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Searching for new 
physics
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Figure 2: Invariant mass spectrum of µ+µ� (left) and ee (right) events. The points with error
bars represent the data, and the filled histograms represent the expectations from SM processes:
Z/�⇥, tt, tW, diboson production, Z ⇤ ⇤⇤ and the multi-jet backgrounds. The open histogram
shows the signal expected for a Z⌅

SSM with a mass of 750 GeV.
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Figure 3: Cumulative distribution of invariant mass spectrum of µ+µ� (left) and ee (right)
events. The points with error bars represent the data, and the filled histogram represents the
expectations from SM processes.
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data and interpolated. Theory 
needed for parameter extraction 
(normalization, acceptance, ....)

En
tri

es
 / 

10
 G

eV
 

-110

1

10

210

310

410

En
tri

es
 / 

10
 G

eV
 

-110

1

10

210

310

410
 = 7 TeV)sData 2010 (

Standard Model
+jets, WW, WZ, ZZaZ/

, ttt
Dijets
W+jets
SU4+SM

ATLAS-1L dt ~ 35 pb0

O
verflow

Opposite Sign

 [GeV]T
missE

0 50 100 150 200 250 300 350 400

D
at

a/
M

C

0
2
4
6

 [GeV]T
missE

0 50 100 150 200 250 300 350 400

D
at

a/
M

C

0
2
4
6

Shape
Supersymmetry

Hard
Background shapes needed from 

theory. Flexible MC for both signal 
and background tuned and 

validated against data

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

-210

-110

1

10

210

310

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

-210

-110

1

10

210

310 Wj
aW

tt
WZ
ZZ
DY
WW

 10×HWW 
Data

-1 L = 5.9 fb0CDF Run II Preliminary

OS 0 Jets, Low S/B
2 = 165 GeV/cHM

NN Output

Rate
pp ➞ H ➞ W+W-

Very Hard
Background normalization and 

shapes need to be known very well. 
Interplay between the best theory 

prediction (via MC) and data

[MLM 2008]



Rikkert Frederix, University of Zurich

Leading order

For many of the theory predictions needed in the searches for 
new physics as well as measuring properties of the SM, leading 
order predictions are used

The reasons for this are clear:

In many regions of phase-space they do a decent job, in 
particular for shapes of distributions

Parton showers and hadronizations models are tuned to data 

Many flexible lowest order (LO) tools are readily 
available

Unfortunately LO predictions describe total rates rather poorly
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Need for NLO
If we would have the same flexible tools available at NLO, the 
experimental analyses will benefit a various ways:

NLO predictions predict rates much more precisely

Reduced theoretical uncertainties due to meaningful scale dependence

Shapes are better described

Correct estimates for PDF uncertainties

Even data-driven analyses might benefit: smaller uncertainty due to 
interpolation from control region to signal region

These accurate theoretical predictions are particularly needed for

searches of signal events in large backgrounds samples and

precise extraction of parameters (couplings etc.) when new physics 
signals have been found
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B pair production at 
the LHC

b-jet transverse momentum 
in b pair production

LO: Pythia,
NLO: POWHEG + Pythia

NLO: MC@NLO + Herwig

Shapes are well described by 
LO and by NLO

Normalization is well 
predicted at NLO

At NLO, theory uncertainties 
can be studied systematically 
(not shown in this plot)

5
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Why an automatic 
tool?

To save time
Less human time spending on computing matrix elements means 
more time available on physics and phenomenology.

Robustness
Modular code structure means that elements can be checked 
systematically and extensively once and for all. Trust can easily be 
build.

Wide accessibility
One framework for all. Available to everybody for an unlimited 
set of applications. Suitable for Experimental collaborations.
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SM status: since 
2007
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QCD and MC progress 
(simplified)

2003
2008 2009

2011

Matching:
ME+PS 
        (CKKW, MLM)

NLOwPS
        (MC@NLO, POWHEG)

New loop
techniques

Automatic
NLO results

Automatic
NLOwPS
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SM status: since a 
few months
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Contents of these 
lectures

These lectures will be about the concepts behind the 
computation of NLO corrections (as implemented in 
MadGraph)

Computing Loop corrections without doing integrals and 
using only tree-level matrix elements

Cancellation of infrared singularities (FKS subtraction)

Matching NLO to the parton shower: MC@NLO formalism

Tutorial

Please, interrupt me at any time if something is not clear!

11
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Not yet publicly 
available

Disclaimer:
Although NLO corrections are included in MadGraph (version 4) 
they are not yet publicly available. The reason is that the code is

still a bit slow (not possible to run on a single desktop for 
anything beyond a 2 → 2 process)

not yet completely general (some processes cannot be computed; 
and no warning is given if one tries)

The code is being rewritten in MG5. When this is done, it will be 
made publicly available

The tutorial will be based on MC@NLO
[Frixione, Webber; + collaborators]

12
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Master equation for 
hadron colliders

Parton-level cross section from matrix elements: model 
and process dependent

Parton density (or distribution) functions: process 
independent

Differences between colliders given by parton 
luminosities

14

Phase-space 
integral

Parton density 
functions

Parton-level 
cross section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b
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Perturbative 
expansion

The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter

Including higher corrections improves predictions and reduces 
theoretical uncertainties

15

Parton-level cross section⇥̂ab�X(ŝ, µF , µR)

NLO 
corrections

NNLO 
corrections

NNNLO 
corrections

⇤̂ = ⇤Born

⇤
1 +

�s

2⇥
⇤(1) +

��s

2⇥

⇥2
⇤(2) +

��s

2⇥

⇥3
⇤(3) + . . .
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Using matching is not doing a (N...)NLO computation
However, part of the NLO contributions are included, which is the 
reason that shapes are so well described, but normalization is off
Uncertainties are still large in a matched sample (although reduced 
from a prediction without matching

   KIAS MadGrace school, Oct 24-29 2011                                                            Parton shower and MLM matching Johan Alwall

...

...

PS →

ME 
↓

[Mangano]
[Catani, Krauss, Kuhn, Webber]

kT < Qc

kT > Qc

kT > Qc

kT > Qc

kT < Qc

kT < Qc

kT > Qc

kT < Qc

Merging ME with PS

Tuesday, October 25, 2011
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NLO corrections

There are two types of contributions to the NLO corrections:

Virtual (or Loop) corrections: formed by an amplitude 
with a closed loop of particles interfered with the Born 
amplitudes

Real emission corrections: formed by amplitudes with one 
extra parton compared to the Born process

Both have one power of αs extra compared to the Born 
process

17

�NLO =
�

m+1
d(d)�R +
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NLO predictions
As an example, consider Drell-Yan production

18
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Bottlenecks

Virtual amplitudes: how to compute the loops automatically 
in a reasonable amount of time

How to deal with infra-red divergences: virtual corrections 
and real-emission corrections are separately divergent and 
only their sum is finite (for IR-safe observables) according to 
the KLN theorem

How to match these processes to a parton shower without 
double counting

19
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one-loop integral

Consider this m-point 
loop diagram with n 
external momenta

The integral to compute is

21

k1 k2

k3

k4

k5

k6

kn

D0 D1

D2
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l
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Standard Approach

Passarino-Veltman reduction:

Reduce a general integral to “scalar integrals” by 
“completing the square”

Let’s do an example:
Suppose we want to calculate this triangle integral

22

Z
ddl

N(l)

D0D1D2 · · ·Dm�1
!

X

i

coe↵i

Z
ddl

1

D0D1 · · ·

p

q
p+ q

l

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =









. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .









, Ycollinear =









. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .









. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ε.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ε

s12s23

×
{

2

ε2

(

(−s12)
−ε + (−s23−)−ε

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ε) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ε. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27
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The only independent four vectors are pµ and qµ . Therefore, the integral 
must be proportional to those. We can set-up a system of linear equations 
and try to solve for C1 and C2

We can solve for C1 and C2 by contracting with p and q

where                                                (For simplicity, the masses are neglected here)

By expressing 2l.p and 2l.q as a sum of denominators we can express R1 
and R2 as a sum of simpler integrals, e.g. 
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ‖ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ‖ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2
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And similarly for R2

Now we can solve the equation

by inverting the “Gram” matrix G

and we have expressed our original integral

in terms of known, simpler integrals and we are done!
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ‖ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ‖ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ‖ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ‖ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =









. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .









, Ycollinear =









. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .









. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ε.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ε

s12s23

×
{

2

ε2

(

(−s12)
−ε + (−s23−)−ε

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ε) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ε. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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R2 =

Z
dnl

(2⇡)n
2l · q

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + q)2 � l2 � q2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + p)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� q2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2
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Higher point 
integrals

For loop integrals with many legs, 
the reduction to scalar integrals 
can still be performed

Only up to 4-point scalar integrals 
are needed (in 4 dimensions)!

The proof is beyond the scope of 
these lectures (it is straight forward by 
using the Van Neerven-Vermaseren basis 
for the loop momentum); it is related 
to the fact that in 4 dimensions 
only four 4-vectors can be linearly 
independent
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k1 k2

k3

k4

k5

k6

kn

D0 D1

D2

D3

Dm�1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3
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Basis of scalar 
integrals

The a, b, c, d and R 
coefficients depend only 
on external parameters 
and momenta
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M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

Tadpolei0 =
�

ddl
1

Di0

Bubblei0i1 =
�

ddl
1

Di0Di1

Trianglei0i1i2 =
�

ddl
1

Di0Di1Di2

Boxi0i1i2i3 =
�

ddl
1

Di0Di1Di2Di3

All these scalar integrals are known and available in computer libraries 
(FF [v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])

Di = (l + pi)
2 �m2

i
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About the R term
In our example the decomposition to scalar integrals was “exact”, i.e. there 
were no left-over terms.

This is true for most integrals. Only if the rank of the integral is

there are some extra contributions which are called “Rational terms” that 
are not proportional to a scalar integral

They are of UV origin and come from the 𝜖 (dimensional regulator) 
dependence of the integral times a scalar integral that is UV divergent

(The Bubble integrals are the only UV divergent integrals)

When taking the limit 𝜖 → 0, only the leading contribution remains, which 
are independent from the scalar integral itself
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r � max

n

(N � 1), 2)
o

∫

dnl

(2π)n
lµ

l2(l + p)2(l + q)2
=
(

p′µ q′µ
)

(

C ′
1

C ′
2

)

=
(

p′µ q′µ
)

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

The momentum corresponding to the singular eigenvalue is

q′µ = −δµ +
δ · pκ(1 + κ)

p2(1 + κ2)
= O(δ) (4.31)

R′
2 ∼ κ[2l · p]− [2l · q] ∼ O(δ) (4.32)

As expected the result for the tensor integral is finite in the limit δ → 0, but the vanishing
of R′

2 is not manifest; it is realized as a property of a combination of scalar integrals. One
approach would be to work in the primed basis, which would thus differ for every phase
space point. (Numerical problems halved?)

4.3 Rational terms by PV reduction

The rational part is related to the ultraviolet behavior of the theory; the naive expectation
is that the better the UV behavior, the “smaller” the rational part. When the integral
is free from the rational part, it is said to be “cut-constructible”. A natural expectation
is that the rational part is absent in UV-finite integrals. As we explain below, this
expectation turns out to be wrong; the correct result is that a Feynman N -point integral
is cut constructible, provided that tensor rank, r, of the integral satisfies the following
condition [11]

r < max{(N − 1), 2} . (4.33)

The condition is illustrated in Fig. 4.3. If this condition is violated the integral will
contain rational parts. Explicitly, Eq. (4.33) implies that the UV finite rank-two four-
point function is cut-constructible, whereas the UV-finite rank-three four-point function
is not.

In this section we give an proof of the condition that an integral has to satisfy for being
cut-constructible, Eq. (4.33). This proof is based on the Passarino-Veltman reduction.
We will proceed case-by-case for the two-, three- and four-point integrals which occur in
a renormalizable theory. The extension to higher point integrals will be performed at the
end. We first note that the Passarino-Veltman decomposition described in Section ??

and ??, yields the coefficients of the scalar integrals D0, C0, B0, A0 for arbitrary values of
the number of dimensions. Since the rational terms are related to UV singularities they
will show up at the end of the reduction as terms of the form

Rational terms ∼ εB0(p,m1,m2) , (4.34)

because B0 is the only UV divergent scalar integral. Such terms can only arise if the
reduction involves the dimensional parameter D. This means that integrals of rank r less
than two will always be cut-constructible, since their reduction coefficients are always D
independent. Ultraviolet divergent integrals of rank two or greater (e.g. Diiii, Ciii, Cii, Bii)
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Automation

Advantage:

The method above can be straight-forwardly generalized to 
any one-loop integral (appearing in a renormalizable theory)

Disadvantage:

For relatively simple processes, the number of terms already 
explodes (several 100 MB of code is no exception for the matrix elements of a 

2 → 3 process); simplifications require hard work and are 
difficult to do in a general way

Does only work when the integrals are known analytically
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The “NLO revolution”
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