
ThikTank on Physics@LHC, 05-09 Dec 2011 Fabio Maltoni

Fabio Maltoni
Center for Particle Physics and Phenomenology (CP3)

Université Catholique de Louvain

1

Lecture II 

QCD Basics for
accurate LHC Physics



Fabio MaltoniThikTank on Physics@LHC, 05-09 Dec 2011 

1. Intro and QCD fundamentals

2. QCD in the final state

3. From accurate QCD to useful QCD
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New set of questions

1. How can we identify a cross sections for producing quarks and gluons with 
a cross section for producing hadrons? 

2. Given the fact that free quarks are not observed, why is the computed Born 
cross section so good?

3. Are there other calculable, i.e., that do not depend on the non-perturbative 
dynamics (like hadronization), quantities besides the total cross section? 
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Real

Virtual

Anatomy of a NLO calculation
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Real

Virtual

Anatomy of a NLO calculation

The KLN theorem states that divergences appear because some of the final state are physically 
degenerate but we treated them as different. A final state with a soft gluon is nearly degenerate with 
a final state with no gluon at all (virtual).
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The KLN theorem states that divergences appear because some of the final state are physically 
degenerate but we treated them as different. A final state with a soft gluon is nearly degenerate with 
a final state with no gluon at all (virtual).
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Anatomy of a NLO calculation
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Let’s consider the real gluon emission 
corrections to the process e+e- →qq.
The full calculation is a little bit tedious, 
but since we in any case interested in the 
issues arising in the infra-red, we already 
start in that approximation.

Anatomy of a NLO calculation
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ū(p)"ε("p + "k)Γµv(p̄)

2p · k
−
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The denominators                              give singularities for collinear (cos θ →1) or soft (k0 →0)  
emission. By neglecting k in the numerators and using the Dirac equation, the amplitude simplifies and 
factorizes over the Born amplitude:

2p · k = p0k0(1 − cos θ)
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Factorization: Independence of long-wavelength (soft) emission form the hard (short-distance) 
process. Soft emission is universal!!

Let’s consider the real gluon emission 
corrections to the process e+e- →qq.
The full calculation is a little bit tedious, 
but since we in any case interested in the 
issues arising in the infra-red, we already 
start in that approximation.
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Anatomy of a NLO calculation
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Anatomy of a NLO calculation
By squaring the amplitude we obtain:

σqq̄g = CF g2
sσBorn

qq̄

∫
d3k

2k0(2π)3
2

p · p̄

(p · k)(p̄ · k)

= CF
αS

2π
σ

Born
qq̄

∫
d cos θ

dk0

k0

4

(1 − cos θ)(1 + cos θ)

REAL
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0 ≤ x1, x2 ≤ 1, and x1 + x2 ≥ 1

Two collinear divergences and a soft one.  Very often you find the integration over phase space 
expressed in terms of x1 and x2, the fraction of energies of the quark and anti-quark:

x1 = 1 − x2x3(1 − cos θ23)/2

x2 = 1 − x1x3(1 − cos θ13)/2

x1 + x2 + x3 = 2
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dσ
VIRT
qq̄ = −σ

Born
qq̄ CF

αS

2π

∫
d cos θ

′
dk′

0

k′

0

1

1 − cos2 θ
2δ(k′

0)[δ(1−cos θ
′)+δ(1+cos θ

′)]+. . .

So we can now predict the divergent part of the virtual  
contribution, while for the finite part an explicit calculation 
is necessary:

Anatomy of a NLO calculation
By squaring the amplitude we obtain:

σqq̄g = CF g2
sσBorn

qq̄

∫
d3k

2k0(2π)3
2

p · p̄

(p · k)(p̄ · k)

= CF
αS

2π
σ

Born
qq̄

∫
d cos θ

dk0

k0

4

(1 − cos θ)(1 + cos θ)

REAL

6



Fabio MaltoniThikTank on Physics@LHC, 05-09 Dec 2011 

Anatomy of a NLO calculation
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Anatomy of a NLO calculation

Summary:

σREAL + σVIRT = ∞−∞ =?
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Anatomy of a NLO calculation

Summary:

σREAL + σVIRT = ∞−∞ =?

Solution: regularize the “intermediate” divergences, by giving a gluon a mass (see later) or going to 
d=4-2ε dimensions.� 1 1

1− x
dx = − log 0

regularization→
� 1 (1− x)−2�

1− x
dx = − 1

2�
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1. How can we identify a cross sections for producing (few) quarks 
and gluons with a cross section for producing (many) hadrons? 

2. Given the fact that free quarks are not observed, why is the 
computed Born cross section so good?

Answers:    

The Born cross section IS NOT the cross section for producing q qbar, since the 
coefficients of the perturbative expansion are infinite!  But this is not a problem 
since we don’t observe q qbar and nothing else. So there is no contradiction here.

On the other hand the cross section for producing hadrons is finite order by order 
and its lowest order approximation IS the Born.

A further insight can be gained by thinking of what happens in QED and what is 
different there. For instance soft and collinear divergence are also there. In QED one 
can prove that cross section for producing “only two muons” is zero...

New set of questions
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Infrared divergences

Even in high-energy, short-distance regime, 
long-distance aspects of QCD cannot be 
ignored. 

This is because there are configurations in 
phase space for gluons and quarks, i.e. when 
gluons  are soft and/or when are pairs of 
partons are collinear.

⇒

∫
ddk

(2π)d

1

k2(k + p)2(k − p̄)2

also for soft and collinear or collinear configurations associated to the virtual partons with 
the region of integration of the loop momenta.

Asoft = −gst
a

(

p · ε

p · k
−

p̄ · ε

p̄ · k

)

ABorn
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k+
!

√
s/2

k−

! (kT + 2k+k−)
√

s/2

x+
! 1/k−

x−

! 1/k+

large

small

large

small

travel a long 
distance along the 

light-cone

Space-time picture of IR singularities
The singularities can be understood in terms of light-cone coordinates. Take pμ=(p0, p1, p2, p3) and 
define p±=(p0±p3)/√2. Then choose the direction of the + axis as the one of the largest between + 
and - . A particle with small virtuality travels for a long time along the x+  direction.
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Infrared divergences arise from interactions that happen a long time after the 
creation of the quark/antiquark pair.

When distances become comparable to the hadron size of ~1 Fermi, quasi-
free partons of the perturbative calculation are confined/hadronized non-
perturbatively.

We have seen that in total cross sections such divergences cancel. But what 
about for other quantities?

Well, obviously the only possibility is to try to use the pQCD calculations for 
quantities that are not sensitive to the to the long-distance physics.

Can we formulate a criterium that is valid in general?

YES!  It is called INFRARED SAFETY
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DEFINITION: quantities are that are insensitive to soft and collinear 
branching. 

For these quantities, an extension of the general theorem (KLN) exists 
which proves that infrared divergences cancel between real and virtual or 
are simply removed by kinematic factors. 

Such quantities are determined primarily by hard, short-distance physics. 
Long-distance effects give power corrections, suppressed by the inverse 
power of a large momentum scale (which must be present in the first 
place to justify the use of PT). 

Examples: 
1. Multiplicity of gluons is not IRC safe
2. Energy of hardest particle is not IRC safe
3. Energy flow into a cone is IRC safe
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q

q

Event shape variables

pencil-like spherical
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Event shape variables

The idea is to give more information than just 
total cross section by defining “shapes” of an 
hadronic event (pencil-like, planar, spherical, etc..)

In order to be comparable with theory it MUST 
be IR-safe, that means that the quantity should not 
change if one of the parton “branches”  pk →pi + pj 

Examples are: Thrust, Spherocity, C-parameters,...

Similar quantities exist for hadron collider too, but 
they much less used.

14



Fabio MaltoniThikTank on Physics@LHC, 05-09 Dec 2011 

Is the thrust IR safe?

T = max!n

∑
i
!pi · !n∑
i
!pi

Contribution from a particle with momentum going to zero drops out.

Replacing one particle with two collinear ones does not change the thrust:

|(1− λ)�pk · �u|+ |λ�pk · �u| = |�pk · �u|

|(1− λ)�pk|+ |λ�pk| = |�pk|
and

15
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1

σ

dσ

dT
= CF

αS

2π

[

2(3T 2
− 3T + 2)

T (1 − T )
log

(

2T − 1

1 − T

)

−

3(3T − 2)(2 − T )

1 − T

]

.

Calculation of event shape variables: Thrust

The values of the different event-shape variables for different topologies are

O(αS2) corrections (NLO) are also 
known. Comparison with data provide 
test of QCD matrix elements, through 
shape distribution and measurement of 
αS from overall rate. Care must be 
taken around T=1 where 
(a) hadronization effects become large 
and 
(b) large higher order terms of the 
form αSN [log2N-1 (1-T)]/(1-T) need to 
be resummed. 
At lower T multi-jet matrix element 
become important. 
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q

q

Jet algorithms
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q
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Jet algorithms

2-jets
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?γ*,Z
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Parton showers
ME involving q →q g ( or g →  gg) are strongly enhanced when they are close in the 
phase space:

1

(pq + pg)2
!

1

2EqEg(1 − cos θ)

z = Eb/Ea , t = k2

a

θ = θb + θc

=
θb

1 − z
=

θc

z

=
1

Ea

√

t

z(1 − z)

z

1-z

Mp
a

b

c

In the collinear limit the cross section factorizes. The splitting can be iterated.
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soft and collinear

Parton Shower basics

Matrix elements involving q →q g ( or g →  gg) are strongly 
enhanced when the final state particles are close in the phase 
space:

z

1-z

Mp a

b

c
z = Eb/Ea

θ

divergencies

|Mp+1|
2dΦp+1 ! |Mp|

2dΦp
dt

t

αS

2π
P (z)dzdφ

Collinear factorization:

1

(pb + pc)2
� 1

2EbEc(1− cos θ)
=

1

t

when θ is small.
20
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The spin averaged (unregulated) splitting functions for the various 
types of branching are: 

Parton Shower basics
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The spin averaged (unregulated) splitting functions for the various 
types of branching are: 

Comments: 
* Gluons radiate the most
* There soft divergences in z=1 and z=0.
* Pqg  has no soft divergences.

Parton Shower basics
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Parton Shower basics

• Now, consider the non-branching probability for a parton 
at a given virtuality ti:

• The total non-branching probability between virtualities 
t and t0:

• This is the famous “Sudakov form factor”

Pnon−branching(t, t0) �
N�

i=0

�
1− δt

ti

αs

2π

� 1

z

dz

z
P̂ (z)

�

= e
�N

i=0

�
− δt

ti

αs
2π

� 1
z

dz
z P̂ (z)

�

� e−
� t0
t

dt�
t�

αs
2π

� 1
z

dz
z P̂ (z) = ∆(t, t0)

Pnon−branching(ti) = 1− Pbranching(ti) = 1− δt

ti

αs

2π

� 1

z

dz

z
P̂ (z)

t0
ti

t
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Final-state parton showers
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Final-state parton showers

With the Sudakov form factor, we can now implement a final-
state parton shower in a Monte Carlo event generator!
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Final-state parton showers

With the Sudakov form factor, we can now implement a final-
state parton shower in a Monte Carlo event generator!

1. Start the evolution at the virtual mass scale t0 (e.g. the mass of the 
decaying particle) and momentum fraction z0 = 1

2. Given a virtual mass scale ti and	
 momentum	
fraction	
xi at some 
stage in the evolution, generate the scale of the next emission ti+1 
according to the Sudakov probability ∆(ti,ti+1) by solving
∆(ti+1,ti) = R
where R is a random number (uniform on [0, 1]).

23



Fabio MaltoniThikTank on Physics@LHC, 05-09 Dec 2011 

Final-state parton showers

With the Sudakov form factor, we can now implement a final-
state parton shower in a Monte Carlo event generator!

1. Start the evolution at the virtual mass scale t0 (e.g. the mass of the 
decaying particle) and momentum fraction z0 = 1

2. Given a virtual mass scale ti and	
 momentum	
fraction	
xi at some 
stage in the evolution, generate the scale of the next emission ti+1 
according to the Sudakov probability ∆(ti,ti+1) by solving
∆(ti+1,ti) = R
where R is a random number (uniform on [0, 1]).

3. If ti+1 < tcut it means that the shower has finished.
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state parton shower in a Monte Carlo event generator!
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decaying particle) and momentum fraction z0 = 1

2. Given a virtual mass scale ti and	
 momentum	
fraction	
xi at some 
stage in the evolution, generate the scale of the next emission ti+1 
according to the Sudakov probability ∆(ti,ti+1) by solving
∆(ti+1,ti) = R
where R is a random number (uniform on [0, 1]).

3. If ti+1 < tcut it means that the shower has finished.

4. Otherwise, generate z = zi/zi+1 with a distribution proportional to 
(αs/2π)P(z), where P(z) is the appropriate splitting function.
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Final-state parton showers

With the Sudakov form factor, we can now implement a final-
state parton shower in a Monte Carlo event generator!

1. Start the evolution at the virtual mass scale t0 (e.g. the mass of the 
decaying particle) and momentum fraction z0 = 1

2. Given a virtual mass scale ti and	
 momentum	
fraction	
xi at some 
stage in the evolution, generate the scale of the next emission ti+1 
according to the Sudakov probability ∆(ti,ti+1) by solving
∆(ti+1,ti) = R
where R is a random number (uniform on [0, 1]).

3. If ti+1 < tcut it means that the shower has finished.

4. Otherwise, generate z = zi/zi+1 with a distribution proportional to 
(αs/2π)P(z), where P(z) is the appropriate splitting function.

5. For each emitted particle, iterate steps 2-4 until branching stops.
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Parton showers

Formulation in terms of Sudakov form factor is well suited to computer implementation, and is the 
basis of parton shower Monte Carlo programs. Let’s rewrite the formula using pT  and a parton-
level event at the Born level:

Monte Carlo branching algorithm operates as follows. Given an initial configuration (parton-level 
event at the Born level), a parton is chosen, a rnd value of pT is chosen accordingly to the 
probability of non-emission down to pT . If it is larger than a pTmin, than a branching occurs at pT , and 
x is generated according to the splitting function P(ΦR|B) (as well as a flat azimuthal angle). An extra 
parton is now included and the process starts from there.

Due to successive branching, a parton cascade or shower develops. Each outgoing line is source of a 
new cascade, until all lines have stopped branching.  At this stage, which depends on pTmin, outgoing 
partons have to be converted into hadrons.

dσPS = dΦBB(ΦB)

�
∆(pmin

⊥ ) + dΦR|B∆(pT (ΦR|B))
RPS(ΦR)

B(ΦB)

�

∆(pT ) = exp

�
−
�

dΦR|B
RPS(ΦR)

B(ΦB)
Θ(pT (ΦR)− pT )

�
. RPS(Φ) = P (ΦR|B)B(ΦB).
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Want more?

Ask Paolo!
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Final-state parton showers
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Final-state parton showers

• The result is a “cascade” or “shower” of partons with ever smaller 
virtualities. 
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Due to these successive branchings, the parton cascade or parton shower
develops. Each outgoing line is a source of a new cascade, until all outgoing
lines have stopped branching. At this stage, which depends on the cutoff scale,
outgoing partons have to be converted into hadrons via a hadronization model.
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where non-perturbative effects start dominating over the 
perturbative parton shower. 

• At this point, phenomenological
models are used to simulate
how the partons turn into
color-neutral hadrons.
Main point: Hadronization not
sensitive to the physics at scale
t0, but only tcut! 
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Final-state parton showers

• The result is a “cascade” or “shower” of partons with ever smaller 
virtualities. 

• The cutoff scale tcut is usually set close to 1 GeV, and is the scale 
where non-perturbative effects start dominating over the 
perturbative parton shower. 

• At this point, phenomenological
models are used to simulate
how the partons turn into
color-neutral hadrons.
Main point: Hadronization not
sensitive to the physics at scale
t0, but only tcut! 

• (can be tuned once and for all)

e-

e+

t0
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Note that we can define the following quantities with mass squared dimensions 

and obtain

Different MC programs make different choices for the variable. HERWIG uses θ, while Pythia 
uses pT. 

This fact has an important consequence: the evolution parameter of the shower is not uniquely 
defined. This is because the scales chosen above have all the same angular behavior, provided 
that z is not too close to 0 or 1. 

Differences stem from the SOFT region. It is therefore necessary to study what happens for soft 
emissions to find the optimal choice.

26
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p̄, j

p, i

k, a
p̄, j

p, i

k, a

γ∗, Z

Angular ordering

You can easily prove that: 

Radiation happens only for angles smaller than 
the color connected (antenna) opening angle!

27

dσqqg = CF
αS

2π
σBornd cos θ

dk0

k0
dφ

2π

1− cos θij
(1− cos θik)(1− cos θjk)

d cos θ

1− cos θij
(1− cos θik)(1− cos θjk)

=
1

2

�
cos θjk − cos θij

(1− cos θik)(1− cos θjk)
+

1

(1− cos θjk)

�
+

1

2
[i → j]

The probabilistic interpretation of Wi and Wj 
is achieved simply by azimuthal averaging:

�
dφ

2π
Wi =

1

1− cos θik
if θik < θij , 0 otherwise

And the same for Wj
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Angular ordering
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The construction can be iterated to the next 
emission, with the result that the emission angles keep  
getting smaller and smaller. 

28
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The construction can be iterated to the next 
emission, with the result that the emission angles keep  
getting smaller and smaller. 

One can generalize it to a generic parton of color 
charge Qk splitting into two partons i and j , Qk=Qi
+Qj.  The result is that inside the cones i and j emit as 
independent charges, and outside their angular-order 
cones the emission is coherent and can be treated as if 
it was directly from color charge Qk. 

KEY POINT FOR THE MC!

Angular ordering is automatically satisfied in pT  and θ 
ordered showers!
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Angular ordering is: 

1.  A quantum effect coming from the interference of different Feynman 
diagrams. 

2.  Nevertheless it can be expressed in “a classical fashion” (square of a 
amplitude is equal to the sum of the squares of two special “amplitudes”).  
The classical limit is the dipole-radiation.

3. It is not an exclusive property of QCD (i.e., it is also present in QED)  but 
in QCD produces very non-trivial effects, depending on how particles are 
color connected. 
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How does look the amplitude 
for a soft-emission in a qqg 
system? (Virtual photon not 
shown, coming out of the 
screen)

Asoft = −gs

{

(tatb)ij

[

Q · ε

Q · k
−

p̄ · ε

p̄ · k

]

− (tbta)ij

[

p · ε

p · k
−

Q · ε

Q · k

]}

ABorn

The two terms correspond to 
the two possible ways colour 
can flow in these diagrams:

The interference between the two color structures is suppressed by 1/Nc2:

In the large Nc limit, this is equivalent to the incoherent sum of the emission from the two currents.

∑

a,b,i,j

|(tat
b)|2 =

N2
c − 1

2

N2
c − 1

2Nc
= O(N3

c )
∑

a,b,i,j

(tat
b)(tbta)† =

N2
c − 1

2
(−

1

2Nc
) = O(Nc)
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(a) amount of radiation between two quark-jets  in qqγ and qqg events

(b) radiation between the qg and qq quark-jet

quark-jet

gluon-jet

more

jet

jet

photon more

more

less
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dN (qq̄γ)
qq̄

dN (qq̄g)
qq̄

� 2(N2
c − 1)

N2
c − 2

=
16

7

(experiment : 2.3± 0.2)

dN (qq̄g)
qg

dN (qq̄g)
qq̄

� 5(N2
c − 1)

2N2
c − 4

=
22

7
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Parton Shower MC event generators

32

A parton shower program associates one of the possible histories (and 
pre-histories in case of pp) of an hard event in an explicit and fully detailed 
way, such that the sum of the probabilities of all possible histories is unity.
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• General-purpose tools 

• Always the first exp choice

• Complete exclusive description of the events: hard scattering, 
showering & hadronization, underlying event

• Reliable and well tuned tools.

• Significant and intense progress in the development of new showering 
algorithms with the final aim to go at NLO in QCD. 
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• General-purpose tools 

• Always the first exp choice

• Complete exclusive description of the events: hard scattering, 
showering & hadronization, underlying event

• Reliable and well tuned tools.

• Significant and intense progress in the development of new showering 
algorithms with the final aim to go at NLO in QCD. 

Complete MC Generators: PYTHIA, HERWIG, SHERPA 

Parton Shower MC event generators

32

A parton shower program associates one of the possible histories (and 
pre-histories in case of pp) of an hard event in an explicit and fully detailed 
way, such that the sum of the probabilities of all possible histories is unity.
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Summary 
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Summary 

1. We have studied e+e- → hadrons : from LO to NLO to full final state 
description in terms of hadrons.
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Summary 

1. We have studied e+e- → hadrons : from LO to NLO to full final state 
description in terms of hadrons.

2. We have introduced the concept of IR-safety

3. We have introduced the idea and realization of a Parton Shower.

33


