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SEARCHING FOR NEW

PHYSICS -
Peak Shape Rate
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Background can be measured from Background shapes needed from Background normalization and
data and interpolated. Theory  theory. Flexible MC for both signal shapes need to be known very well.
needed for parameter extraction and background tuned and Interplay between the best theory
(normalization, acceptance, ....) validated against data prediction (via MC) and data
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LEADING ORDER

¢ For many of the theory predictions needed in the searches for
new physics as well as measuring properties of the SM, leading
order predictions are used

A

s The reasons fOI’ thiS are clear:

# In many regions of phase-space they do a decent job, in
particular for shapes of distributions

Al

% Parton showers and hadronizations models are tuned to data

Al

¢ Many flexible lowest order (ILO) tools are readily

available

A

s Unfortunately LO predictions describe total rates rather poorly
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NEED FOR NLO

s If we would have the same flexible tools available at NLO, the
experimental analyses will benefit a various ways:

% NLO predictions predict rates much more precisely

% Reduced theoretical uncertainties due to meaningtul scale dependence
% Shapes are better described
2% Correct estimates for PDF uncertainties

¢ Even data-driven analyses might benefit: smaller uncertainty due to
interpolation from control region to signal region

A

¢ These accurate theoretical predictions are particularly needed for

R

# searches of signal events in large backgrounds samples and

Al

“ precise extraction of parameters (couplings etc.) when new physics

signals have been found
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B PAIR PRODUCTION AT

THE LHC

[ATLAS, preprint CERN-TH-EP-2011-146]
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Al

e b-jet transverse momentum
in b pair production

1S LO: P ythia)
NLO: POWHEG - pythia
NLO: MC@NLO : Herwig

Al

¢ Shapes are well described by
[LO and by NLO

S

% Normalization 1s well

predicted at NLO

% At NLO, theory uncertainties
can be studied systematically
(not shown 1n this plot)



WHY AN AUTOMATIC
TOOL.?

A

2 'To save time
Less human time spending on computing matrix elements means
more time available on physics and phenomenology.

N

s¢ Robustness
Modular code structure means that elements can be checked
systematically and extensively once and for all. Trust can easily be

build.

# Wide accessibility
One framework for all. Available to everybody for an unlimited
set of applications. Suitable for Experimental collaborations.
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SM STATUS: SINCE
2007

Accuracy

[loops] 4

. Fully inclusive

‘ Parton level

‘ Fully exclusive

(and automatic)
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SM STATUS: SINCE A
FEW MONTHS
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[loops] 4

‘ Fully inclusive

M 2 ......... ‘ ........... ‘ .......... . Parton level

‘ Fully exclusive

(and automatic)

Complexity
[final state legs]
>

| 2 3 4 5 6 7 8 910
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CONTENTS OF THESE
LECTURES

¢ These lectures will be about the concepts behind the
computation of NLO corrections (as implemented in

MadGraph)

A

" Computmg Loop corrections without domg 1ntegrals and
using only tree-level matrix elements

¢ Cancellation of infrared singularities (FKS subtraction)

% Matching NLO to the parton shower: MC@NLO formalism
% Tutorial

¢ Please, interrupt me at any time if something 1s not clear!
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NOT YET PUBLICLY
AVAILABLE

A\

=
=

]\

Disclaimer:
Although NLO corrections are included in MadGraph (version 4)
they are not yet publicly available. The reason 1s that the code 1s

wnN

L

Al
ZIN

\/

A

K\§

still a bit slow (not possible to run on a single desktop for
anything beyond a 2 — 2 process)

“¢ not yet completely general (some processes cannot be computed;

A
K7\

and no warning 1s given if one tries)

% The code 1s being rewritten in MG5. When this 1s done, it will be
made publicly available

% The tutorial will be based on MC@NLO

| Frixione, Webber; + collaborators]
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MASTER EQUATION FOR
HADRON COLLIDERS

zb: /dwld@d@Fs folx1, ur) fo(ze, pF) Cab—x (8, br, UR)

Phase-space Parton density Parton-level
integral functions cross section

2% Parton-level cross section from matrix elements: model
and process dependent

# Parton density (or distribution) functions: process

independent

¢ Differences between colliders given by parton

luminosities
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PERTURBATIVE
EXPANSION

&ab—>X (§, UE, ,ILR) Parton-level cross section

/A

¢ The parton-level cross section can be computed as a series 1n
perturbation theory, using the coupling constant as an expansion
parameter

s GBorn (1, % (1) ( ) (2) ( ) (3)
1 1
o= 27T * 2T + 2T *

A A A A

4 R 4 R 4 R 4 R
LO NLO NNLO NNNLO

corrections

predictions corrections corrections

Al

% Including higher corrections improves predictions and reduces
theoretical uncertainties
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Merging ME with PS  reweeno

[Catani, Krauss, Kuhn,Webber]
PS —

kr < Q° kT < Q¢
kT < Q¢
kt > Q° kT<ch
ME ~Q
l

kr > Q¢

kr > Q¢

LY

KIAS MadGrace school, Oct 24-29 201 | Parton shower and MLM matching Johan Alwall

%< Using matching is not doing a (N...)NLO computation

¢ However, part of the NLO contributions are included, which 1s the
reason that shapes are so well described, but normalization is off

3¢ Uncertainties are still large in a matched sample (although reduced
from a prediction without matching

16
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NLO CORRECTIONS

# There are two types of contributions to the NLLO corrections:

N2

# Virtual (or Loop) corrections: formed by an amplitude
with a closed loop of particles interfered with the Born
amplitudes

A

¢ Real emission corrections: formed by amplitudes with one
extra parton compared to the Born process

A

¢ Both have one power of as extra compared to the Born
process

o0 = dVef + [ d DoV 4 [ dPoP

m-+1 m m
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan production
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BOTTLENECKS

Al

¢ Virtual amplitudes: how to compute the loops automatically
in a reasonable amount of time

I
1IN

Al
Z\y

How to deal with infra-red divergences: virtual corrections
and real-emission corrections are separately divergent and
only their sum 1s finite (for IR-safe observables) according to

the KILN theorem

Al

ws

How to match these processes to a parton shower without
double counting

19
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¢ Consider this m-point
loop diagram with n
ks external momenta

DoD1Dgy---Dypy—q

L AV 2
[+ ki+...+ks=1+Dp;s ks D’i_(l_l_p’t) m;
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STANDARD APPROACH

V2
N

¢ Passarino-Veltman reduction:

N (1) 1
d E : d
? ff@
/d l DoD1Do---D,,_1 i o /d l Dy D+

“completing the square”

Al

#* Let’s do an example:
Suppose we want to calculate this triangle integral

q [

D g / dn iz
(

2m)" (12 = mi)((L + p)* — m3)((L + @)

P
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/ d"l ¥
(2m)™ (12 = m{)(( +p)* —m3)((L + @) — m3)

% The only independent four vectors are p# and ¢# . Theretore, the integral
must be proportional to those. We can set-up a system of linear equations
and try to solve for C1 and C»

dl [H B Lo C
/(W(l gy (R R G )<02)

¢ We can solve for C1 and Cs2 by contracting with p and ¢

<2;>=<E$:§D=G<S;)E<§ii§ y(e)

where 20 - p] = f (dnl 12(l-|-pQ)lé]Zl-l-q)2 (For simplicity, the masses are neglected here)

\\V/

% By expressing 2Lp and 2/.g as a sum of denominators we can express Ri
and Ro as a sum of simpler integrals, e.g.

[ d 2-p [ d"l ((+p? -1 p’
Rl‘/ @) B+ p2(+ q)? ‘/ 2m)" (1 +p)2 (I + 0)2

_/d”l 1 _/d”l 1 _z/d”l 1
") e Bl+q? ) e U+p2i+q2 P ) o Bl +p)2(+q)
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A
Ny

¢ And similarly for Ro

o an o - g [ dM (49— 1P -
R e e el e e e

_/d”l 1 _/d”l 1 _2/d”l 1
~J @ore+p? ) Cor e+ T ) @or R+ p)2(+ )2

Lt

(3

2

I\

R
K

Now we can solve the equation
(1) () (2)- (22 22)(8
Ry 2 - q] Cr ) "\ 2p-q 2¢-q )\ O
by inverting the “Gram” matrix G
Ci \ 1 I
(&)= (&)

and we have expressed our original integral

i I C
2 2 oy ( " q" )
(2m) (12 = m7)((L 4 p)? — m3)((L 4 q)* — m3) C2
in terms of known, simpler integrals and we are done!
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HIGHER POINT
INTEGRALS

Al

% For loop integrals with many legs,
the reduction to scalar integrals
can still be performed

S
73

¢ Only up to 4-point scalar integrals
are needed (in 4 dimensions)!

S
73

¢ The prootf 1s beyond the scope of

these lectures (it is straight forward by
using the Van Neerven-Vermaseren basis

for the loop momentum); 1t 1s related

to the fact that in 4 dimensions
only four 4-vectors can be linearly

independent

25
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BASIS OF SCALAR
INTEGRALS

1-1 S
M L-loop Z dioiligig BOXioiligig The a, .b, C, d and R
= coefthcients depend only
10<11<12<13
on external parameters
—+ Z Cigiiio TrlangleioiliQ and momenta
10<11 <19 l+pz) 2
+ ) b;,;, Bubble;,,
L o ron Tadpole, /
10<?1
+ Z a;, Ladpole;_ Bubble;;, = /
10
Triangle; ; ;. = dl
+ R+ O(e) 102 D; D D,
1
BOXiyiyigis = | d’I
OX 0t1t2¢t3 Dio DilDiQ D?;3

% All these scalar integrals are known and available in computer libraries
(FF [v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])
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Al

# In our example the decomposition to scalar integrals was “exact”, 1.e. there
were no left-over terms.

% This 1s true for most integrals. Only if the rank of the integral 1s
> max{(N _ 1),2)}

there are some extra contributions which are called “Rational terms” that
are not proportional to a scalar integral

Al

% They are of UV origin and come from the € (dimensional regulator)

dependence of the integral times a scalar integral that 1s UV divergent

Rational terms ~ eBy(p, m1,m2)

(The Bubble integrals are the only UV divergent integrals)

2

¢ When taking the limit € — 0, only the leading contribution remains, which

are independent from the scalar integral itself
27



AUTOMATION

A

% Advantage:

R

% The method above can be straight-forwardly generalized to
any one-loop integral (appearing in a renormalizable theory)

Al

#* Disadvantage:

R

¢ For relatively simple processes, the number of terms already
explodes (several 100 MB of code is no exception for the matrix elements of a
2 — 3 process); simplifications require hard work and are
dithcult to do 1n a general way

R

% Does only work when the integrals are known analytically

28
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One indicator of NLO progress

pp 2> W + 0 jet
pp 2> W + 1 jet
pp 2> W + 2 jets
pp 2> W + 3 jets

pp 2> W + 4 jets

Rikkert Frederix, University of Zurich

19738 Altarelli, Ellis, Martinell
1989 Arnold, Ellis, Reno
2002 Campbell, Ellis
2009 BH+Sherpa

Ellis, Melnikov, Zanderighi
201 0 BH+Sherpa

Shide from Lance Dixon
99



