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PERTURBATIVE
EXPANSION

&ab—>X (§, UE, ,ILR) Parton-level cross section

/A

¢ The parton-level cross section can be computed as a series 1n
perturbation theory, using the coupling constant as an expansion
parameter
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% Including higher corrections improves predictions and reduces
theoretical uncertainties
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan production
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STANDARD APPROACH

V2
N

¢ Passarino-Veltman reduction:
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“completing the square”

Al

#* Let’s do an example:
Suppose we want to calculate this triangle integral
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BASIS OF SCALAR
INTEGRALS

1-1 S
M L-loop Z dioiligig BOXioiligig The a, .b, C, d and R
= coefthcients depend only
10<11<12<13
on external parameters
—+ Z Cigiiio TrlangleioiliQ and momenta
10<11 <19 l+pz) 2
+ ) b;,;, Bubble;,,
L o ron Tadpole, /
10<?1
+ Z a;, Ladpole;_ Bubble;;, = /
10
Triangle; ; ;. = dl
+ R+ O(e) 102 D; D D,
1
BOXiyiyigis = | d’I
OX 0t1t2¢t3 Dio DilDiQ D?;3

% All these scalar integrals are known and available in computer libraries
(FF [v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])
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DIVERGENCES

1-1
MR = Z d’ioi1i2i3BOXioi1i2i3 D; = (1 -|—p7;)2 - mzz
10<11<12<13 1
, Tadpole; = / dl

—|_ Z CiOil 19 Trlang].ez()zl io Dio
e 1

—I_ Z bioilBUbble’iOil . d 1
s Triangle; ;, ,, = [ d lDz'o D;. D,

| 1
" ; Do Tadpo}ei() BoXigirizis = ddlDio D; D;,D;,
0
+R + Ofe)

% The coethcients d, ¢, b and a are finite and do not contain poles in 1/€ and are finite

% The 1/e dependence is 1n the scalar integrals (and the UV renormalization)

% When we have solved this system (and included the UV renormalization) we have
the full dependence on the soft/collinear divergences in terms of coefficients in
front of the poles. These divergences should cancel against divergences in the real
emission corrections (according to KLLN theorem)
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AUTOMATION

Al

#* Advantage:

Al

¢ The method above can be straight-forwardly generalized to
any one-loop integral (appearing in a renormalizable theory)

Al

#* Disadvantage:

Al

% For relatively simple processes, the number of terms already
explodes (several 100 MB of code is no exception for the matrix elements of a

2 — 3 process); simplifications require hard work and are
dithcult to do 1n a general way

R

% Does only work when the integrals are known analytically
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One indicator of NLO progress

pp 2> W + 0 jet
pp 2> W + 1 jet
pp 2> W + 2 jets
pp 2> W + 3 jets

pp 2> W + 4 jets
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NEW LOOP TECHNIQUES

Al

% The “loop revolution”: new techniques for computing one-loop
matrix elements are now established:

Al
ZI\

% Generalized unitarity (e.g. BlackHat, Rocket, ...)
[Bern, Dixon, Dunbar, Kosower, 1994...; Ellis Giele Kunst 2007 + Melnikov 2008;...]

\I
[\

Al
Z\

Integrand reduction (e.g. CutTools, Sumarai)

[Ossola, Papadopoulos, Pittau 2006; del Aguila, Pittau 2004; Mastrolia, Ossola, Reiter,
Tramontano 2010;...]

NI
[\

Al
Z\

Tensor reduction (e.g. Golem)

[Passarino, Veltman 1979; Denner, Dittmaier 2005; Binoth Guillet, Heinrich, Pilon,
Reiter 2008]
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INTEGRAND REDUCTION

% Any one-loop integral can be decomposed 1n scalar integrals

* The task 1s to find these coethicients ethiciently (analytically
or numerically)

reduction method 1s a method that has been automated 1in the
CutTools program to find these coefficients in an automated

way

% The integrand reduction technique i1s what we have adopted
to use in MadGraph to compute the loop diagrams

10
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AT THE INTEGRAND
LEVEL

Ml—lOOP — Z diOiliQiSBOXiOiliQiS

¢ The decomposition to scalar integrals G0 <ty <iz<is

pres.ented betore works at the level of 4 Z Ciiyi, Triangle; ; ;-

the 1ntegrals 10<t1<ig
¢ If we would know a similar relation at T Z bigi, Bubbley,;,

the integrand level, we would be able (o=

to manipulate the integrands and +- Z ai, Tadpole;,

extract the coefhicients without doing o

the integrals +R + O(e)

% This 1s exactly what the OPP reduction does

¢ The decomposition 1s the same, except that there might be
contributions that integrate to zero
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¢ Consider, e.g., the Box coefhicient:

L A%l !

ottt g0 Iig, 1,
Ol ottt

D;,D;i, D;,D;,

_ /ddldioi1i2i3 +di0i1i2733 (l)
Dy, Dy, Di, Dy,

d d

TR s, @i A B

d?l

ddl dioi1i2i3 (l) —0
Dy, Di, D, D,

where

A

¢ And similarly for the ¢, 4, a and R terms

2

% The contributions that vanish when doing the integral are called

“ ° »
spurious terms
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loop diagram with n
external momenta

1S

DoD1Dg -+ Dy 1

D; = (I +p:)* —m]
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OPP DECOMPOSITION

% For the numerator of any integrand of a one- DoD1Ds -+ Dy,

loop computation we can therefore write 5 5
p €Omp D; = (I+p;)" —m;

m—1 m—1
N(l) — Z [dioi1i2i3 T dioi1i2i3 (l)} D;
10<t1<i2<1i3 1710,%1,12,13
m—1 m—1
+ Z [Cioilig + Cigiyi (l)} H D;
10<11 <12 ’i#’ig,’il,’iz
m—1 ~ m—1
+ Z [bioil +bi0i1(l)] H D;
10<%1 170,11
m—1 m—1
10 ’i#’io
m—1
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NUMERICAL
EVALUATION

KA

¢ By choosing specific values for the loop momentum /, we end up
with a system of linear equations

Al

% In a renormalizable theory, the rank of the integrand 1s always
smaller (or equal) to the number of particles in the loop (with

a conveniently chosen gauge)

% We can straight-forwardly set the it up by sampling the
numerator numerically for various values of the loop
momentum /

A

% By choosing / smartly, the system greatly reduces

A

2 In particular when we chose /to be a complex 4-vector

16
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FUNCTIONAL FORM OF
THE SPURIOUS TERMS

R

% The functional form of the spurious terms 1s known (it
depends on the rank of the integral and the number
propagators in the loop) [del Aguila, Pittau 2004]

\I

¢ for example, a box coethicient from a rank 1 numerator 1s

7 _ Vpo VPO

Digiyinis (1) = digiyizis €77 1M pyp3
(remember that Pi 1S the sum of the momentum that has
entered the loop so far, so we always have pg = 0)

A

% The integral 1s zero

~

gy Bioinizis (1) _ ~ /ddf“”p" Ipiphps _

DoD,DyDs l0frizis DoD:1 Dy D5
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HOW IT WORKS...

m—1 m—1

NO= ) [dioilz‘gig + Jioilizig(l)} D;
10<11<12<13 1710,%1,12,13
m—1 m—1
+ D [Cz'oz'liz + E’ioiliz(l)} [ D
10<11 <12 1710,11,%2
- . ; To solve the OPP reduction, choosing special
+ ; { ioin T Diia } H Di values for the loop momenta helps a lot
10<1?1 { ZOa'Ll
] For example, choosing / such that
+ 3 Jaig + s, (1) H D, N A N N
i0 1710 Do(l ):Dl(l ):DQ(Z ):Dg(l ):O
m—1
+P() ] D: sets all the terms 1n this equation to zero
i except the first line

There are two (complex) solutions to this
equation due to the quadratic nature of the
propagators
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HOW IT WORKS...

m—1
N(1*) = do123 + dor25(1™) H D;(I™)
i#£0,1,2,3

¢ Two values are enough given the functional form for the
spurious term. We can immediately determine the Box

coefhcient
oo NeH . N
0123 — = m— 1 I —] B
2| [lizo 123 D7) Tlizo123Di(l7)

A

¢ By choosing other values for /, that set other combinations of
4 “denominators” to zero, we can get all the Box coefhicients

18
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[ l  m oy W e R TANT L7 O™
rnovw 11 WORNKD...

Al

% Now that we have all the Box coefthcients we can start choosing values
for I that set 3 “denominators” to zero to get the Triangle coetficients. Of
course, now both the first and the second lines contribute.

m—1 m—1

N(l) - Z [di0i1i2i3 + d~’io?31’i2i3 (l)} D;

10<11<12<13 1#10,21,12,13

m—1
T Z [Cioilh T Eioi1i2 (l)} H Dz

10<11<12 120,21 ,12

% We already have solved the coethcients of the first line in the previous
iteration, so also here there is only a simple system of equations to solve

Al

% Once we have all the Triangle coefhicients, we can continue to determine

the Bubble coethcients; and finally the Tadpole coethicients

Rikkert Frederix, University of Zurich =



A7 I V\AT/NTO L7 O~
HOW IT WORKS..

K2

¢ For each phase-space point we have to solve the system of
equations

Al

% Due to the fact that the system reduces when picking special
values for the loop momentum, the system greatly reduces

2

% We can decompose the system at the level of the amplitude,

diagram or in between. As long as we provide the corresponding
numerator function. In MadGraph we decompose diagram by

diagram, but we are considering improvements

Al

% For a given phase-space point, we have to compute the numerator
function several times (~50 or so for a 2 — 3 process)

Rikkert Frederix, University of Zurich
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A CLASSICAL EXAMPLE

% Suppose we want to dd / 1
compute this integral DoD1DsDs Dy Ds Deg
% So we that the numerator 1s N(l) — ] DZ- — (l -+ pi)Q — m?

¢ We know that we need only Box, Triangle, Bubble (and Tadpole)

contributions. Let’s find the first Box integral coefficient.

¢ Take the two solutions of

Do(I™) = D1(I7) = Da(I™) = D3(I7) =0

% And use the relation we found before and we directly have

1 1 1

do123 = 5 D4(I1)D5(I7)Dg(it) " D4(1=)D5(1=)Dg (1)

Rikkert Frederix, University of Zurich 21



COMPLICATIONS IN D
DIMENSIONS

“¢ In the previous consideration | was very sloppy in considering if
we are working in 4 or d dimensions

¢ In general, external momenta and polarization vectors are in 4
dimensions; only the loop momentum 1s in d dimensions

%¢ To be more correct, we compute the integral

/ddl S / \
DoD1D3 -+ - Dy, g d dim 4 dim epsilon dim

Di=(l+p)2 —m?=(1+p)?—m2+1?=D, +[?

. 1=0 [-p; =1 p; L l=1-1+1-1

22
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A
N

¢ The decomposition 1n
terms of scalar integrals

has to be done in d
dimensions

RV
K\

N

This is why the rational
part R was needed
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RATIONAL TERMS

Al

% The main difference 1s that we get the rational terms (we
already saw them 1n the Passarino-Veltman reduction)

% In the OPP method, they are split into two contributions,
generally called

R=R;+ R5

¢ Both have their origin in the UV part of the model, but only
Ri1 can be directly computed in the OPP reduction and 1s

given by the CutTools program

24

Rikkert Frederix, University of Zurich



R

R

propagators in the loop

1

1 1

D;

~

D, D

ZQ

— = 1 —

D;

% The origin of R is coming is the denominators of the

contributions can be included in the OPP reduction

Al

[2

i
D;D;
72
d%] — f _
D;D; D,
[4

7 P —
D;D; D, D,

Rikkert Frederix, University of Zurich

i |
—— |m; +m

2

J

% They give contributions proportional to

(pi — pj)?

3

+ O(e)
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S

% The other origin of rational terms 1s the numerator itself. For integrals
with rank > 2 Wgz can have dependence in the numerator that 1s
proportional to {

R

¢ Unfortunately, this dependence can be quite hidden; maybe it 1s only
explicitly there after doing the Clifford algebra

¢ Because we want to solve the system without doing this algebra

analytically (we want to solve it numerically) we cannot get these
contributions directly within the OPP reduction

RV
K

¢ Within a given model, there 1s only a finite number of sources that can
give these contributions; They have all been 1dentified within the SM,
and can be computed with the “Ro counter terms”

26
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R> FEYNMAN RULES

¢ Given that the Ro contributions are of UV origin, only up to 4-point
functions contribute to it (in a renormalizable theory)

Al

% They can be computed using special Feynman rules, similarly to the
UV counter term Feynman rules needed for the UV renormalization,

e.g.
L ig? N2, —1
" g col
—@ — O0r.1(— 2 p)
I A 1672 2N, k(=P + 2mq) Anv
k
3 2
1g° N —1
— — t 14+ A

[ Draggiotis, Garzelli, Papadopoulos, Pittau]

Al

s Unfortunately these I eynman rules are model dependent.
= Maybe we can use FeynRules+FeynArts to compute them for any

model?
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IMPROVEMENT OVER
PASSARINO-VELTMAN

¢ In PV reduction, we need analytic expressions for all the integrals. Possible
to automate, but in practice too many terms which are difficult to simplify OO

Al

¢ In OPP reduction we reduce the system at the integrand level.

¢ We can solve the system numerically: we only need a numerical function
of the (numerator of) integrand. We can set-up a system of linear o

equations by choosing specific values for the loop momentum /
depending on the kinematics of the event

¢ Choosing [ such that internal propagators go on-shell, enormously ©
simplifies the resulting system

% OPP reduction 1s implemented in CutTools (publicly available). Given ©
the integrand, CutTools provides all the coefficients in front of the scalar
integrals and the Ri term

¢ Analytic information is needed for the Ro term, but can be compute once

and for all for a given model
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IN MADGRAPH

KA

¢ MadGraph 1s very good at giving numerical
expressions for matrix elements. Exactly what 1s
needed by CutTools to get the coefficients of the scalar
integrals

A

¢ However, it 1s only tree-level...

¢ Needed to create an add-on to MadGraph to generate
loop diagrams: MadLoop!

Rikkert Frederix, University of Zurich
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A

MADLOOP

¢ Instead of writing a new code to generate loop diagrams, we use the existing,

well-tested MadGraph code to generate tree-level diagrams

A

% A loop diagrams with the loop cut open has to extra external particles.

Consider e*e” = u® ubar® u ubar (loop particles are denoted with a star).
MadGraph will generate 8 L-cut diagrams. Here are two of them:

A
K7\

A
KZ\§

Rikkert Frederix, University of Zurich

1

All diagrams with two extra
particles are generated and the
ones that are needed are
filtered out

Each diagram gets an unique 2

tag: any mirror and/or cyclic
permutations of tags of 1
diagrams already in the set are
taken out

Additional filter to eliminate
tadpoles and bubbles attached

to external lines

30



% Several new features needed to be implemented in MadGraph

Rikkert Frederix, University of Zurich

MADLOOP

Al

¢ Recognition of the loop topologies in order to filter L-cut diagrams

A

% Structure to deal with two MadGraph processes simultaneously (L-cut
and Born-like)

% Treat the color to obtain the correct interference between the Born and
the loop diagrams

Al

¢ Special form of the integrand for CutTools: no propagator denominators,
complex momenta and reconstruction of the missing propagator for
sewed particles (e.g., when L-cut particle 1s a gluon, Y€r(p)€v(p) = g)

2
7

% Implementation of QCD ghosts

¢ Implementation of the special vertices for the rational part R and the
UV renormalization

31



MADLOOP:
EXCEPTIONAL PS POINTS

Al

% There are (almost) always phase-space points for which the
numerical reduction to determine the coefficients in front of the scalar
integrals does not work due to numerical instabilities

KA

% CutTools has build-in routines to determine if a phase-space point 1s
exceptional or not

Al

# CT can ask MadLoop to evalutate the integrand at a given loop

momentum and check if the result 1s close enough to the one from
the reconstructed integrand

% By sending m; — m; + M? CT has an independent reconstruction
of the numerator and can check if both match

% Using quadruple precision numerics 1n the reduction helps, but not
always

32
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MADLOOP:
EXCEPTIONAL PS POINTS

% When CutTools assigns a phase-space point to be unstable, MadLoop

tries to cure it

Al

% Check 1if the Ward Identity holds at a satistactory level

Al

#¢ Shift the phase-space point by rescaling one of the components of
the 3-momenta (for all particles), e.g. k? = (1+ )\i)k,? , and
adjusting the energy components to keep the point on-shell

% Provide an estimate of the virtual of the orlglnal phase -space
point (with uncertainty) ViV = |Ab0m (c = A) where

1
_ FIN FIN FIN _ FIN FIN __
¢ = 2 (v)\_|_ + Uy > A= ‘UA+ Ux- Unt |Ab07"n 2

VFIN

s 1t all shatts fail (Very rarely) use the median of the results of the last
100 stable points and the median absolute deviation (MAD (1)) to
determine the associated uncertainty
Rikkert Frederix, University of Zurich 53



MADLOOP: LIMITATIONS

% Of course, there are some limitations on what the code cannot do yet...

R

* No four-gluon vertex at the Born level: the special vertex to compute
the remainder 1s too complicated to implement in MadGraph v4

H1,a1 H2,a2

_ _ig4Ncol Z |: 5a1a25a3a4 + 5a1a35a4a2 + 5a1a45a2a3
967’(’2 Ncol
P(234)

4,04 Kn3,a3
+ A Tr (191493492494 4 $91404492193) (3 4 Ay

— Tr({t™ 2} {t%3¢Y) (5 4 2)\Hv)] NG T

Ny 5)
—|—12N—T7“(ta1ta2ta3ta4) (gg/uusglmﬂl — Gurpousps — guguggmm) }

col

Al

% If EW bosons appear in the loops, the reduction by CutTools might

not work because we use gauge a physical gauge (rank of diagrams
can become too large)

KA

% No finite-width effects for massive particles also appearing in the loops

A

% All Born contributions must factorize the same power of all coupling

orders
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% The MadlLoop code 1s being rewritten in MadGraph v5. This will:

A

¢ remove the limitations presented on the previous slide

A

% make 1t faster:

¢ Identify identical contributions (e.g. massless fermion loops of
different flavors)

Al

# Call CutTools not per diagram, but per set of diagrams with the
same loop kinematics

# Use recursion relations (will mostly help the real-emission
corrections)

 allow for the automatic generation of UV renormalization and

remainder vertices using FeynRules [Christensen, Dubr et al] for BSM physics
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LOCAL CHECKS

uit -+ W W~bb MabpLoor Ref. [33]
ag 2.338047209268890E-008 2.338047130649064E-008
Cc.2 -2.493920703542680E-007 -2.493916939359002E-007
c.] -4.885901939046758E-007 -4.885901774740355E-007
Co -2.775800623041098E-007 =2.775787767591390E-007
gg — WHW~bb
ag 1.549795815702494E~-008 1.549794572435312E-008
C-2 -2.686312747217639E-007 =-2.686310592221201E-007
c_1 -6.078687041491385E-007 -6.078682316434646E-007
Co -5.519004042667462E-007 -5.519004727276688E-007

Ref. [33]: A. van Hameren et al. arXw:0905.9665

The numerics are pin-point on analytical

data, ecven Wlth several mass SC&IGS.

Analytic computation via an

implementation of the formulae found in

a paper by J.J. van der Bij ¢5 N. Glover

Rikkert Frederix, University of Zurich

~25 processes checked against known

results (24 pages appendix of Madl.oop
paper, arXiv:1103.0621)

We believe the code 1s very robust - e.g.,
MadLoop helped to find mistakes in
published NLLO computations
implementations (pp = Zjj, pp = W*W))

S —
1.2x10°* [ gg -> Zg (axial contributions only)

=0~ MadLoop
Analytic

vvvvvv T ™ rrrrr.y ™ LI ™ | B

1x107* i
8x107° [
6x107 [
4x10'5: i\‘

2x10™°
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INTEGRATED RESULTS

Process v N ¢ Cross section (pb)
¢ Errors are the MC integration LO NLO
uncertainty only al ppotf Miop 5 123.76 £0.05 162.08 +0.12
a.2 pp—tj Miop 5 34.78 +£0.03 41.03 £0.07
s« Cuts on jets, Y/Z decay PI’OdUCtS a.d pp—>t‘z]' Miop 5) 11.851 £0.006 13.71+£0.02

d oh b b a.d  pp—thj Miop/4 4 25.62 +0.01 30.96 & 0.06
and photons, but no cuts on a5 pp—thjj Mgop,/4 4 8.195 +0.002 8.91+0.01
quar ks (the.lr. mass regulates the =™ 75 S T myw 5 50725429 6146.2 £9.8
IR singularities) b2 pp— (W =)etr,j My 5 828.440.8 1065.3 +1.8

b3 pp— (W+ —)etvejj my 5 298.8 4 0.4 300.3 £ 0.6
% Efficient handling of exceptional b4 p— (/2 —>)6+ myz 5 1007.0£0.1 1170.0+2.4
: : Z 156.11 £ 0. 203.0 £ 0.2
phase-space points: their 5 w62 =) mz ; 06.11:£0.03 03.0£0
. b.6 pp— (v /Z —>)e+e 919 myz 5 54.24 +0.02 56.69 £ 0.07
uncertainty always at least two -

d ¢ . ler th cl pp—o (W+ —=)etvbb  mw +2m, 4 11.557 & 0.005 22.95 £ 0.07
orders of magmitude smaller than  , gy vp  mw £2mw, 5 0.0094154£0.000003  0.01159 +0.00001
the Integration uncertainty c3 pp—(v* /Z —)ete bb  mz+2m, 4 9.459 4 0.004 15.31+0.03

cd pp—o(V*)Z =)ete tE  mz+2mp 5 0.00351310.0000004 0.004876 +0.000002
S Running time: two Weeks on c.b pp—)’ytf thop 5 0.2906 £ 0.0001 0.4169 +0.0003
~150 node cluster leading to d1l pp—WHTW- 2myy 4 29.976 +0.004 43.92 4+ 0.03
rather small integration d2 ppoWHW—j 2myy 4 11.613 £0.002 15.174 £ 0.008
. d.3 ppoWHWHjj 2myy 4 0.07048 £ 0.00004 0.1377 £0.0005
uncertainties
el pp— HW mw +mg 5 0.3428 +0.0003 0.4455 £ 0.0003
e2 pp— HW™; mw +myg 5 0.1223 +0.0001 0.1501 £ 0.0002
MadFKS +Ma_dIfOOP results are e3 pp—HZ mz+mg 5 0.2781 +0.0001 0.3659 + 0.0002
fully differential in the final states .4 pp—HZ j myz +my 5 0.0988 £ 0.0001 0.1237 40.0001
(but only parton-level) e5 pp— Ht Miop + My 5 0.08896 £ 0.00001 0.09869 = 0.00003
e.6 pp— Hbb my+my 4 0.16510 = 0.00009 0.2099 = 0.0006
Rikkert Frederix, University of Zurich e7 pp—1Hjj MH D 1.104 +0.002 1.036 +0.002
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SUMMARY

¢ One-loop integrals can be written as coethcients a, b, ¢ and d times scalar
functions and a rational part R

Al

¢ The traditional approach for computing one-loop diagrams (Passarino-
Veltman reduction) becomes more and more complicated and difficult to
automate when the number of external particles increases

A

% The OPP reduction works at the integrand level: choosing specific values

of the loop momentum results in a linear system of equations, which can be
solved numerically

% MadGraph has been extended to compute loops by using the OPP

reduction as implemented in the CutTools computer code

A

#* MadLoop generates loop diagrams by cutting them open, which results in
tree-level diagrams with two extra external particles

A

¢ CutTools provides the values for which the numerator should be computed

numerically and solves the resulting system of equations numerically
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