31± 0.03

c.4 pp→ (γ∗/Z →)e+e−tt̄ mZ + 2mtop 5 0.0035131±0.0000004 0.004876±0.000002

c.5 pp→ γtt̄ 2mtop 5 0.2906±0.0001 0.4169±0.0003

d.1 pp→W+W− 2mW 4 29.976±0.004 43.92± 0.03

d.2 pp→W+W− j 2mW 4 11.613±0.002 15.174±0.008

d.3 pp→W+W+ jj 2mW 4 0.07048±0.00004 0.1377±0.0005

e.1 pp→HW+ mW +mH 5 0.3428±0.0003 0.4455±0.0003

e.2 pp→HW+ j mW +mH 5 0.1223±0.0001 0.1501±0.0002

e.3 pp→HZ mZ +mH 5 0.2781±0.0001 0.3659±0.0002

e.4 pp→HZ j mZ +mH 5 0.0988±0.0001 0.1237±0.0001

e.5 pp→Htt̄ mtop +mH 5 0.08896±0.00001 0.09869±0.00003

e.6 pp→Hbb̄ mb +mH 4 0.16510±0.00009 0.2099±0.0006

e.7 pp→Hjj mH 5 1.104±0.002 1.036± 0.002

Table 2: Results for total rates, possibly within cuts, at the 7 TeV LHC, obtained with MadFKS

and MadLoop. The errors are due to the statistical uncertainty of Monte Carlo integration. See
the text for details.

• In the case of process c.5, the photon has been isolated with the prescription of

ref. [13], with parameters

δ0 = 0.4 , n = 1 , εγ = 1 , (2.3)

and parton-parton or parton-photon distances defined in the 〈η,ϕ〉 plane. The photon
is also required to be hard and central:

p(γ)T ≥ 20 GeV ,
∣∣∣η(γ)

∣∣∣ ≤ 2.5 . (2.4)
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Summary
One-loop integrals can be written as coefficients a, b, c and d times scalar 
functions and a rational part R

The traditional approach for computing one-loop diagrams (Passarino-
Veltman reduction) becomes more and more complicated and difficult to 
automate when the number of external particles increases

The OPP reduction works at the integrand level: choosing specific values 
of the loop momentum results in a linear system of equations, which can be 
solved numerically

MadGraph has been extended to compute loops by using the OPP 
reduction as implemented in the CutTools computer code

MadLoop generates loop diagrams by cutting them open, which results in 
tree-level diagrams with two extra external particles

CutTools provides the values for which the numerator should be computed 
numerically and solves the resulting system of equations numerically
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