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Monte Carlo tools and discoveries at the LHC (1).

One of the goals of the LHC: which New Physics theory is the correct one?
[if any, the LHC might be one ring to rule them all out!]

* We need data [which are finally there].

* We need theoretical predictions for any model [which is the aim of this talk].

� For Standard Model (SM) backgrounds.

� For Beyond the Standard Model (BSM) signals.

Confront data and theory.

Theoretical predictions:

* Handmade calculations /.
� Not practical: factorial growth of the number of diagrams.

� Tedious and error prone.

* Automated Monte Carlo tools ,.

� Easy to use!

� Can be used to simulate the full collision environment.
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Monte Carlo tools and discoveries at the LHC (2).

Establishing of an excess over the SM backgrounds.

* Difficult task.

* Use of Monte Carlo generators (backgrounds, signals).

Confirmation of the excess.

* Model building activities.

� Bottom-up approach.

� Top-down approach.

* Implementation of the new models in the Monte Carlo tools.

Clarification of the new physics.

* Measurement of the parameters.

* Use of precision predictions.

* Sophistication of the analyses ⇔ new physics and detector knowledge.

Monte Carlo tools play a key role!
But how is new physics presently investigated in particle physics?
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A framework for BSM analyzes at the LHC (1).

Idea ⇔

Model building

* Pen&pencil stage.
* Leading order, loop calculations, ...
* Electroweak, low energy constraints,...

⇒ Publications

⇓

Phenomenology

* Monte Carlo event generator.
* Matrix element calculation.
* Parton showering / hadronization.
* Generic detector simulation.

⇒ Publications

⇓

Experiment

* Experimental framework.
* Matrix elements, parton showering, hadronization.
* Realistic detector simulation.
* Comparison with data.

⇒ Publications
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A framework for LHC analyzes (2).

New physics theories.

* There are a lot of different theories.

* Based on very different ideas.

* In evolution (especially regarding the discoveries).

Implementation in Monte Carlo tools.

A model consists in:

* particles,
* parameters,
* interactions (≡ Feynman rules).

The Feynman rules have to be derived (from a Lagrangian).

* Must be translated in a programming language.
* Tedious, time-consuming, error prone.
* We need to iterate for each considered model.
* We need to iterate for each considered MC tool.
* Beware: allowed Lorentz and color structures.

Redundancies of the work.
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A framework for LHC analyzes (3).

Validation.

* Necessary at each step.

* Error-prone.
* Time-consuming.

* Comparison with existing analytical and numerical results.

* Non systematic and partial.

� Restricted set of available results.
� No dedicated framework.
� Warning: conventions.

Distribution.

* Many models remain private.

* Exception: popular models, e.g., the MSSM.

* Use of many home-made and hacked versions of existing models.
⇒ Issues about documentation, traceability, maintenance, ...

BSM Physics with FeynRules. Benjamin Fuks - KIAS School on MadGraph - 24-30.10.2011 - 7



The nutshell First example Getting started Advanced techniques Superspace Summary

A framework for LHC analyzes (4).

We need an efficient framework:

To develop new models.

To implement (and validate) new models in MC tools.

To test the models against data.

Enhancing communication between theory and experiment.
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A FeynRules-based framework for LHC analyzes.

Idea

↘↖
Lagrangian

≡ Theory

↘↖
FeynRules

↘↖
Matrix elements (MC generators)

↘↖
Parton showering

↘↖
Hadronization

↘↖
Generic detector

≡ Phenomenology

↘↖
Realistic detector

↘↖
Data

≡ Experiment
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The FeynRules approach (1).

Starting from physical quantities.

* All the physics is included in the model Lagrangian.

� Remark: the Lagrangian is absent in the MC implementation.

* Traceability.
� Univocal definition of a model.
� No dependance on the conventions used by the MC tools.

* Flexibility.
� A modification of a model ≡ change in the Lagrangian.

Aims.

* A general environment to implement any
Lagrangian-based model.

* To interface several Monte Carlo generators.

* Robustness, easy validation and maintenance.

* Easy integration in experimental software frameworks.

* Allowing for both top-down and bottom-up approaches.
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The FeynRules approach (2).

c© C. Degrande
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The FeynRules approach (3).

c© C. Degrande
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The FeynRules approach (4).

c© C. Degrande
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FeynRules in one slide.

A framework for LHC analyzes based on FeynRules to:

* Develop new models.

* Implement (and validate) new models in Monte Carlo tools.

* Facilitate phenomenological investigations of the models.

* Test the models against data.

FeynRules in a nutshell

* FeynRules is a Mathematica package.

* FeynRules derives Feynman rules from a Lagrangian.

* Requirements: locality, Lorentz and gauge invariance.

* Supported fields: scalar, fermion, vector, tensor, ghost, superfields.

* Interfaces: export the Feynman rules to Monte Carlo generators.
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Main features of FeynRules (1).

Model

Parameters Gauge groups Particle content Lagrangian

⇓

FeynRules

⇓

Feynman rules ⇒⇒ TEX-file

⇓

Translation interfaces

⇓

CalcHep

⇓

FeynArts

⇓

MadGraph
4 and 5

⇓

Sherpa

⇓

Whizard

⇓ ⇓ ⇓ ⇓ ⇓

Parton showering, hadronization, detector simulation & analysis!
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Main features of FeynRules (2).

The working environment is mathematica.

* Flexibility for symbolic manipulations.

� Routines to check a Lagrangian.

� ...

* Various built-in features.

� Matrix diagonalization.

� Pattern recognition functions.

� ...

* New additional functions can easily be added by users.

� Model spectrum calculator.

� ...

Interfaces to Monte Carlo codes.

* The philosophy, architecture and aim of the codes can be different.

* Maximization of probability to have (at least) one (working) MC per model.

* FeynRules translates models in terms of files readable by the MC tools.
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Outline.

1 FeynRules in a nutshell.

2 A (maybe not so) simple example: implementation of supersymmetric QCD.

3 Using FeynRules with the supersymmetric QCD model.

4 Advanced model implementation techniques.

5 The superspace module.

6 Summary.
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Supersymmetric QCD - general features.

Field content.

* Matter multiplets.
� Three generations of up-type left-handed quarks and squarks.
� Three generations of up-type right-handed quarks and squarks.

* The SU(3)c vector multiplet.
� Gluino and gluon fields.

Symmetries of the theory.

* SU(3)c gauge invariance.
* Supersymmetry.

The dynamics of the system is given by the Lagrangian

L = −
1

4
ga
µνg

µν
a +

i

2
¯̃ga /Dga + Dµq̃†LiD

µq̃Li + Dµq̃†RiD
µq̃Ri + i q̄ /Dq

−m2
q̃i

q̃†i q̃i −mq q̄q −
1

2
mg̃

¯̃gag̃a

−
g2

s

2

h
− q̃†LiT

aq̃Li + q̃†RiT
aq̃Ri

ih
− q̃†LjT

aq̃Lj + q̃†RjT
aq̃Rj

i
+
√

2gs

h
− q̃†LiT

a
`
g̃aPLq

´
+
`
q̄PLg̃

a
´
T aq̃Ri

i
+ h.c. ,

with i , j = 1, 2, 3.
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How to write FeynRules model files.

A FeynRules model file follows the Mathematica syntax.

It is a .fr text file containing:

* A preamble.

� Author information.
� Model information.
� Definitions of the indices.

* The declaration of the model gauge group.

� Abelian or not.
� Representation matrices, structure constants.
� Associated coupling constant.
� Associated gauge boson or vector superfield.

* The declaration of the particle content.

� Names, spins, PDG-ids, carried indices.
� Self-conjugate or not, quantum numbers.
� Masses, widths.
� Particles of the same type can be grouped in classes.

* The declaration of the model parameters.
* The Lagrangian itself.
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Preamble of the model file (1).

The preamble of the model file contains:

* Author and model information.

M$ModelName = "SUSYQCD";

M$Information = {

Authors -> {"Benjamin Fuks"},

Date -> "24.10.11",

Version -> "1.0.0",

Institutions -> {"IPHC Strasbourg / U. of Strasbourg"},

Emails -> {"benjamin.fuks@iphc.cnrs.fr"}

};

Other possible options: References, URLs.
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Preamble of the model file (2).

The preamble of the model file contains:

* The definitions of the dimension of the indices.

IndexRange[Index[Gluon ]] = NoUnfold[Range[8]];

IndexRange[Index[Colour]] = NoUnfold[Range[3]];

IndexRange[Index[Gen ]] = Range[3];

� Gluon ⇔ SU(3)c adjoint index, reserved keyword
� Colour ⇔ SU(3)c fundamental index, reserved keyword.
� Gen ⇔ Generation index.

* The definitions of the style to be used for the indices.

IndexStyle[Colour, m];

IndexStyle[Gluon, a];

IndexStyle[Gen, f];

Color and Gluon are special names.

* Strong interactions have special significance in MC tools.
* Same for the gluon field name (G), the strong coupling constant (gs, aS),

the fundamental color matrices (T), the structure constants (f).
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Declaration of the gauge group.

Declaration of the SU(3)c gauge group (in M$GaugeGroups) .

SU3C == {

Abelian -> False,

GaugeBoson -> G,

CouplingConstant -> gs,

StructureConstant -> f,

Representations -> {T, Colour}

}

* The group is non-Abelian.
* The associated gauge boson is the gluon field G (� see later).
* The associated coupling constant is the parameter gs (� see later).
* The structure constants f are associated to the adjoint representation.
* Representation matrices T are associated to the index type Colour.

Consequences: easier Lagrangian building.

* Automated definition of the field strength tensor for the gluon
FS[G,mu,nu,a].

* Automated definition of a covariant derivative for all fields
DC[field[...],mu].
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Field declaration - the gluon field.

Declaration of the gauge boson G (in M$ClassesDescription).

V[1] == {

ClassName -> G,

SelfConjugate -> True,

Indices -> {Index[Gluon]},

Mass -> 0,

Width -> 0,

PDG -> 21

}

* Vector field ⇒ the label is V[1].
* Symbol to be used in the Lagrangian: G.
* Its own antiparticle ⇒ SelfConjugate -> True.
* Adjoint representation of SU(3)c ⇒ Indices -> {Index[Gluon]}.

� This relates (internally) the index Gluon to the adjoint representation.
* Vanishing mass and widths.
* PDG-id ≡ 21⇒ PDG -> 21.
* Other possible options for vector fields: Unphysical, Definitions,

PropagatorLabel, PropagatorType, PropagatorArrow, ParticleName,
AntiParticleName, QuantumNumbers.
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Field declaration - the gluino field (1).

Declaration of the gluino field g̃ (in M$ClassesDescription).

F[1] == {

ClassName -> go,

SelfConjugate -> True,

Indices -> {Index[Gluon]},

PDG -> 1000021,

Mass -> {Mgo,500},

Width -> {Wgo,10}

}

* Four-component fermion ⇒ the label is F[1].

* Symbol to be used in the Lagrangian: go, gobar.

* Its own antiparticle ⇒ SelfConjugate -> True.

* Adjoint representation of SU(3)c ⇒ Indices -> {Index[Gluon]}.
* PDG-id ≡ 1000021⇒ PDG -> 1000021.
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Field declaration - the gluino field (2).

Declaration of the gluino field g̃ (in M$ClassesDescription).

F[1] == {

ClassName -> go,

SelfConjugate -> True,

Indices -> {Index[Gluon]},

PDG -> 1000021,

Mass -> {Mgo,500},

Width -> {Wgo,10}

}

* The gluino mass.
� Symbol to be used in the Lagrangian: Mgo.
� Chosen numerical value: 500 GeV.
� Can be set to Internal ⇔ link to an internal parameter.

* The gluino width.
� Symbol to be used: Wgo.
� Chosen numerical value: 10 GeV.
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Parenthesis: representations of the Lorentz algebra (1).

The left-handed Weyl spinor representation (1/2, 0).

* Action on complex left-handed spinors ψα (α = 1, 2).
* Generators: a set of 6 2× 2 matrices based on the Pauli matrices.

(σµν)α
β = −

i

4

“
σµσ̄ν − σν σ̄µ

”
α

β .

* A finite Lorentz transformation is given by

Λ( 1
2
,0) = exp

h i

2
ωµνσ

µν
i
.

The right-handed Weyl spinor representation (0, 1/2).

* Action on complex right-handed spinors χ̄α̇ (α̇ = 1̇, 2̇).
* Generators: a set of 6 2× 2 matrices based on the Pauli matrices.

(σ̄µν)α̇β̇ = −
i

4

“
σ̄µσν − σ̄νσµ

”α̇
β̇ .

* A finite Lorentz transformation is given by

Λ(0, 1
2

) = exp
h i

2
ωµν σ̄

µν
i
.

Complex conjugation maps left-handed and right-handed spinors.
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Parenthesis: representations of the Lorentz algebra (2).

A Dirac spinor is defined as

ψD =

„
ψα
χ̄α̇

«
,

which is a reducible representation of the Lorentz algebra.

* Generators of the Lorentz algebra: a set of 6 4× 4 matrices

γµν = −
i

4

ˆ
γµ, γν

˜
=

„
σµν 0

0 σ̄µν

«
* A finite Lorentz transformation is given by

Λ( 1
2
,0)⊕(0, 1

2
) = exp

h i

2
ωµνγ

µν
i

=

 
Λ( 1

2
,0) 0

0 Λ(0, 1
2

)

!
.

A Majorana spinor is defined as

ψM =

„
ψα
ψ̄α̇

«
,

⇔ a Dirac spinor with conjugate left- and right-handed components.

ψ̄α̇ = εα̇β̇ψ̄β̇ with ψ̄β̇ =
“
ψβ

”†
.
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Field declaration - the gluino field (3).

Declaration of the gluino field g̃ (in M$ClassesDescription).

F[1] == {

ClassName -> go,

SelfConjugate -> True,

Indices -> {Index[Gluon]},

PDG -> 1000021,

Mass -> {Mgo,500},

Width -> {Wgo,10}

}

* The WeylComponents option for fermionic fields (example later).
� Definition of a two-component fermion: W[1] instead of F[1].
� Chirality: Chirality -> Left or Chirality -> Right.
� Linking Dirac and two-component fermions:

WeylComponents->{psi, chibar}.
� Linking Majorana and two-component fermions:

WeylComponents->gow.
* Other possible options for fermionic fields: Unphysical, Definitions,

PropagatorLabel, PropagatorType, PropagatorArrow,
AntiParticleName, QuantumNumbers.
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Field declaration - the quark fields.

Declaration of the up-type quark fields uq (in M$ClassesDescription).

F[2] == {

ClassName -> uq,

SelfConjugate -> False,

Indices -> {Index[Gen], Index[Colour]},

FlavorIndex -> Gen,

QuantumNumbers -> {Q -> 2/3},

ClassMembers -> {u, c, t},

Mass -> {Mu, {MU,2.55*^-3}, {MC,1.42}, {MT,172}},

Width -> {0, 0, {WT,1.50833649}},

PDG -> {2, 4, 6}

}

* Similar to the gluino declaration.

* Introduction of particle classes.

� uq and uqbar: generic up-type quark.
� Gen is the flavor index ⇒ defines class members.
� Particle attributes consist now in lists.

* Remark: we assign an electric charge quantum number.
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Field declaration - the squark fields (1).

Declaration of the left up-type squarks q̃Li (in M$ClassesDescription).

S[1] == {

ClassName -> sqL,

SelfConjugate -> False,

Indices -> {Index[Gen],Index[Colour]},

FlavorIndex -> Gen,

QuantumNumbers -> {Q -> 2/3},

ClassMembers -> {suL, scL, stL},

Mass -> {MsqL, {MsuL,300}, {MscL,300}, {MstL,300}},

Width -> {{WsuL,5}, {WscL,5}, {WstL,5}},

PDG -> {1000002, 1000004, 1000006}

}

* Similar as for the other particles.
* Scalar field ⇒ the label is S[1].
* Symbol to be used in the Lagrangian: sqL and sqLbar.
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Field declaration - the squark fields (2).

Declaration of the right up-type squarks q̃Li (in M$ClassesDescription).

S[2] == {

ClassName -> sqR,

SelfConjugate -> False,

Indices -> {Index[Gen],Index[Colour]},

FlavorIndex -> Gen,

QuantumNumbers -> {Q -> 2/3},

ClassMembers -> {suR, scR, stR},

Mass -> {MsqR, {MsuR,300}, {MscR,300}, {MstR,300}},

Width -> {{WsuR,5}, {WscR,5}, {WstR,5}},

PDG -> {2000002, 2000004, 2000006}

}

* Similar as for the other particles.
* Scalar field ⇒ the label is S[2].
* Symbol to be used in the Lagrangian: sqR and sqRbar.
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Declaration of the model parameters (1).

Masses and widths.

* Already taken into account at the particle declaration time.
* No need to declare them a second time

The Lagrangian is:

L = −
1

4
ga
µνg

µν
a +

i

2
¯̃ga /Dga + Dµq̃†LiD

µq̃Li + Dµq̃†RiD
µq̃Ri + i q̄ /Dq

−m2
q̃i

q̃†i q̃i −mq q̄q −
1

2
mg̃

¯̃gag̃a

−
g2

s

2

h
− q̃†LiT

aq̃Li + q̃†RiT
aq̃Ri

ih
− q̃†LjT

aq̃Lj + q̃†RjT
aq̃Rj

i
+
√

2gs

h
− q̃†LiT

a
`
g̃aPLq

´
+
`
q̄PLg̃

a
´
T aq̃Ri

i
+ h.c. ,

with i , j = 1, 2, 3.

* We only need to declare the strong coupling constant.
* Requirement from the MC tools: declaration of both gs and aS.
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Declaration of the model parameters (2).

Declaration of the parameters (in M$Parameters).

aS == {

ParameterType -> External,

Value -> 0.1184,

InteractionOrder -> {QCD, 2}

},

gs == {

ParameterType -> Internal,

Value -> Sqrt[4 Pi aS],

InteractionOrder -> {QCD, 1},

ParameterName -> G

}

* We have Internal and External parameters.
� External: free parameter of the theory ⇒ a numerical value must

be provided (Value).
� Internal: dependent parameter of the theory ⇒ a formula must be

provided (Value)
* InteractionOrder: specific to MadGraph.
* ParameterName: specific to MC tools.
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Declaration of the model parameters (3).

Declaration of the parameters (in M$Parameters).

aS == {

ParameterType -> External,

Value -> 0.1184,

InteractionOrder -> {QCD, 2}

},

gs == {

ParameterType -> Internal,

Value -> Sqrt[4 Pi aS],

InteractionOrder -> {QCD, 1},

ParameterName -> G

}

* Other possible options for parameters: TeX, Definitions,
ComplexParameter, Description, BlockName, OrderBlock.

* Other possible options for matrices: Indices, Unitary.
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Outline.

1 FeynRules in a nutshell.

2 A (maybe not so) simple example: implementation of supersymmetric QCD.

3 Using FeynRules with the supersymmetric QCD model.

4 Advanced model implementation techniques.

5 The superspace module.

6 Summary.
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Implementing the vector Lagrangian.

The vector multiplet (gluino and gluon) Lagrangian reads:

Lvector = −
1

4
ga
µνg

µν
a +

i

2
¯̃ga /Dga −

1

2
mg̃

¯̃gag̃a

* Kinetic and mass terms for the gluon and the gluino fields.
* Gauge interaction terms for the gluon and the gluino fields.

Use of predefined functions.

LVector = -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] +

I/2 Ga[mu,s1,s2] gobar[s1,a].DC[go[s2,a],mu] -

1/2 Mgo gobar[s1,a].go[s1,a]
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Loading the model in Mathematica (1).

Testing the (partial) model in Mathematica.

Step 1: loading FeynRules.

* Setting up the FeynRules path.
* Loading the program itself.

$OldDir = Directory[];

$FeynRulesPath =

SetDirectory["~/FeynRules/trunk/feynrules-development"];

<< FeynRules‘

Mathematica ouput messages.
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Loading the model in Mathematica (2).

Step 2: loading the model file.

* It contains all the information above.

SetDirectory[$OldDir];

LoadModel["susyqcd.fr"];

Mathematica ouput messages.

* Printing the information included in the preamble of the model file.
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Checking the implementation in Mathematica (1).

Step 3: Printing the Lagrangian.

LVector

Mathematica ouput messages.

* Automated generation of the field strength tensor.
* Automated generation of the adjoint representation matrices.

�Included in the gluino covariant derivative terms.

Reminder:

Lvector = −
1

4
ga
µνg

µν
a +

i

2
¯̃ga /Dga −

1

2
mg̃

¯̃gag̃a
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Checking the implementation in Mathematica (2).

Step 4: Checking the Lagrangian.

* The Lagrangian must be hermitian.

CheckHermiticity[LVector];
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Checking the implementation in Mathematica (3).

Step 4: Checking the Lagrangian (cntn’d).

* The kinetic terms must be correctly normalized.
* The kinetic terms must be diagonal.

CheckKineticTermNormalisation[LVector];

Other similar checks: CheckDiagonalQuadraticTerms,
CheckDiagonalKineticTerms, CheckDiagonalMassTerms.
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Checking the implementation in Mathematica (4).

Step 4: Checking the Lagrangian (cntn’d).

* Investigation of the mass spectrum.
* Extracting the masses from the Lagrangian.
* Comparing with the values provided in the declaration of particles.

CheckMassSpectrum[LVector];
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Feynman rules (1).

Printing the Feynman rules.

FeynmanRules[LVector];

Mathematica ouput messages.

* Adjoint color indices ai are related to the ith particle.
* Lorentz indices µi are related to the ith particle.
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Feynman rules (2).

Printing the Feynman rules.

FeynmanRules[LVector];

Mathematica ouput messages (cntn’d).

* Adjoint color indices ai are related to the ith particle.
* Lorentz indices µi are related to the ith particle.
* The adjoint color index c1 is a summed (repeated) index.
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Feynman rules (3).

Printing the Feynman rules.

FeynmanRules[LVector];

Mathematica ouput messages (cntn’d).

* The adjoint color index a1 is related to the 1st particle, the gluon.
* The Lorentz index µ1 ies related to the 1st particle, the gluon.
* The spin indices s2, s3 are related to the 2nd and 3rd particles (gluinos).
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Implementing the matter Lagrangian (1).

The matter multiplet (quark and squarks) Lagrangian reads:

Lmatter = Dµq̃†LiD
µq̃Li + Dµq̃†RiD

µq̃Ri + iq̄ /Dq−m2
q̃i

q̃†i q̃i −mqq̄q

−
g2

s

2

h
− q̃†LiT

aq̃Li + q̃†RiT
aq̃Ri

ih
− q̃†LjT

aq̃Lj + q̃†RjT
aq̃Rj

i
+
√

2gs

h
− q̃†LiT

a
`
g̃aPLq

´
+
`
q̄PLg̃a

´
Taq̃Ri

i
+ h.c.

* Kinetic and mass terms for the (s)quark fields.
* Gauge interaction terms for (s)quark fields.
* The so-called D-terms.
* Supersymmetric quark-squark-gluino interactions.
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Implementing the matter Lagrangian (2).

Kinetic, mass and gauge interaction terms:

Lmatter,kin = Dµq̃†LiD
µq̃Li + Dµq̃†RiD

µq̃Ri + i q̄ /Dq −m2
q̃i

q̃†i q̃i −mq q̄q

Use of predefined functions.

Lkin = DC[sqLbar[cc,ff],mu] DC[sqL[cc,ff],mu] +

DC[sqRbar[cc,ff],mu] DC[sqR[cc,ff],mu] +

I Ga[mu,s1,s2] uqbar[s1,ff,cc].DC[uq[s2,ff,cc],mu] -

MsqL[ff]^2 sqLbar[ff,cc] sqL[ff,cc] -

MsqR[ff]^2 sqRbar[ff,cc] sqR[ff,cc] -

Mu[ff] uqbar[s1,ff,cc].uq[s1,ff,cc]

* sqLbar and sqRbar denote the hermitian-conjugate fields.
* Implicit summation over flavor indices (ff).
* Covariant derivatives for both squarks and quarks (DC).
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Implementing the matter Lagrangian (3).

D-terms:

Lmatter,D = −
g2

s

2

h
− q̃†LiT

aq̃Li + q̃†RiT
aq̃Ri

ih
− q̃†LjT

aq̃Lj + q̃†RjT
aq̃Rj

i
Straightforward implementation.

LD = -1/2 gs^2 *

(sqRbar[ff1,cc1] T[a,cc1,cc2] sqR[ff1,cc2] -

sqLbar[ff1,cc1] T[a,cc1,cc2] sqL[ff1,cc2]) *

(sqRbar[ff2,cc3] T[a,cc3,cc4] sqR[ff2,cc4] -

sqLbar[ff2,cc3] T[a,cc3,cc4] sqL[ff2,cc4])

* Implicit summation over repeated indices.
� Compact form for the Lagrangian.

* BEWARE: do not use a specific index more than twice (here).
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Implementing the matter Lagrangian (4).

The gluino-quark-squark interaction terms:

Lmatter,gosqq =
√

2gs

h
− q̃†LiT

a
`
g̃aPLq

´
+
`
q̄PLg̃

a
´
T aq̃Ri

i
+ h.c.

Straightforward implementation.

Lgosqq = Sqrt[2] gs ProjM[s1,s2] *(

- sqLbar[ff, cc1] T[a,cc1,cc2] gobar[s1,a].uq[s2,ff,cc2] +

uqbar[s1,ff,cc1].go[s2,a] T[a,cc1,cc2] sqR[ff,cc2]);

* introduction of the chirality projectors (ProjM, ProjP).

The complete matter Lagrangian reads:

LMatter = Lkin + LD + Lgosqq + HC[Lgosqq];

* The HC function: automatic derivation of the hermitian-conjugate pieces.
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Check of the matter Lagrangian.

The new pieces of the Lagrangian can be tested as LVector.

Example: the mass spectrum.
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Manipulating Feynman rules (1).

Calculating all Feynman rules.

* The option ScreenOutput renders FeynRules silent.
* Flavor indices are kept understood.

� e.g., we will get one single quark-antiquark-gluon vertex, and not three.

* All vertices have now been expanded in flavor space.
� e.g., we have here three quark-antiquark-gluon vertices.
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Manipulating Feynman rules (2).

Selecting given Feynman rules.

SelectVertices[FR, Contains -> {uq}, Free -> {go}]

* We select the Feynman rules containing quarks (Contains).
* We select the Feynman rules not containing any gluino (Free).

* The list of particles contain the particle names and numbers.
� relating indices to particles.

* The color index a1 is related to the 1st particle (gluon).
* The Lorentz index µ1 is related to the 1st particle (gluon).
* The color indices m2, m3 are related to the 2nd and 3rd particles (quarks).
* The spin indices s2, s3 are related to the 2nd and 3rd particles (quarks).
* The flavor indices f2, f3 are related to the 2nd and 3rd particles (quarks).
* QCD interactions are diagonal in flavor space (δf2,f3 ).
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Manipulating Feynman rules (3).

Selecting given Feynman rules (cntn’d).

SelectVertices[FR2, Contains -> {G},

Free -> {suR, scR, stR, suL, stL, scL}]

* We select the Feynman rules containing a gluon (Contains).
* We select the Feynman rules not containing any squark (Free).

* The list of particles contain the particle names and numbers.
* The color index ai is related to the ith particle (gluon).
* The Lorentz index µi is related to the ith particle (gluon).
* The color index mi is related to the ith particles (quark).
* The spin index si is related to the ith particles (quark).
* No more explicit flavor indices.
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From FeynRules to phenomenology (1).

We are now ready to do phenomenology.

* The model is (correctly) implemented in FeynRules.

� The particle content.
� The parameters.
� The Feynman rules.

* The Feynman rules can be automatically derived.

* Model information can be automatically exported to MC’s.

� CalcHep/CompHep.
� FeynArts/FormCalc.
� MadGraph version 4.
� Sherpa.
� The UFO format ⇒ MadGraph version 5.
� Whizard/Omega.

BSM Physics with FeynRules. Benjamin Fuks - KIAS School on MadGraph - 24-30.10.2011 - 55



The nutshell First example Getting started Advanced techniques Superspace Summary

From FeynRules to phenomenology (2).

The UFO [ arXiv:1108.2040 ].

* UFO ≡ Universal FeynRules output (not tied to any Monte Carlo tool).

* Allows for generic color and Lorentz structures.

* Used by MadGraph5, Golem and Herwig++.

* FeynRules interface: creates a Python module to be linked.

* The module contains all the model information.

ALOHA [ arXiv:1108.2041 ].

* ALOHA ≡ Automatic Libraries Of Helicity Amplitudes.

* Exports the UFO; produces the related Helas routines (C++/Python).
⇒ to be used for Feynman diagram computations.

* Used by MadGraph5.
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From FeynRules to phenomenology (3).

Model

Parameters Gauge groups Particle content Lagrangian

⇓

FeynRules

⇓

Feynman rules ⇒⇒ TEX-file

⇓

Translation interfaces

⇓

CalcHep

⇓

FeynArts

⇓

MadGraph
4 and 5

⇓

Sherpa

⇓

Whizard

⇓ ⇓ ⇓ ⇓ ⇓

Parton showering, hadronization, detector simulation & analysis!

BSM Physics with FeynRules. Benjamin Fuks - KIAS School on MadGraph - 24-30.10.2011 - 56



The nutshell First example Getting started Advanced techniques Superspace Summary

Limitations of the Monte Carlo generators (1).

Some names are hard-coded at the MC level.

* Issues related to the strong interactions.
� The names of the color indices: Colour and Gluon.
� The names of the strong coupling constants: aS and gs.
� The numerical value of aS is given at the Z -pole (cf. running).
� The gluon field name is G.
� The structure constants are denoted by f.
� The fundamental representation is given by T.

* Weak interactions: Fermi coupling and the Z mass.
* Hypercharge and the weak coupling constant.
* More: see the manual...

Some generators have hard-coded color structures.

* The interfaces reject the unsupported structures.
� CalcHep: 1e, 3e, 8e (limited).
� FeynArts: all.
� MadGraph 4: 1e, 3e, 8e (limited).
� MadGraph 5: 1e, 3e, 6e, 8e.
� Sherpa: 1e, 3e, 8e.
� Whizard: 1e, 3e, 8e.
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Limitations of the Monte Carlo generators (2).

Some generators have hard-coded Lorentz structures.

* The interfaces reject the unsupported structures.

� CalcHep: all (theoretically).
� FeynArts: all.
� MadGraph 4: MSSM-like.
� MadGraph 5: all.
� Sherpa: SM-like.
� Whizard: MSSM-like.

Not all spin states are allowed.

* The interfaces reject the unsupported structures.

� CalcHep: scalar, spinor, vector, tensor.
� FeynArts: scalar, spinor, vector.
� MadGraph 4: scalar, spinor, vector (+ Rarita-Schwinger, tensor).
� MadGraph 5: scalar, spinor, vector, tensor.
� Sherpa: scalar, spinor, vector.
� Whizard: scalar, spinor, vector, tensor.
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Running the interfaces (1).

Using the CalcHep interface.

WriteCHOutput[{LVector,LMatter}];

* Arguments: a list of Lagrangians.
* Main options: Exclude4Scalars, CHSimplify, ModelNumber, Output.
* Complete list of options: see the manual.

Mathematica output messages:

...

...

* All the generated files are stored in a single directory.
⇒ to be copy-pasted in CalcHep.

* Non-supported vertices have been automatically rejected.
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Running the interfaces (2).

Using the FeynArts interface.

WriteFeynArtsOutput[{LVector,LMatter}];

* Arguments: a list of Lagrangians.
* Main options: FlavorExpand, Output, CouplingRename, GenericFile.
* Complete list of options: see the manual.

Mathematica output messages:

...

* All the generated files are stored in a single directory.
⇒ to be copy-pasted in FeynArts.

* A generic model file (.gen) and a model-dependent file (.mod) are
created.
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Running the interfaces (3).

Using the other interfaces works in the same fashion.

WriteSHOutput[{LVector,LMatter}];

WriteMGOutput[{LVector,LMatter}];

WriteWOOutput[{LVector,LMatter}];

* Arguments: a list of Lagrangians.
* Complete list of options: see the manual.
* All the generated files are stored in a single directory.
⇒ to be copy-pasted in the corresponding Monte Carlo tool.

* All generated models by FeynRules are plug ‘n‘ play.
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From FeynRules to MadGraph 5 (1).

Extracting UFO files (works as for the other interfaces).

WriteUFO[{LVector,LMatter}];

* Arguments: a list of Lagrangians.
* Main options: Exclude4Scalars, RemoveGhosts, Input, Output.
* Complete list of options: see the manual.

Mathematica output messages:

...

* All the generated files are stored in a single directory (SUSYQCD UFO).
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From FeynRules to MadGraph 5 (2).

The UFO format is a Python translation of the FeynRules format.

* Generic, model-independent files.
� init .py: initialization of the lists of particles, vertices, ...
� object library.py: definition of all classes (Particle, ...)
� function library.py: definition of user-defined functions.
� write param card.py: exporting the UFO parameters to a

standard MG param card.dat.

* Model-independent files.
� particles.py: particles of the model.
� parameters.py: parameters of the model.
� vertices.py: Feynman rules, with the color structures explicit.
� couplings.py: the coupling strengths appearing in the vertices.
� lorentz.py: the Lorentz structures appearing in the vertices.
� coupling orders.py: Coupling orders.

DISCLAIMER

In these lectures, only the basic features of the UFO will be
covered. For more information: arXiv:1108.2040. Please

investigate the UFO files produced during the tutorial sessions.
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From FeynRules to MadGraph 5 (3).

The particles in UFO.

G = Particle(pdg_code = 21,

name = ’G’,

antiname = ’G’,

spin = 3,

color = 8,

mass = Param.ZERO,

width = Param.ZERO,

texname = ’G’,

antitexname = ’G’,

charge = 0)

* Similar to FeynRules.

* Slightly different attribute names.

* Spin is 2s + 1.

* Special keyword for zero.
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From FeynRules to MadGraph 5 (4).

The particles in UFO (cntn’d).

t = Particle(pdg_code = 6,

name = ’t’,

antiname = ’t~’,

spin = 2,

color = 3,

mass = Param.MT,

width = Param.WT,

texname = ’t’,

antitexname = ’t’,

charge = 2/3)

t__tilde__ = t.anti()

* Similar to FeynRules.

* Slightly different attribute names.

* Spin is 2s + 1.

* Masses and widths are UFO parameters.

* Special function to define antiparticles.
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From FeynRules to MadGraph 5 (5).

External parameters in UFO.

aS = Parameter(name = ’aS’,

nature = ’external’,

type = ’real’,

value = 0.1184,

texname = ’\\text{aS}’,

lhablock = ’FRBlock’,

lhacode = [ 1 ])

* Similar to FeynRules.

* Let us note the SLHA structure.

* value is numeric.
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From FeynRules to MadGraph 5 (6).

Internal parameters in UFO.

G = Parameter(name = ’G’,

nature = ’internal’,

type = ’real’,

value = ’2*cmath.sqrt(aS)*cmath.sqrt(cmath.pi)’,

texname = ’G’)

* Similar to FeynRules.

* value is a formula.
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From FeynRules to MadGraph 5 (7).

Vertices in the UFO.

* Must be decomposed in the spin ⊗ color space.

* Concrete example: the quartic gluon vertex (slide 45):

ig2
s f a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4 )

+ ig2
s f a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4 )

+ ig2
s f a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4 ) ,

becomes:“
f a1a2bf ba3a4 , f a1a3bf ba2a4 , f a1a4bf ba2a3

”
×

0@ ig2
s 0 0

0 ig2
s 0

0 0 ig2
s

1A 0@ ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4

1A .
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From FeynRules to MadGraph 5 (8).

Vertices in the UFO (cntn’d).“
f a1a2bf ba3a4 , f a1a3bf ba2a4 , f a1a4bf ba2a3

”
×

0@ ig2
s 0 0

0 ig2
s 0

0 0 ig2
s

1A 0@ ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4

1A .

* One line vector in color space.
Stored in vertices.py.

* One column vector with the Lorentz structures.
Stored in lorentz.py.

* One matrix with the coupling strengths ≡ the coordinates.
Stored in couplings.py.
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From FeynRules to MadGraph 5 (9).

Vertices in UFO.

V_2 = Vertex(name = ’V_2’,

particles = [ P.G, P.G, P.G, P.G ],

color = [ ’f(-1,1,2)*f(3,4,-1)’,

’f(-1,1,3)*f(2,4,-1)’,

’f(-1,1,4)*f(2,3,-1)’ ],

lorentz = [ L.VVVV1, L.VVVV2, L.VVVV3 ],

couplings = {(1,1):C.GC_8,

(0,0):C.GC_8,

(2,2):C.GC_8})

* color: the color basis.

* lorentz: the spin basis.

* couplings: the non-zero coupling strengths.
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From FeynRules to MadGraph 5 (10).

Lorentz structures in UFO.

VVVV1 = Lorentz(name = ’VVVV1’,

spins = [ 3, 3, 3, 3 ],

structure = ’Metric(1,4)*Metric(2,3) -

Metric(1,3)*Metric(2,4)’)

Coupling strengths in UFO.

GC_8 = Coupling(name = ’GC_8’,

value = ’complex(0,1)*G**2’,

order = {’QCD’:2})

Coupling orders.

QCD = CouplingOrder(name = ’QCD’,

expansion_order = 99,

hierarchy = 1)

QED = CouplingOrder(name = ’QED’,

expansion_order = -1,

hierarchy = 2)

* Allows to speed up MadGraph, keeping only the dominant diagrams.
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From FeynRules to MadGraph 5 (11).

Exporting the UFO into MadGraph 5.

* All generated models by FeynRules are plug ‘n‘ play.
* A single copy-paste is enough.
* In a shell:

cp -r SUSYQCD_UFO ~/Tools/madgraph5/models/

Running MadGraph 5.

* Disclaimer: for more advanced MadGraph usage, see the mg lectures!
* The generated UFO model can be used as any other MadGraph model.

(the UFO is the standard model format for MadGraph 5).
* In a shell (no Pythia here, default cards):

cd ~/Tools/madgraph5

./bin/mg5

...

mg5> import model SUSYQCD_UFO -modelname

mg5> generate g g > go go

mg5> output

mg5> launch -f

The cross section is 14.8 pb.
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Outline

1 FeynRules in a nutshell.

2 A (maybe not so) simple example: implementation of supersymmetric QCD.

3 Using FeynRules with the supersymmetric QCD model.

4 Advanced model implementation techniques.

5 The superspace module.

6 Summary.
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Other useful tips for implementing models in FeynRules.

Gauge-eigenstates and mass-eigenstates.

* Gauge-eigenstates: compact Lagrangian, easier to implement.
* Mass-eigenstates: physical fields, complicated Lagrangian (in general).
* Relation through unitary rotation matrices.

Two- and four-component fermions.

* Four-component fermions: complications due to chirality projectors.
* Weyl fermions: easier, no projector (cf. SUSY theories).

Extending existing FeynRules models.

* Adding/changing/removing particles and operators.
* Implementing the new model from scratch: not efficient.

Restricting more general existing FeynRules models.

* Setting some parameters to 0 or 1.
* Implementing the new model from scratch: not efficient.

Simplifying implementations with Mathematica.

* Implementing supersymmetric models in superspace (see below).
* Implementing D-dimensional models in D dimensions.

[ Not treated here: see arXiv:0906.2474 ]
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Implementing particle mixing in FeynRules (1).

Concrete example: supersymmetric QCD.

After supersymmetry (and electroweak symmetry) breaking:

* Particles with same color representation, spin, quantum numbers mix.
* The mass matrices must be diagonalized through unitary rotations.0BBBBB@

ũ1

ũ2

ũ3

ũ4

ũ5

ũ6

1CCCCCA = R ũ

0BBBBB@
ũL

c̃L

t̃L
ũR

c̃R

t̃R

1CCCCCA
* The squarks ũi are the physical states.

How to minimally modify the model file to implement the mixing?

Remark: this situation happens in many models.

* B/W boson mixing to photon/Z in the Standard Model.
* Higgs mixing in Two-Higgs-Doublet models.
* etc...
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Implementing particle mixing in FeynRules (2).

No change to the Lagrangian.

* Easier to implement with gauge-eigenstates.
* We do not want to make it more complicated.

Modifications at the particle level.

* Use of the options Unphysical and Definitions of the particle class.

Modifications of susyqcd.fr.

* Implementation of the mass eigenstates.
* Implementation of the mixing matrix.
* Modification of the fields sqL and sqR to render them unphyiscal.
* Modification of the fields sqL and sqR to add the mixing relations.

This procedure holds for any model.
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Squark mixing in SUSY QCD (1).

Our benchmark scenario: only top squarks do mix.

0BBBBB@
ũ1

ũ2

ũ3

ũ4

ũ5

ũ6

1CCCCCA = R ũ

0BBBBB@
ũL

c̃L

t̃L
ũR

c̃R

t̃R

1CCCCCA =

0BBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0

0 0
√

2
2

0 0 −
√

2
2

0 0 0 1 0 0
0 0 0 0 1 0

0 0
√

2
2

0 0
√

2
2

1CCCCCCA

0BBBBB@
ũL

c̃L

t̃L
ũR

c̃R

t̃R

1CCCCCA

Modification of the model file.

1 Adding a six-dimensional index.
2 Adding the mixing matrix R ũ in M$Parameters.

� as well as left-handed and right-handed blocks.
3 Adding the physical squarks ũi in M$ClassesDescription.
4 Modifying the squark gauge-eigenstates.
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Squark mixing in SUSY QCD (2).

Step 1: a six dimensional-index.

IndexRange[Index[Squark]] = Range[6];

IndexStyle[Squark, i];
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Squark mixing in SUSY QCD (3).

From the mixing matrix to the fields.

0BBBBB@
ũ1

ũ2

ũ3

ũ4

ũ5

ũ6

1CCCCCA = R ũ

0BBBBB@
ũL

c̃L

t̃L
ũR

c̃R

t̃R

1CCCCCA⇔
0BBBBB@

ũL

c̃L

t̃L
ũR

c̃R

t̃R

1CCCCCA = (R ũ)†

0BBBBB@
ũ1

ũ2

ũ3

ũ4

ũ5

ũ6

1CCCCCA =

0BBBBB@
(R ũ

L )†

(R ũ
R)†

1CCCCCA

0BBBBB@
ũ1

ũ2

ũ3

ũ4

ũ5

ũ6

1CCCCCA
Mixing relations between gauge- and mass-eigenstates.

* RuL will be used for left-handed squark mixing.
* RuR will be used for right-handed squark mixing.

0@ũL

c̃L

t̃L

1A = (R ũ
L )†

0BBBBB@
ũ1

ũ2

ũ3

ũ4

ũ5

ũ6

1CCCCCA
0@ũR

c̃R

t̃R

1A = (R ũ
R)†

0BBBBB@
ũ1

ũ2

ũ3

ũ4

ũ5

ũ6

1CCCCCA
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Squark mixing in SUSY QCD (4).
Step 2: the mixing matrix.

Ru == {

ParameterType -> External,

Indices -> {Index[Squark], Index[Squark]},

Value -> { ... },

Unitary -> True

},

RuL == {

ParameterType -> Internal,

Indices -> {Index[Squark], Index[Gen]},

Definitions -> {RuL[i_,j_]:>Ru[i,j]/;NumericQ[j]}

},

RuR == {

ParameterType -> Internal,

Indices -> {Index[Squark], Index[Gen]},

Definitions -> {RuR[i_,j_]:>Ru[i,j+3]/;NumericQ[j]}

}

* The Squark and Gen indices do not have the same range.
� The definition is applied only if the second index is numeric.

* RuL will be used for left-handed squark mixing.
* RuR will be used for right-handed squark mixing.

BSM Physics with FeynRules. Benjamin Fuks - KIAS School on MadGraph - 24-30.10.2011 - 80



The nutshell First example Getting started Advanced techniques Superspace Summary

Squark mixing in SUSY QCD (5).

Step 3: declaration of the physical squark field.

S[3] == {

ClassName -> su,

SelfConjugate -> False,

Indices -> {Index[Squark],Index[Colour]},

FlavorIndex -> Squark,

QuantumNumbers -> {Q -> 2/3},

ClassMembers -> {su1, su2, su3, su4, su5, su6},

Mass -> {Msu, {Msu1,300}, {Msu2,300},

{Msu3,300}, {Msu4,300},

{Msu5,300}, {Msu6,300}},

Width -> {{Wsu1,5}, {Wsu2,5}, {Wsu3,5},

{Wsu4,5}, {Wsu5,5}, {Wsu6,5}},

PDG -> {1000002, 1000004, 1000006,

2000002, 2000004, 2000006}

}

* We have now six states.
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Squark mixing in SUSY QCD (6).

Step 4a: Modifying sqL.

S[1] == {

ClassName -> sqL,

Unphysical -> True,

SelfConjugate -> False,

Indices -> {Index[Gen],Index[Colour]},

FlavorIndex -> Gen,

QuantumNumbers -> {Q -> 2/3},

Definitions -> { sqL[ff_,cc_] :> Module[{ff2},

Conjugate[RuL[ff2,ff]] su[ff2,cc]] }

}

* The option Unphysical is set to True.
* The option Definitions relating sqL to su is provided.

� This involves RuL.
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Squark mixing in SUSY QCD (7).

Step 4b: Modifying sqR.

S[2] == {

ClassName -> sqR,

Unphysical -> True,

SelfConjugate -> False,

Indices -> {Index[Gen],Index[Colour]},

FlavorIndex -> Gen,

QuantumNumbers -> {Q -> 2/3},

Definitions -> { sqR[ff_,cc_] :> Module[{ff2},

Conjugate[RuR[ff2,ff]] su[ff2,cc]] }

}

* The option Unphysical is set to True.
* The option Definitions relating sqR to su is provided.

� This involves RuR.
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Manipulating Feynman rules (1).

Calculating all Feynman rules.

Selecting given Feynman rules.

SelectVertices[FR, Contains -> {go, su}]

* We select Feynman rules containing gluinos and squarks (Contains).
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Manipulating Feynman rules (2).

Reminder:

L =
√

2gs

h
− q̃†LiT

a
`
g̃aPLq

´
+
`
q̄PLg̃

a
´
T aq̃Ri

i
+ h.c.

Selecting given Feynman rule.

* The Feynman rule shows squark related indices.
� A Squark index i2 (from 1→ 6).
� A Colour index m2.

* The Feynman rule depends on the mixing matrices.
� RuL has one Squark and one Gen index (i2 and f3).
� RuR has one Squark and one Gen index (i2 and f3).

The rotations have been performed automatically by FeynRules.
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Two-component and four-component fermions (1).

Some models are easier to implement using Weyl fermions.
� as any supersymmetric model.

Concrete example: supersymmetric QCD.

* We have a four-component version of the model file.
* We want a two-component version of the model file.

How to minimally modify the model file to implement this?

1 We need to modify the quark and gluino implementations (fermions).
2 We need to provide new Lagrangian terms ⇒ L4 → L2.
3 Cross-check: FeynmanRules[L4-L2] must be empty.
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Two-component and four-component fermions (2).

Step 1a: Implementing a Weyl gluino χg̃ (in M$ClassesDescription).

W[1] == {

ClassName -> gow,

Unphysical -> True,

Chirality -> Left,

SelfConjugate -> False,

Indices -> {Index[Gluon]},

Definitions -> {gow[inds__]->-I*goww[inds]}

}

* Two-component fermion ⇒ the label is W[1].
* Defined symbols: gow (left-handed), gowbar (right-handed).
* Unphysical: Weyl fermion are not physical states.

� contrary to Dirac and Majorana fields.
* Definitions: cf. SLHA ⇒ i factor absorbed in gaugino definitions.

Ψg̃ =

„
iχg̃

−iχ̄g̃

«
� definition of the Weyl fermion goww.

BSM Physics with FeynRules. Benjamin Fuks - KIAS School on MadGraph - 24-30.10.2011 - 87



The nutshell First example Getting started Advanced techniques Superspace Summary

Two-component and four-component fermions (3).

Step 1a (ctn’d): Definition of the Weyl fermion goww.

W[2] == {

ClassName -> goww,

Unphysical -> True,

Chirality -> Left,

SelfConjugate -> False,

Indices -> {Index[Gluon]}

}
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Two-component and four-component fermions (4).

Step 1b: Relating Weyl and Dirac gluinos.

F[1] == {

ClassName -> go,

WeylComponents -> goww,

SelfConjugate -> True,

Indices -> {Index[Gluon]},

PDG -> 1000021,

Mass -> {Mgo,500},

Width -> {Wgo,10}

}

* Through the WeylComponents option.
* One single component ≡ Majorana fermion.
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Two-component and four-component fermions (5).

Step 1a: Implementing a left-handed Weyl quark uqLw.

W[3] == {

ClassName -> uqLw,

Unphysical -> True,

Chirality -> Left,

SelfConjugate -> False,

Indices -> {Index[Gen],Index[Colour]},

FlavorIndex -> Gen,

QuantumNumbers -> {Q-> 2/3}

}

* Two-component fermion ⇒ the label is W[3].
* Defined symbols: uqLw (left-handed), uqLwbar (right-handed).
* Unphysical: Weyl fermion are not physical states.

� contrary to Dirac and Majorana fields.
* The electric charge is 2/3 (QuantumNumbers).
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Two-component and four-component fermions (6).

Step 1a: Implementing a right-handed Weyl quark uqRw.

W[4] == {

ClassName -> uqRw,

Unphysical -> True,

Chirality -> Right,

SelfConjugate -> False,

Indices -> {Index[Gen],Index[Colour]},

FlavorIndex -> Gen,

QuantumNumbers -> {Q-> 2/3}

}

* Two-component fermion ⇒ the label is W[4].
* Defined symbols: uqRwbar (left-handed), uqRw (right-handed).
* Unphysical: Weyl fermion are not physical states.

� contrary to Dirac and Majorana fields.
* The electric charge is 2/3 (QuantumNumbers).
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Two-component and four-component fermions (7).

Step 1b: Relating Weyl and Dirac quarks.

F[2] == {

ClassName -> uq,

WeylComponents -> {uqLw,uqRw},

SelfConjugate -> False,

Indices -> {Index[Gen], Index[Colour]},

FlavorIndex -> Gen,

QuantumNumbers -> {Q -> 2/3},

ClassMembers -> {u, c, t},

Mass -> {Mu, {MU,2.55*^-3}, {MC,1.42}, {MT,172}},

Width -> {0, 0, {WT,1.50833649}},

PDG -> {2, 4, 6}

}

* Through the WeylComponents option.
* Two components (one left-handed + one right-handed) ≡ Dirac fermion.
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Implementing Lagrangians using Weyl fermions (1).

Kinetic and gauge interaction terms for quarks:

Lmatter,kin =
i

2

h
χi

qLσ
µDµχ̄qL,i − Dµχ

i
qLσ

µχ̄qL,i

i
+

i

2

h
χi

QR σ̄
µDµχ̄QR,i − Dµχ

i
QR σ̄

µχ̄QR,i

i
−mq

h
χ̄i

QR · χ
i
qL + χi

QR · χ̄
i
qL

i
+ squark terms

Step 2: implementation.

LkinW = ... +

I/2 si[mu, sp1, sp2] (

uqLw[sp1, ff, cc].DC[uqLwbar[sp2, ff, cc], mu] -

DC[uqLw[sp1, ff, cc], mu].uqLwbar[sp2, ff, cc]) +

I/2 sibar[mu,sp1,sp2] (

uqRw[sp1, ff, cc].DC[uqRwbar[sp2, ff, cc], mu] -

DC[uqRw[sp1, ff, cc], mu].uqRwbar[sp2, ff, cc]) -

Mu[ff] (uqLw[sp, ff, cc].uqRwbar[sp, ff, cc] +

uqLwbar[sp, ff, cc].uqRw[sp, ff, cc])
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Implementing Lagrangians using Weyl fermions (2).

Checking the implementation via the Feynman rules.

LK = Lkin - WeylToDirac[LkinW];

LK = OptimizeIndex[Expand[LK]];

FeynmanRules[LK,ScreenOutput->False]

* We compute the difference of the two Lagrangians.
* We transform Weyl fermions to Dirac fermions (WeylToDirac).
* We optimize the index naming scheme (OptimizeIndex).

� Renaming consistenly the summed indices.
* We derive the Feynman rules.
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Implementing Lagrangians using Weyl fermions (3).

Checking the implementation via the Feynman rules.

Mathematica ouput messages.

* It works!
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Implementing Lagrangians using Weyl fermions (4).

Checking the implementation via the mass spectrum.

LK = Lkin - WeylToDirac[LkinW];

LK = OptimizeIndex[Expand[LK]];

Simplify[GetMassTerms[LK]]

* We compute the difference of the two Lagrangians.
* We transform Weyl fermions to Dirac fermions (WeylToDirac).
* We optimize the index naming scheme (OptimizeIndex).

� Renaming consistenly the summed indices.
* We extract the mass terms.
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Implementing Lagrangians using Weyl fermions (5).

Checking the implementation via the mass spectrum.

Mathematica ouput messages.

We could also use GetKineticTerms, ...

Exercise: implement the rest of the Weyl Lagrangian.
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Extending existing models.

Investigated models are often extensions of other, more minimal, models.

* Two-Higgs-Doublets models are a simple extensions of the SM.
* R-parity violating supersymmetry extends R-parity conserving SUSY.
* Additional U(1)′ interactions within the Standard Model.
* etc...

FeynRules offers an efficient way to implement extensions to models.

* The smaller model is taken as it is.

* We implement a new FeynRules model file.

� It contains the additional gauge group/particles/operators.
� It is loaded together with the smaller model.

LoadModel["SmallModel.fr", "Extension.fr"];

No need to re-invent the wheel...
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Restricting existing models (1).

Restricted versions of a more general model.

* The Standard Model with vanishing light masses.
* The Standard Model with vanishing CKM matrix.
* The cMSSM (5 free parameters) vs. the MSSM (105 parameters).
* etc...

Phenomenology: often enough to consider restricted models, not full ones.

* The full model renders the MC slower.
� e.g.: the general MSSM has more than 10.000 vertices.

* Many vertices are subleading.
� e.g.: CKM suppression.

FeynRules offers an efficient way to implement restrictions to models.

BSM Physics with FeynRules. Benjamin Fuks - KIAS School on MadGraph - 24-30.10.2011 - 99



The nutshell First example Getting started Advanced techniques Superspace Summary

Restricting existing models (2).

The restrictions are implemented in a restriction file.

* The file contains additional definitions for parameters.
* To be replaced before passing the information to the MC.
* The restricted parameters do not appear at the MC level.
* The MC implementation is lighter ⇒ more efficient.

Example: a diagonal CKM matrix in DiagonalCKM.rst.

M$Restrictions = {

CKM[ i_, i_ ] -> 1,

CKM[ i_?NumericQ, j_?NumericQ ] :> 0 /; (i =!= j)

};

The restrictions are loaded after the model.

LoadModel["SM.fr"];

LoadRestriction["DiagonalCKM.rst"];
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Restricting existing models (3).

The restrictions can be implemented at the MadGraph level.

* The restriction file is a param card, with:
� some parameters set to zero.

� some parameters set to unity.
* The filename is on the form restrict restrictionname.dat.

* It is loaded as

mg5> import model modelname-restrictionname

Effects in MadGraph.

* MadGraph replaces the zeros and ones by their numerical values
(removal of the associated symbols).

* MadGraph maps couplings with the same value.

* MadGraph removes vanishing couplings.

Example: list the directory models/sm in MadGraph.

* By default, the file restrict default is used.

* To bypass all possible restrictions:

mg5> import model modelname-full

i.e., sm-full: complete Standard Model (CKM, non-zero masses, ...).
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Outline

1 FeynRules in a nutshell.

2 A (maybe not so) simple example: implementation of supersymmetric QCD.

3 Using FeynRules with the supersymmetric QCD model.

4 Advanced model implementation techniques.

5 The superspace module.

6 Summary.
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Fields and superfields (1).

Supported fields.

* Scalar fields.

* Weyl, Dirac and Majorana fermions.

* Vector (and ghost) fields.

Is this relevant / enough for the implementation of
supersymmetric theories.

Yes, but ... let us investigate two short examples.

BSM Physics with FeynRules. Benjamin Fuks - KIAS School on MadGraph - 24-30.10.2011 - 103



The nutshell First example Getting started Advanced techniques Superspace Summary

Fields and superfields (2).

Example 1: the superpotential for (s)leptons in the MSSM.

* Terribly expressed in terms of components fields,
i.e., scalars, Dirac and Majorana fermions, vector fields:

LW = (ye)ij

heER
ieLj · FHD

+ eER
iHD · FL

j + eLj · HDF i
E

+ eER
i (ψ̄c

L
jPLψHD

) + eLj · (ψ̄HD
PLψe

i ) + (ψ̄e
iPLψL

j ) · HD

i
* Not very nicely expressed in terms of components fields,

i.e., scalars, Weyl fermions, vector fields:

LW = (ye)ij

heER
ieLj · FHD

+ eER
iHD · FL

j + eLj · HDF i
E

+ eER
i (χL

j · eHD) + eLj · (eHD · χE
i ) + (χE

i · χL
j ) · HD

i
* Naturally expressed in terms of superfields (1 terms):

LW =
h
− (ye)ij E i

`
Lj ·HD

´i˛̨̨̨
θ·θ
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Fields and superfields (3).

Example 1: the superpotential for (s)leptons in the MSSM.

* Terribly expressed in terms of components fields,
i.e., scalars, Dirac and Majorana fermions, vector fields:

LW = (ye)ij

heER
ieLj · FHD

+ eER
iHD · FL

j + eLj · HDF i
E

+ eER
i (ψ̄c

L
jPLψHD

) + eLj · (ψ̄HD
PLψe

i ) + (ψ̄e
iPLψL

j ) · HD

i
* Are the charge conjugated fields correct?

* Are the signs in the fermion flows correct?

* The superfield formalism seems more convenient...

LW =
h
− (ye)ij E i

`
Lj ·HD

´i˛̨̨̨
θ·θ
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Fields and superfields (4).

Kinetic terms and gauge interactions for left-handed (s)quarks in the MSSM.

* Terribly expressed in terms of components fields: i.e., scalars, Dirac and
Majorana fermions, vector fields (13 terms):

Lkin ⊃ ... [Censured: too ugly to appear on a slide].

* Not very nicely expressed in terms of components fields,
i. e. scalars, Weyl fermions, vector fields (13 terms):

Lkin ⊃ Dµ eQ†i Dµ eQ i +
i

2
(χi

Qσ
µDµχ̄Q i − Dµχ

i
Qσ

µχ̄Q i ) + F †Q iF
i
Q

+ i
√

2
h1

6
g ′ eQ i ēB · χ̄Q i + gfW k

· χ̄Q i
σk

2
eQ i + gs

eG a
· χ̄Q iT

a eQ i + h. c.
i

− g ′DB
eQ†i eQ i − gDW k

eQ†i σk

2
eQ i − gsDGa eQ†i T a

2
eQ i

* Naturally expressed in terms of superfields (1 terms):

Lkin ⊃
h
Q†i e−2 1

6
g′VBe−2gV

Wk
σk

2 e−2gs VGa
Ta

2 Q i
i˛̨̨̨
θ·θθ̄·θ̄
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Fields and superfields (5).

Kinetic terms and gauge interactions for left-handed (s)quarks in the MSSM.

* Not very nicely expressed in terms of components fields,
i. e. scalars, Weyl fermions, vector fields (13 terms):

Lkin ⊃ Dµ eQ†i Dµ eQ i +
i

2
(χi

Qσ
µDµχ̄Q i − Dµχ

i
Qσ

µχ̄Q i ) + F †Q iF
i
Q

+ i
√

2
h1

6
g ′ eQ i ēB · χ̄Q i + gfW k

· χ̄Q i
σk

2
eQ i + gs

eG a
· χ̄Q iT

a eQ i + h. c.
i

− g ′DB
eQ†i eQ i − gDW k

eQ†i σk

2
eQ i − gsDGa eQ†i T a

2
eQ i

* Are all relative signs and factors of i correct
(especially in the non-gauge-like interactions)?

* Four-component fermions... (They are a pain, but required for MCs).

* The superfield formalism is more convenient...

Lkin ⊃
h
Q†i e−2 1

6
g′VBe−2gV

Wk
σk

2 e−2gs VGa
Ta

2 Q i
i˛̨̨̨
θ·θθ̄·θ̄
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A superspace module in FeynRules.

Motivation for the superspace module in FeynRules

* Natural to implement any supersymmetric theory.

* Zero probability to introduce wrong signs, i factors,...

* Could be a useful tool for model building.
(not only a Lagrangian translator).
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Superspace basics (1).

Superspace: adapted space to write down SUSY transformations naturally.

Basic objects and their FeynRules (hardcoded) implementation.

* The Majorana spinor (θ, θ̄) ⇒ a superspace point ≡ G(x , θ, θ̄).
� theta is defined internally as a regular Weyl spinor.
� theta is a mathematical object ⇒ Unphyiscal->True.

W[x1000] == {

TeX -> \[Theta],

ClassName -> theta,

Chirality -> Left,

SelfConjugate -> False,

Unphysical -> True}

* SUSY transformation parameters: Majorana spinors (ε1, ε̄1), (ε2, ε̄2), ....
� The epsx are defined internally as a regular Weyl spinor, e.g.:

W[x1006] == {

ClassName -> eps6,

Chirality -> Left,

SelfConjugate -> False,

Unphysical -> True}
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Superspace basics (2).

The supercharges (Q, Q̄): action to the left ≡ G(0, ε, ε̄)G(x , θ, θ̄).

* Reminder: calculated by identifying the variations of the coordinates.

The superderivatives (D, D̄): action to the right ≡ G(x , θ, θ̄)G(0, ε, ε̄).

* Reminder: calculated by identifying the variations of the coordinates.

Qα = −i(∂α + iσµαα̇θ̄
α̇∂µ) and Q̄α̇ = i(∂̄α̇ + iθασµαα̇∂µ) ,

Dα = ∂α − iσµαα̇θ̄
α̇∂µ and D̄α̇ = ∂̄α̇ − iθασµαα̇∂µ .

Qα(exp) and Q̄α̇(exp)

QSUSY [exp_, alpha_]

QSUSYBar[exp_, alphadot_]

Dα(exp) and D̄α̇(exp)

DSUSY [exp_, alpha_]

DSUSYBar[exp_, alphadot_]

* These operators can be used on any superspace expressions (see below).
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Superspace expressions: the general superfield (1).

Definition of a generic superfield.

* Most general (reducible) expansion in the θ, θ̄ variables.
* Can be expressed as,

Φ(x , θ, θ̄) = z(x) + θ · ξ(x) + θ̄ · ζ̄(x) + θ · θf (x) + θ̄ · θ̄g(x)+

θσµθ̄ vµ(x) + θ̄ · θ̄θ · ω(x) + θ · θ · θ̄ · ρ̄(x) + θ · θθ̄ · θ̄d(x).

* 16 bosonic degrees of freedom.

� Four complex scalar fields z, f , g , d .
� One complex vector field vµ.

* 16 fermionic degrees of freedom.

� Four Weyl fermions ξ, ζ, ω, ρ.

Reminder: spinor scalar product.

ψ · χ = ψαχα and ψ̄ · χ̄ = ψ̄α̇χ̄
α̇ .
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Superspace expressions: the general superfield (2).

Φ(x , θ, θ̄) = z(x) + θ · ξ(x) + θ̄ · ζ̄(x) + θ · θf (x) + θ̄ · θ̄g(x)+

θσµθ̄ vµ(x) + θ̄ · θ̄θ · ω(x) + θ · θ · θ̄ · ρ̄(x) + θ · θθ̄ · θ̄d(x).

Can be implemented in FeynRules-superfields.

* Use of the nc environment (keep the fermion ordering).

* All the fermions are carrying lower indices.

� We can define a metric acting on spin space.

ψα = εαβψ
β , ψα = εαβψβ ,

χ̄α̇ = εα̇β̇ χ̄
β̇ , χ̄α̇ = εα̇β̇ χ̄β̇ .

(Beware of conventions: summation on the second index).
� Use of the ε rank-two antisymmetric tensors (Ueps and Deps).

* Remark: all the components must be declared properly and explicitely.

z + nc[theta[sp],xi[sp2]] Ueps[sp2,sp] + ...
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Superfields.

The most general superfield contains too many degrees of freedom to
describe the SUSY multiplets.

We will put constraints on it.

* Definition of chiral superfields.
* Definition of vector superfields.

SUSY multiplets for right-handed quarks.

* One left-handed spinor for the charge-conjugate right-handed quark.
* The corresponding charge-conjugate scalar (anti)squark.

To be adapted in susyqcd.fr.

* Creation of the antifundamental color representation {Tb,Colourb}.
* Definition of UQRw, a right-handed antiquark, i.e., a left-handed spinor.
* Definition of SQR, the corresponding antisquark.

susyqcd.fr is now ready to include superfields.
� if you need help: addon.fr on the school wikipage.
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Superfields: chiral superfields (1).

Definition: the most general expansion in θ, θ̄ satisfying D̄α̇Φ(x , θ, θ̄) = 0.

Φ(x , θ, θ̄) = φ(y) +
√

2θ · ψ(y)− θ · θF (y) .

* yµ = xµ − iθσµθ̄.
* It describes matter multiplets.

* One scalar field φ, one Weyl fermion χ, one auxiliary field F .

� On-shell: F is eliminated, 2 fermionic, 2 bosonic degrees of freedom.
� Off-shell: 4 fermionic, 4 bosonic degrees of freedom.
� F is an unphysical complex scalar field.
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Superfields: chiral superfields (2).

Declaration of the left-handed quark superfield (in M$Superfieds).

CSF[1] == {

ClassName -> QL,

Chirality -> Left,

Weyl -> uqLw,

Scalar -> sqL,

QuantumNumbers -> {Q->2/3},

Indices -> {Index[Gen], Index[Colour]}

}

* Chiral superfield ⇒ the label is CSF[1].
* The Scalar and Weyl components must be declared properly.
* The auxiliary field are automatically generated (not explicitely present).
* Indices and QuantumNumbers must match those of the components.
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Superfields: chiral superfields (3).

Expansion in superspace: Φ(y,θ)=φ(y)+
√

2θ·ψ(y)−θ·θF (y).

* GrassmannExpand expands a superfield expression in terms of θ, θ̄.

* The auxiliary term, FTerm1, was automatically generated by FeynRules.

* Automatic y-expansion (yµ=xµ − iθσµθ̄) ⇒ the fields depend on x .
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Superfields: chiral superfields (4).

Extraction of the coefficients of the expansion: Φ=φ+
√

2θ·ψ−θ·θF+....

* Extraction of the first three coefficients (SUSY degrees of freedom).

* Existing functions:
� ScalarComponent

� ThetaComponent

� Theta2Component

� ThetabarComponent

� Thetabar2Component

� ThetaThetabarComponent

� Theta2ThetabarComponent

� Thetabar2ThetaComponent

� Theta2Thetabar2Component
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Superfields: chiral superfields (5).

Declaration of the right-handed quark superfield (in M$Superfieds).

CSF[2] == {

ClassName -> UR,

Chirality -> Left,

Weyl -> UQRw,

Scalar -> SQR,

QuantumNumbers -> {Q->-2/3},

Indices -> {Index[Gen], Index[Colourb]}

}

* Chiral superfield ⇒ the label is CSF[2].

* The Scalar and Weyl components must be declared properly.

* The auxiliary field are automatically generated (not explicitely present).

* Indices and QuantumNumbers must match those of the components.

* The components fields are the charge-conjugate fields.
⇒ antifundamental color representation, opposite electric charge.
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Using some superspace basic objects (1).

Transformation laws for a chiral superfield and its components:

* In terms of superfields: δεΦ(x , θ, θ̄) = i(ε · Q + Q̄ · ε̄) · Φ(x , θ, θ̄) .

* In terms of component fields (depending on y , not x):

δεφ =
√

2ε·ψ , δεψ = −i
√

2σµε̄∂µφ−
√

2Fε , δεF = −i
√

2∂µψσ
µε̄ .

* This depends on the supercharges QSUSY and QSUSYBar.

* The function DeltaSUSY is a better option...

DeltaPHI = DeltaSUSY[UR, eps1];

* eps1 is the transformnation parameter.

* The DeltaSUSY operator corresponds to the superfield equation above.
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Using some superspace basic objects (2).

The components of DeltaPHI read:

δεφ =
√

2ε · ψ , δεψ = −i
√

2σµε̄∂µφ−
√

2Fε , δεF = −i
√

2∂µψσ
µε̄ .

* Tonc breaks dot products and restore the nc structure (fermion ordering).

* This is mandatory in order to have the xxxComponent to work properly.

* The
√

2 and the minus sign are related to:

Φ = φ +
√

2θ · ψ − θ · θF + . . .
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Superfields: vector superfields (1).

We apply the constraint Φ = Φ† on a general superfield.

In the Wess-Zumino gauge, we have:

ΦW .Z .(x , θ, θ̄) = θσµθ̄vµ + iθ · θθ̄ · λ̄− i θ̄ · θ̄θ · λ+
1

2
θ · θ θ̄ · θ̄D .

* This describes gauge supermultiplets.

* One Majorana fermion (λ, λ̄), one (massless) gauge boson v , one auxiliary

field D.

� On-shell: D eliminated, 2 fermionic, 2 bosonic degrees of freedom.
� Off-shell: 4 fermionic, 4 bosonic degrees of freedom.
� D is an unphysical real scalar field.
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Superfields: vector superfields (2).

Declaration of the SU(3)c vector superfield (in M$Superfieds).

VSF[1] == {

ClassName -> GSF,

GaugeBoson -> G,

Gaugino -> gow,

Indices -> {Index[Gluon]}

}

* Vector superfield ⇒ the label is VSF[1].

* The Gaugino and GaugeBoson components must be declared properly.

* The auxiliary field are automatically generated (not explicitely present).

* Indices and QuantumNumbers must match those of the components.
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Superfields: vector superfields (3).

Vector superfields can be associated to a gauge group.

SU3C == {

Abelian -> False,

Superfield -> GSF,

CouplingConstant -> gs,

StructureConstant -> f,

Representations -> {{T,Colour}, {Tb,Colourb}}

}

* Through the option Superfield.

* This replace the option GaugeBoson.
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Superfields: vector superfields (4).

Expansion in superspace with FeynRules:

Φ = θσµθ̄vµ + iθ · θθ̄ · λ̄− i θ̄ · θ̄θ · λ+ 1
2
θ · θ θ̄ · θ̄D .

* DTerm3 was automatically generated.
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Superfields: vector superfields (5).

Some properties of vector superfields in the Wess-Zumino gauge:

Φ2
W .Z . =

1

2
θ · θθ̄ · θ̄vµvµ, Φ3

W .Z . = 0.

The superfield strength tensor is built from associated spinorial superfields:

Wα = −
1

4
D̄ · D̄ e2gV Dαe−2gV , W α̇ = −

1

4
D · D e−2gV D̄α̇e2gV .

Wα, (Wα)ij , W a
α, W α̇, W

a
α̇, (W α̇)ij

SuperfieldStrengthL[ SF, lower spin index ]

SuperfieldStrengthL[ SF, spin index, gauge index/indices ]

SuperfieldStrengthR[ SF, lower spin index ]

SuperfieldStrengthR[ SF, spin index, gauge index/indices ]
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Superfields: vector superfields (6).
Spinorial superfields:

Wα(y , θ) = −2g

„
−iλα +

h
−

i

2
(σµσ̄νθ)αFµν + θαD

i
− θ · θ(σµDµλ̄)α

«
.

* FeynRules has performed the y-expansion.
* Spinors with non-lower spin index are embedded in a TensDot2 structure.
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Vector Lagrangians (1).

Each vector superfield is attached to one gauge group.

Vector superfield interactions are obtained by calculating superfield strengths.

* Abelian groups.

L =
1

4
WαWα|θθ

+
1

4
W̄α̇W̄ α̇

|θ̄θ̄

= −
1

4
FµνF

µν + i λ̄σ̄µ∂µλ+
1

2
D2 .

* Non-abelian groups.

L =
1

16g2τR
Tr(WαWα)|θθ

+
1

16g2τR
Tr(W̄α̇W̄ α̇)|θ̄θ̄

= −
1

4
F a
µν Fµνa + i λ̄a σ̄

µ Dµλ
a +

1

2
DaD

a

⇒ Interactions between gauge-bosons and gauginos.

Automatic extraction of the vector Lagrangian of a model:

(* all vector superfields *) VSFKineticTerms[]

(* one vector superfield *) VSFKineticTerms[ GSF ]
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Vector Lagrangians (2).

Non-abelian superfield strengths (with Weyl fermions):

L =
1

16g2τR
Tr(WαWα)|θθ

+ h.c. = −
1

4
F a
µν Fµνa + i λ̄a σ̄

µ Dµλ
a +

1

2
DaD

a .

In SUSY-QCD:.

Is this correct?
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Vector Lagrangians (3).

Checking the implementation via the Feynman rules.

LV = LVectorW - LVectorSF;

LV = WeylToDirac[LV];

LV = OptimizeIndex[Expand[LV]];

rules = FeynmanRules[LV,ScreenOutput->False];

rules = {#[[1]], OptimizeIndex[Expand[#[[2]]]]} &/@ rules

* We compute the difference of the two Lagrangians.
* We transform Weyl fermions to Dirac fermions (WeylToDirac).
* We optimize the index naming scheme (OptimizeIndex).

� Renaming consistenly the summed indices.
* We derive the Feynman rules.
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Vector Lagrangians (4).

Checking the implementation via the Feynman rules.

Mathematica ouput messages.

Starting Feynman rule calculation.

Collecting the different structures that enter the vertex...

Found 2 possible non zero vertices.

Start calculating vertices...

1 vertex obtained.˘˘˘
{G, 1}, {G, 2}, {G, 3}, {G, 4}

¯
, 0

¯¯
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Matter Lagrangians (1).

Lagrangian associated to the chiral superfield content of the theory.

* Contains gauge interactions and kinetic terms for chiral superfields.
* Is entirely fixed by SUSY and gauge invariance
* Example for SU(3)c × SU(2)L × U(1)Y .

L =
h
Φ†(x , θ, θ̄)e−2yΦg′VBe−2gVW e−2gs VG Φ(x , θ, θ̄)

i˛̨̨̨
θ·θθ̄·θ̄

(Non-abelian vector superfields contains group representation matrices.)

Automatic extraction of the matter Lagrangian of a model:

CSFKineticTerms[]

CSFKineticTerms[ UR ] + CSFKineticTerms[ QL ]
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Matter Lagrangians (2).

Generic matter kinetic Lagrangian:

L = Dµφ
†Dµ

φ−
i

2

`
Dµψ̄σ̄

µ
ψ − ψ̄σ̄µDµψ

´
+i
√

2gλ̄a·ψ̄Taφ−i
√

2gφ†Taψ·λa+FF†−gDa
φ
†T a

φ .

Is this correct? ⇒ NO!!!
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Full supersymmetric Lagrangians (1).

Complete Lagrangian for a model.

L = Φ†e−2gVΦ|
θ2θ̄2

+
1

16g2τR
Tr(WαWα)|

θ2
+

1

16g2τR
Tr(W̄α̇W̄α̇)|

θ̄2

+W(Φ)|
θ2

+ W?(Φ†)|
θ̄2

+ Lsoft

* Chiral superfield kinetic terms: automatic.

* Vector superfield kinetic terms: automatic.

* Superpotential: model dependent.

* Soft SUSY-breaking Lagrangian: model dependent
(and often not related to the superspace).

Theta2Thetabar2Component[ CSFKineticTerms[] ] +

Theta2Component[ VSFKineticTerms[] + SuperPot ] +

Thetabar2Component[ VSFKineticTerms[] + HC[SuperPot] ] +

LSoft

* LSoft and SuperPot are the only pieces provided by the user.
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Full supersymmetric Lagrangians (2).

In the case of a supersymmetric QCD theory:

L = Φ†e−2gVΦ|
θ2θ̄2

+
1

16g2τR
Tr(WαWα)|

θ2
+

1

16g2τR
Tr(W̄α̇W̄α̇)|

θ̄2

+W(Φ)|
θ2

+ W?(Φ†)|
θ̄2

+ Lsoft

LMatterSF = Theta2Thetabar2Component[CSFKineticTerms[]];

LVectorSF = Theta2Component[VSFKineticTerms[]];

LVectorSF = LVectorSF + HC[LVectorSF];

LSoft = - Mu[ff] (uqLw[sp,ff,cc].UQRw[sp,ff,cc] +

uqLwbar[sp,ff,cc].UQRwbar[sp,ff,cc]) -

MsqL[ff]^2 sqLbar[ff,cc] sqL[ff,cc] -

MsqR[ff]^2 SQRbar[ff,cc] SQR[ff,cc] -

1/2 Mgo (goww[s1,a].goww[s1,a] +

gowwbar[s1,a].gowwbar[s1,a]);

lagr = LMatterSF + LVectorSF + LSoft;

* There is no superpotential.
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Full supersymmetric Lagrangians (3).

Solution of the equation of motions.

* Get rid of the auxiliary D-fields and F -fields.
* Through their equations of motion.

lagr = SolveEqMotionD[ lagr ] ;

lagr = SolveEqMotionF[ lagr ] ;

Back to four-component fermions.

* Usual FeynRules routine.
* We replace antifundamental color representations by fundamental ones.

(cf. MC code requirements).

Colourb=Colour;

lagr = lagr/.Tb[aa_,ii_,jj_]->-T[aa,jj,ii];

lagr = WeylToDirac[ lagr ] ;
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Full supersymmetric Lagrangians (4).

Checking the implementation via the Feynman rules.

LL = lagr - LVector - LMatter;

LL = OptimizeIndex[Expand[LL]];

rules = FeynmanRules[LL,ScreenOutput->False];

rules = {#[[1]], OptimizeIndex[Expand[#[[2]]]]} &/@ rules;

rules = DeleteCases[rules, {_, 0}];

* We compute the difference of the two Lagrangians.
* We optimize the index naming scheme (OptimizeIndex).

� Renaming consistenly the summed indices.
* We derive the Feynman rules.
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Full supersymmetric Lagrangians (5).

Checking the implementation via the Feynman rules.
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Outline.

1 FeynRules in a nutshell.

2 A (maybe not so) simple example: implementation of supersymmetric QCD.

3 Using FeynRules with the supersymmetric QCD model.

4 Advanced model implementation techniques.

5 The superspace module.

6 Summary.
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Summary.

Implementing new physics into a Monte Carlo tools can be a tedious task.

FeynRules provides a platform to:

* Develop new models.
* Investigate their phenomenology.
* Validate their implementation in commonly used tools.

Restrictions:

* Lorentz and gauge invariance.
* Locality.
* Spins.

Website: http://feynrules.phys.ucl.ac.be

* Includes a large model database.
* Add your favorite model!
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