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Outline of lectures

® |ecture l:

= New Physics at hadron colliders
= QCD basics

= Monte Carlo integration and generation

® |ecture ll:
= Complete collider event simulation
= Parton showering and jet matching (teaser)

= Event simulation in practice using MadGraph

® |ecture lll (by Olivier Mattelaer):
=  What is MadGraph 5!

= |mplementing new physics models in MadGraph (teaser)
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Aims for these lectures

® (et you acquainted with the concepts and
techniques used in event generation

® Give you hands-on experience with matrix
element generation, event generation and analysis
using MadGraph

® Answer as many of your questions as | can
(so please ask questions!)
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Why the LHC?

E (decades)
® Higgs boson mass “naturally” at

mass of new physics

(only known “NP scale”: Planck scale at
~10'8 GeV)

(10 ° GeV)
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Planck
nggs

Standard Model only “works” if
Higgs mass below ~800 GeV

New Physics scale communicated
through quantum loop
contributions to Higgs mass

t
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Why the LHC?

E (d?cades)

mPlanck (1 0 y GeV) . .

AMy contribution must be

06 GeV) ? canceled by bare mass term. For
fine-tuning less than 1%, need
new physics which cuts off the
quadratic loops at ~| TeV

Moy (1

New Physics!

Myi0qs(N€EdEd)
~ M?
(1 00 GeV) - r;iw physics

10° GeV?
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Why the LHC?

The Hierarchy problem, together with Dark Matter
(and to some extent Grand Unification) have been
driving New Physics model building in past 30 years

= Supersymmetry

= Large Extra Dimensions

= Randall-Sundrum (warped extra dimensions)
Little Higgs theories

... (mostly variants/combinations)

But of course, we might also find something
completely unexpected!
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New Physics at hadron colliders

® [he LHC has taken over from the Tevatron!

® Significant luminocities
= Tevatron collected >10 fb-! in the last 10 years

= Fantastic legacy, including several interesting
excesses!

= LHC already has a spectacular 5 fb'!
(perhaps as much as 20 fb-! by end of 2012!)

= Allows ever-more stringent tests of the SM!

® How interpret excesses! How determine Standard
Model backgrounds!?

= Monte Carlo simulation!
(combined with data-driven methods)
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Example: CDF excess in W + 2 jets

CDF collaboration, arXiv:| 104.0699
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Example: CDF excess in W + 2 jets

A more complete picture

CDF collaboration, arXiv:| 104.0699
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Example: CDF excess in W + 2 jets
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A more complete picture
CDF collaboration, arXiv:| 104.0699

— — T .
—— CDF data (4.3 fb™)
— Gaussian 2.5%
B WW+WZ 4.8%
I W+Jets 78.0%
Top 6.3%

B Z+jets 2.8%

QCD 5.1%

CDF data

Excess

III‘IIIIIIIIlIII

Standard Model

backgrounds
(shape from simulation)

[

—~
P)

~

'TII|IIII|IIII|IIII|IIII|IIII|IIII|III

M, [GeV/c?]

KIAS MadGrace school, Oct 24-29 201 | Event generation with MadGraph 5 Johan Alwall
Monday, October 24, 2011




2= Fermilab

Example: CDF excess in W + 2 jets

A more complete picture
CDF collaboration, arXiv:| 104.0699
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Processes at Hadron Colliders

proton - (anti)proton cross sections

"' v L v "'V" L v v """

First: Understand our processes! | o,

Tevatron LHC

Cross sections at a collider depend on
b o,

-1

Coupling strength
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Single production/pair production 0 ERy

500 GeV

KIAS MadGrace school, Oct 24-29 201 | Event generation with MadGraph 5 Johan Alwall
Monday, October 24, 2011



2= Fermilab

Processes at Hadron Colliders

proton - (anti)proton cross sections

"' v L v "'V" L v v """

First: Understand our processes! | o,

Tevatron LHC

Cross sections at a collider depend on

b o,

-1

Coupling strength

10¥ em®s

o (E," > Vs/20)

Coupling to what!? ' W,
(light quarks, gluons, heavy quarks, NPT
EWV gauge bosons!?)

events / sec for ¢

Mass

0,e(M,=120 GeV)

Single production/pair production 0 ERy

500 GeV

KIAS MadGrace school, Oct 24-29 201 | Event generation with MadGraph 5 Johan Alwall
Monday, October 24, 2011



2= Fermilab

Master formula
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Master formula

Parton level
Cross section

® Parton level cross section from matrix element
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Master formula

Oab—sx (8, ..) fa(x1) fo(T2)

Parton level Parton density
Cross section functions

® Parton level cross section from matrix element

® Parton density (or distribution) functions:
Process independent, determined by particle type
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Master formula

/ Sonox (5 ) Fa(a) o () day darad® s

Parton level Parton density  Phase space
cross section functions integral

® Parton level cross section from matrix element

® Parton density (or distribution) functions:
Process independent, determined by particle type
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Master formula

/ Gab—x(5,...) fa(x1) fo(2) dr1dred®Prg

Parton level Parton density  Phase space
cross section functions integral

® Parton level cross section from matrix element

® Parton density (or distribution) functions:
Process independent, determined by particle type

® 5 =1x1725 (s = collision energy of the collider)
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Master formula

/ Gab—x(5,...) fa(x1) fo(2) dr1dred®Prg

Parton level Parton density  Phase space
cross section functions integral

Parton level cross section from matrix element

Parton density (or distribution) functions:
Process independent, determined by particle type

s = x1228 (s = collision energy of the collider)

Difference between colliders given by parton luminocities
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Tevatron vs. the LHC

® Tevatron:2 TeV proton-antiproton collider

= Most important: g-q annihilation (85% of t t)

e | HC:8-14TeV proton-proton collider

= Most important: g-g annihilation (90% of t t )
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Parton densities

2 2 E ratios of parton luminosities
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Back to the processes

proton - (anti)proton cross sections

L4 L v "YVV' v v L 'Y"" v v L

ratios of parton luminosities
at 7 TeV LHC and Tevatron

Tevatron LHC
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Back to the processes

proton - (anti)proton cross sections
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Matrix Element calculation at
Hadron Colliders

To calculate a given process (e.g,pp — tt)

|. Determine contributing subprocess(g)s e O
gg—tt,qq 2 tt,gqq > ttwithqgq=d,us,c(b)

2. Determine matrix element for each subprocess

3. Perform phase space integration for each subprocess
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Matrix Element calculation at
Hadron Colliders

To calculate a given process (e.g,pp — tt)

|. Determine contributing subprocesses .
— = —— — O _eoeo0 0 Easy
gg > tt,qqgq 2 tt,qq > ttwithg= d,u,s,c,(b)<l

enough
2. Determine matrix element for each subprocess <. Hard

3. Perform phase space integration for each subprocess

1 Very
o — 2—8/‘/\/1‘205@(71) <:. Hard

(in general)
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Matrix Element calculation at
Hadron Colliders

To calculate a given process (e.g,pp — tt)

|. Determine contributing subprocesses
= _ oo, O Easy
gg—ttqq—tt,qq— ttwithgq=d,uy,s, c(b)<l

enough

2. Determlne matrix element for each subprocess <. Hard
: “ NQME seg;lgn 2

3. Perform phase space integration for each subprocess

1 Very
= —S/‘M‘qu)(n) <:. Hard

(in general)
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Matrix Element calculation at
Hadron Colliders

To calculate a given process (e.g,pp — tt)

|. Determine contributing subprocesses
= _ oo, O Easy
gg—ttqq—tt,qq— ttwithgq=d,uy,s, c(b)<l

enough

2. Determlne matrix element for each subprocess <. Hard
: “ NQME seg;lgn 2

3. Perform phase space integration for each subprocess
<:. Very
Hard

(in general)

The section after
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Minimal QCD: Basics
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From QED to QCD: abelian vs. non-abelian

The QED Lagrangian:

L= S ™ 4+ §(if — m) — eQipAY

4
where FMV — a,uAV — a,/A'u

i . p+m
= 1 - -
p—m-+ie  p?—m? +ie

Y FTTY
—i—""— (Feynman gauge)

p? +ie

—iey,Q (@@ = —1 for the electron, () = 2/3 for the u-quark, etc
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From QED to QCD: abelian vs. non-abelian

We want to heuristically derive the properties of QCD using
gauge invariance.

Let’s start with the computation of a simple proces e*e” —=VYY.
There are two diagrams:
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From QED to QCD: abelian vs. non-abelian

Gauge invariance demands that:

e.'z’f)"f\flu, - Elllaui\flu, =1

So let us perform the calculation:

foulq)

kA e M, 0(q)fs y —1561 (K, — dulq) + v(q) (K, — 7)) %11_

—0(q)foulg) + v(q)foulg) =0

fi

Only the sum of the two diagrams is gauge-invariant.
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From QED to QCD: abelian vs. non-abelian

Let’s now generalize what we have done for the non-abelian
SU(3) of color, with

[ta,7 tb] _ Z-fabctc

In this case we take the (anti-)quarks
to be in the (anti-)fundamental representation of SU(3), 3 and 3".

The currentisina3 ® 3" =1 @ 8.

We identify the gluon with the octet and generalize the QED

vertex to :
J

_igstij/y'u
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From QED to QCD: abelian vs. non-abelian

So now let’s calculate qq — gg and we obtain

1
?Mg — (tbta)ile -+ (tatb)ijDQ
My = (t%°)i; M, — g° f*°°t5; Dy

To satisfy gauge invariance we still need:

Kleq” MY = Yl MY = 0.

But in this case one piece is left out

kl,uMgu — —g?f“bctfj@f@(@)é/zui(@
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From QED to QCD: abelian vs. non-abelian

We can interpret this as the normal vertex
times a new 3 gluon vertex:

_gsfabcv,ul,lm,ug (pl ’ p27p3)

—igs D3 = (—igst$;0:(0)v"u;(q)) X ( .
000000
(_gfabcv,ul/p(_pa k1, k2)611/(k1)€g(k2))
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From QED to QCD: abelian vs. non-abelian

Can we guess the Lorentz part for this new interaction? If we assume
|. Lorentz invariance : only structure of the type guv pp are allowed
2. Fully anti-symmetry : only structure of the type remain guip2(ki)u3

are allowed...
3. Dimensional analysis : only one power of the momentum.

Then we get a unique form of the vertex:

VM1M2M3 (p17p27p3) =W [(pl o p2)u39u1u2 T (p2 — pS)MlgMQMS T (p3 — pl)u29usul]

With this expression we obtain the contribution to the gauge variation:

k1 D3 = g° f**t°Vy |0(q)¢bu(q)

ko - €x _
2kq - ko

The first term cancels the gauge variation of D+ D> if Vo=1, the second term
is zero |IFF the other gluon is physical (k2 - €2 = 0).
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The QCD Lagrangian

This means that the gluon is itself charged under QCD!

For full gauge invariance, also a 4-gluon vertex is necessary.

4 )

1 ) ) f_ | )
— P FL 1+ ) o (19— my)y”
f

Frelds and
their
im0
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B8

0@
e 1
&% [g"+ (1) ] —
P Tl P Tlg

o i
(p +ie)
(P—m-+ie)y

—g 7 (p—a) ¥ +{q-1) g7 +{r—p)’g™]

(ell momenta incoming)

—ig" 11 [¥g"-g"e™" >—<
—ig" £ [ g™ :b(
g ¢ ¢g

_igE 1.)LJ!..IEIf}(i:!]] : Ty ﬂd_gnd ﬁ].-':

I

g fﬂ.ﬂﬂqu

—ig (e Ny
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Monte Carlo Integration

and Generation
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Monte Carlo Integration and Generation

Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:
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Monte Carlo Integration and Generation

Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:

_ 1 2
- — zs/W' 4 (n)
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Monte Carlo Integration and Generation

Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:

Dim|®(n)] ~ 3n

| Y 4
;= 2—8/\/\/l| 45 (n)
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Monte Carlo Integration and Generation

Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:

Dim|®(n)] ~ 3n

| Y 4
;= 2—8/\/\/l| 45 (n)

General and flexible method is needed
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Integrals as averages ,@Q)

EJ,

=
@ ®

®
e \®
@
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Integrals as averages ,{&'

@ _4s
() )
[

:f;f f(x)dw # In = (22 — 1) %Zf(-??)
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Integrals as averages ,{&'

EHL

:fxmf f(aj)dx # In = (22 — 1) %Zf(l’)

= Convergence is slow but it can be easily estimated

== Error does not depend on # of dimensions!
= Improvement by minimizing V.
= Optimal/ldeal case: f(x)=C =Vn=0
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Importance Sampling

In =0.637 +£0.307/vVN

n.2 0.4 n.& n.a2

1
I:/ dx cos zaz
0 2
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Importance Sampling

In =0.637 +£0.307/vVN In = 0.637 +0.031/

0.2 0.4 0.6 n.2 0.z 0.4 0.6 0.g 1

! ! COS 5T
I :/ dx cos —z I :/ dr(l — %) —2
0 2 0

1 — x?
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Importance Sampling

In =0.637 +£0.307/vVN In = 0.637 +0.031/

n.2 0.4 n.& n.a2 n.2 0.4 0n.&

1
I:/ dx cos z:J[;
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Importance Sampling
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2= Fermilab

Importance Sampling

but... you need to know much about f(x)!
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Alternative: learn during the run and build a step-function
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2= Fermilab

Importance Sampling

but... you need to know much about f(x)!

Alternative: learn during the run and build a step-function
approximation p(x) of f(x) # VEGAS

.

AN

ME1eA
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Importance Sampling

but... you need to know much about f(x)!

Alternative: learn during the run and build a step-function
approximation p(x) of f(x) # VEGAS

.

AN

ME1eA

many bins where f(x) is
large
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2= Fermilab

but..

Importance Sampling

.you need to know much about f(x)!

Alternative: learn during the run and build a step-function
approximation p(x) of f(x) # VEGAS

.

ME1eA

many bins where f(x) is

\ large

0.4 n.& n.g

1
plx) = N Az r, — A\x; < x < x4

KIAS MadGrace school, Oct 24-29 201 | Event generation with MadGraph 5 Johan Alwall

Monday, October 24, 2011



2= Fermilab

Importance Sampling

can be generalized to n dimensions:

p(x)= p(x)*p(y)*P(2). .-
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Importance Sampling

can be generalized to n dimensions:

p(X)= p(X)*p(y)*P(2). .-

but the peaks of f(x) need to be “aligned” to the axis!
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2= Fermilab

Importance Sampling

can be generalized to n dimensions:

p(x)= p(x)*p(y)*P(2). .-
but the peaks of f(x) need to be “aligned” to the axis!

This is ok...
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2= Fermilab

Importance Sampling

can be generalized to n dimensions:

p(X)= p(X)*p(y)*P(2). .-
but the peaks of f(x) need to be “aligned” to the axis!

This is not ok...
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2= Fermilab

Importance Sampling

can be generalized to n dimensions:

p(X)= p(X)*p(y)*P(2). .-

but the peaks of f(;(') need to be “aligned” to the axis!

but it is sufficient to make
a change of variables!
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2= Fermilab

Event generation

Alternative way
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Event generation

Alternative way

|. pick x
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2= Fermilab

Event generation

Alternative way

|. pick x

2. calculate f(x)

0.&
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2= Fermilab

Event generation

Alternative way

|. pick x
2. calculate f(x)

3. pick 0<y<fmax

0.&
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2= Fermilab

Event generation

Alternative way

|. pick x
2. calculate f(x)

3. pick 0<y<fmax

4. Compare:
Wl oz e 9 we if f(x)>y accept event,
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2= Fermilab

Event generation

Alternative way

|. pick x
2. calculate f(x)

3. pick 0<y<fmax

4. Compare:
Wl oz e 9 we if f(x)>y accept event,

else reject it.
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2= Fermilab

Event generation

Alternative way

|. pick x
2. calculate f(x)

3. pick 0<y<fmax

4. Compare:
Wl oz e 9 we if f(x)>y accept event,

else reject it.
accepted

= efficiency
total tries
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2= Fermilab

Event generation

What’s the difference?

Before:

Same # of events in areas of
phase space with very
different probabilities:
events must have different
weights
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2= Fermilab

Event generation

What’s the difference?

After:

# events is proportional to
the probability of areas of

phase space:
events have all the same

weight ("unweighted”)

Events distributed as in Nature
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2= Fermilab

Event generation

Improved by combining with importance sampling:

|. pick x distributed as p(x)
2. calculate f(x) and p(x)
3. pick O<y<lI

4. Compare:
if f(x)>y p(x) accept event,

else reject it.

much better efficiency!!!
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2= Fermilab

Event generation
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2= Fermilab

Event generation

%A

integrator
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2= Fermilab

Event generation
% A

{E

integrator - gn
[Eer HRee
O

&= @eptance-Re]ectiD
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2= Fermilab

Event generation

%A

‘ MC integrator \ M B
U::D (=

I | | | | |5

O

&= @eptance-Re]ectiD

Event generator
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2= Fermilab

Event generation

%A

‘ MC integrator \ M B
DEED (=

I | | | | |5

O

&= @eptance-Re]ectiD

@A

Event generator
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2= Fermilab

Event generation

%A

‘ MC integrator \ =[]
D =

o =

O

&= @eptance-Re]ectiD

@A

Event generator I

I
|
OOEEEEEEe

0= This is possible only if f(x)<oo AND has definite sign! O
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2= Fermilab

Monte Carlo Event Generator:
Definiton

At the most basic level a Monte Carlo event generator is a
program which produces particle physics events with the
same probability as they occur in nature (virtual collider).

In practice it performs a large number of (sometimes very
difficult) integrals and then unweight to give the four
momenta of the particles that interact with the detector
(simulation).
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2= Fermilab

Multi-channel

What do we do if there
is no transformation that
aligns all integrand peaks
to the chosen axes!?
Vegas is bound to fail!
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2= Fermilab

Multi-channel

What do we do if there
is no transformation that

aligns all integrand peaks
to the chosen axes!?
Vegas is bound to fail!

Solution: use different transformations = channels

p(x) = Z a;pi () with Z o = 1
1=1 i=1

with each pi(x) taking care of one “peak” at the time
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Multi-channel

What do we do if there
is no transformation that
aligns all integrand peaks
to the chosen axes!?
Vegas is bound to fail!

Solution: use different transformations = channels

p(x) = Z a;pi () with Z o = 1
1=1 i=1

KIAS MadGrace school, Oct 24-29 201 | Event generation with MadGraph 5 Johan Alwall

Monday, October 24, 2011




2= Fermilab

Multi-channel

* Advantages

— The integral does not depend on the « but

the variance does and can be minimized by a
careful choice

 Drawbacks
— Need to calculate all gj values for each point

— Each phase space channel must be invertible

— N coupled equations for ¢, so it might only
work for small number of channels
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2= Fermilab

Example: QCD 2 — 2 production

1
X — =
S

(p1 + p2)?

Three very different pole structures contributing
to the same matrix element.
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2= Fermilab

Multi-channel based on single diagrams

Consider the integration of an amplitude |M|"2 at treel level which many
contributing diagrams. If there were a basis of functions,

such that: =1

|. we know how to integrate each one of them,
2. they describe all possible peaks,

then the problem would be solved:

1:/d<f>f(<f>) =
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2= Fermilab

Multi-channel based on single diagrams

Consider the integration of an amplitude |M|"2 at treel level which many
contributing diagrams. If there were a basis of functions,

such that: =1

|. we know how to integrate each one of them,
2. they describe all possible peaks,

then the problem would be solved:

1:/d<f>f(<f>) =

Does such a basis exist?
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2= Fermilab

Multi-channel based on single diagrams*
_ AP
2 |Ail?

YES! | Agot ]
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2= Fermilab

Multi-channel based on single diagrams*

|4i]° 2
YES! fi = SAPRE | Aot
Key Idea Z

— Any single diagram is “easy” to integrate (pole structures
known based on propagators)

— Divide integration into pieces, based on diagrams

Get N independent integrals

— Errors add in quadrature so no extra cost

— No need to calculate “weight” function from other channels.
— Can optimize # of points for each one independently

— Parallel in nature

What about interference!?

— Never creates “new’ peaks, so we’re OK!

*Method used in MadGraph
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2= Fermilab

Complete simulation of collider events
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2= Fermilab
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2= Fermilab

. High-Q2 Scattering 2. Parton Shower

3. Hadronization 4. Underlying Event
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2= Fermilab

. High-Q2 Scattering 2. Parton Shower

== where new physics lies

3. Hadronization 4. Underlying Event
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2= Fermilab

. High-Q2 Scattering 2. Parton Shower

== where new physics lies

e e~
-

= process dependent

3. Hadronization 4. Underlying Event

KIAS MadGrace school, Oct 24-29 201 | Event generation with MadGraph 5 Johan Alwall
Monday, October 24, 2011




2= Fermilab

. High-Q2 Scattering 2. Parton Shower

== where new physics lies

e e~
-

= process dependent

= first principles description

3. Hadronization 4. Underlying Event
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2= Fermilab

. High-Q2 Scattering 2. Parton Shower

== where new physics lies

5008
e e g X
ol

= process dependent

= first principles description

= it can be systematically improved

3. Hadronization 4. Underlying Event
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2= Fermilab

. High-Q2 Scattering 2. Parton Shower

]

3. Hadronization 4. Underlying Event
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2= Fermilab

. High-Q2 Scattering 2. Parton Shower

]

— e
- 1
=,
' m

41
{

i o .. )
- ” K .'!.
LA R R R O ' 4 -

‘ 2
\

= QCD -"known physics”

3. Hadronization 4. Underlying Event
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2= Fermilab

. High-Q2 Scattering 2. Parton Shower

]

. r
- 1
b .
' .

41
{

'- o .. )
L 3 ,
FRPRTRTEY _" L -

‘
0
y
= QCD -"known physics”

= universal/ process independent

Y

3. Hadronization 4. Underlying Event
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2= Fermilab

. High-Q2 Scattering 2. Parton Shower

]

=
YN
{

-

00004 |
N Il

AR

0

y
= QCD -"known physics”

= universal/ process independent

= first principles description

3. Hadronization 4. Underlying Event
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2= Fermilab

3. Hadronization 4. Underlying Event
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2= Fermilab

= universal/ process independent

= low Q2 physics

3. Hadronization 4. Underlying Event
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2= Fermilab

= universal/ process independent

= low Q2 physics

= model-based description

3. Hadronization 4. Underlying Event
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2= Fermilab

. High-Q Scattering 2. Parton Shower

= low Q2 physics

3. Hadronization 4. Underlying Event
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2= Fermilab

. High-Q Scattering 2. Parton Shower

= low Q2 physics

= energy and process dependent

3. Hadronization 4. Underlying Event
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2= Fermilab

. High-Q Scattering 2. Parton Shower

= low Q2 physics
= energy and process dependent

== model dependent

3. Hadronization 4. Underlying Event
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2= Fermilab

5. Detector simulation
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2= Fermilab

. High-Q2 Scattering 2. Parton Shower

3. Hadronization 4. Underlying Event
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2= Fermilab

No
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Compositenins
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List of processes

implemented
in Pythia (by hand!)
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2= Fermilab

Automatized Matrix Element Generators
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2= Fermilab

Automatized Matrix Element Generators

® High-Q2 scattering processes: In principle infinite
number of processes for innumerable models
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2= Fermilab

Automatized Matrix Element Generators

® High-Q2 scattering processes: In principle infinite
number of processes for innumerable models

® |mplementation by hand time-consuming, labor intensive
and error prone (bad use of PhD student time!)
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2= Fermilab

Automatized Matrix Element Generators

High-Q2 scattering processes: In principle infinite
number of processes for innumerable models

Implementation by hand time-consuming, labor intensive
and error prone (bad use of PhD student time!)

Instead: Automatized matrix element generators

= Use Feynman rules to build diagrams
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2= Fermilab

Automatized Matrix Element Generators

® Automatic matrix element generators:
CalcHep / CompHep
MadGraph
AMEGIC++ (Sherpa)
Whizard
® Standard Model only, with faster matrix elements:
= AlpGen
= HELAC
= COMIX (Sherpa)
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Automatized Matrix Element Generators

® Automatic matrix element generators:
CalcHep / CompHep

MadGraph See ore
AMEGIC++ (Sherpa) Cer!

Whizard
® Standard Model only, with faster matrix elements:
= AlpGen
= HELAC
= COMIX (Sherpa)
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2= Fermilab

. High-Q2 Scattering 2. Parton Shower

]

3. Hadronization 4. Underlying Event
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Parton Shower MC event generators

Matrix elements involving g ?qg (or g = gg) are
strongly enhanced when the final state particles are
close in the phase space:

1 | P N
(pg +pg)* 2EqE4(1 — cos0) ‘—\
|-z
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2= Fermilab

Parton Shower MC event generators

Matrix elements involving g ?qg (or g = gg) are
strongly enhanced when the final state particles are
close in the phase space:

1 1 a
(pg +1g)* (1 — cos b) ‘—\
|-z
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2= Fermilab

Parton Shower MC event generators

Matrix elements involving g ?qg (or g = gg) are
strongly enhanced when the final state particles are
close in the phase space:

1 1 a
(pg + 1) 21 — cos?) ‘—\
|-z

Soft and divergences!
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Parton Shower MC event generators

Collinear factorization:

dt o g
|Mp+1|2dq)p 1 = ‘Mp|2dq)p r o

P(z)dzd¢

Allows for a step-by-step (Markov process) evolution:

“Parton shower”
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2= Fermilab

Parton Shower MC event generators

Collinear factorization:

dt o g
|Mp+1|2dq)p 1 = ‘Mp|2dq)p r o

P(z)dzd¢

Allows for a step-by-step (Markov process) evolution:

“Parton shower”

v

See lectures on PS by me and Grigory for (much) more details!
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Parton Shower MC event generators

General-purpose tools

Complete exclusive description of the events: hard scattering,
showering, hadronization, underlying event

Reliable and well tuned to experimental data.

most famous: PYTHIA, HERWIG, SHERPA

Significant and intense progress in the development of new showering
algorithms with the final aim to go at NLO in QCD [Nagy, Soper, 2005;
Giele, Kosower, Skands, 2007; Krauss, Schumman, 2007]
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Detector simulation

® Detector simulation

= Fast general-purpose detector simulators:
Delphes, PGS (“Pretty good simulations”), AcerDet

= Specify parameters to simulate different experiments

® Experiment-specific fast simulation
= Detector response parameterized

= Run time ms-s/event

® Experiment-specific full simulation
= Full tracking of particles through detector using GEANT

= Run time several minutes/event
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Matrix Elements vs. Parton Showers
(teaser)
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Matrix Elements vs. Parton Showers
(teaser)

M=

4

|. Fixed order calculation

2. Computationally expensive

3. Limited number of particles

4. Valid when partons are hard and
well separated

5. Quantum interference correct

6. Needed for multi-jet descriptiz
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Matrix Elements vs. Parton Showers
(teaser)

Shower MC

4 4

|. Resums large logs to all orders

2. Computationally cheap

3. No limit on particle multiplicity

4. Valid when partons are collinear
and/or soft

5. Only partial interference
(through angular ordering)

6. Needed for hadronization

|. Fixed order calculation

2. Computationally expensive

3. Limited number of particles

4. Valid when partons are hard and
well separated

5. Quantum interference correct

6. Needed for multi-jet description
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Matrix Elements vs. Parton Showers
(teaser)

4

Shower MC

4

|. Fixed order calculation

2. Computationally expensive

3. Limited number of particles

4. Valid when partons are hard and
well separated

5. Quantum interference correct

6. Needed for multi-jet description

|. Resums large logs to all orders

2. Computationally cheap

3. No limit on particle multiplicity

4. Valid when partons are collinear
and/or soft

5. Only partial interference
(through angular ordering)

6. Needed for hadronization

Approaches are complementary: merge them!
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2= Fermilab

Matrix Elements vs. Parton Showers
(teaser)

4

Shower MC

4

|. Fixed order calculation

2. Computationally expensive

3. Limited number of particles

4. Valid when partons are hard and
well separated

5. Quantum interference correct

6. Needed for multi-jet description

|. Resums large logs to all orders

2. Computationally cheap

3. No limit on particle multiplicity

4. Valid when partons are collinear
and/or soft

5. Only partial interference
(through angular ordering)

6. Needed for hadronization

Approaches are complementary: merge them!

Difficulty: avoid double counting, ensure smooth distributions
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PS alone vs matched samples

In the soft-collinear approximation of Parton Shower MCs, parameters are
used to tune the result = Large variation in results (small prediction power)

tt (Pythia only)

P, of the 2-nd extra jet
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PS alone vs matched samples

In 2 matched sample these differences are irrelevant since the behavior
at high pt is dominated by the matrix element.

tt+0,1,2,3 partons + Pythia (MMLM)

P, of the 2-nd extra jet
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Merging ME with PS

[Mangano]
[Catani, Krauss, Kuhn,Webber]
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Merging ME with PS

[Mangano]
[Catani, Krauss, Kuhn,Webber]

PS —»

S o

TR
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2= Fermilab

Merging ME with PS

[Mangano]
[Catani, Krauss, Kuhn,Webber]

PS —»

kT < Q€ kt < Q°
T<Q°

kt < Q€
kT>QC T>Qc
> Q

ME
!

ket

kt > Q°

KIAS MadGrace school, Oct 24-29 201 | Event generation with MadGraph 5 Johan Alwall
Monday, October 24, 2011




2= Fermilab

Merging ME with PS

[Mangano]
[Catani, Krauss, Kuhn,Webber]

PS —»

kT < Q€ kt < Q°
T<Q°

kt < Q€
kT>QC T>QC
>Q

ME
!

ket

kt > Q°

Double counting between ME and PS avoided using phase space cut between
the two: PS below cutoff, ME above cutoff. Resulting events exclusive and can
be added together into an inclusive sample. Smoothness of distributions

achieved by careful treatment of ME samples to match PS.
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Merging ME with PS

[Mangano]
[Catani, Krauss, Kuhn,Webber]

— 2 . SHERPA

Z 0 jat
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Double counting between ME and PS avoided using phase space cut between
the two: PS below cutoff, ME above cutoff. Resulting events exclusive and can
be added together into an inclusive sample. Smoothness of distributions

achieved by careful treatment of ME samples to match PS.
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Event simulation in practice

Using MadGraph
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2= Fermilab

Using MadGraph on the Web!

To generate matrix elements using MadGraph:

Go to http://madgraph.hep.uiuc.edu/
(or google for MadGraph)

Register

Write your process

Press(Submit)

Download the tar file or
generate events directly online on our clusters!
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2= Fermilab

Using MadGraph on your computer!

To generate matrix elements and events:

Download MadGraph 5 from
https://launchpad.net/madgraphb

Untar and run bin/mg5
Write “generate process”

Write “output”

Write “launch”

Sounds easy!? It is! Let me show you!
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2= Fermilab

Examples shown

® pp>tt~
This gives only (the dominant) QCD vertices, and
ignores (the negligible) QED vertices.

® pp>tt~ QED=2
This gives both QED and QCD vertices.

O PP>W+”’W+>I+VI
More complicated example.
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More syntax examples

pp>tt~jQED=2: Generate all combinations of
processes for particles defined in multiparticle labels
p / j, including up to two QED vertices (and unlimited

QCD vertices)
pp>tt~ (t>bwHtwt>|+vl),t~>b~jj:
® Only diagrams compatible with given decay

® Only t/ t~ and W+ close to mass shell in event
generation

p p > wt w-/ h : Exclude any diagrams with h

pp > wt+ w-$ h:Exclude on-shell h in event
generation (but retain interference effects)
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Thanks for listening!

And now over to Olivier...
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