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Discoveries at hadron colliders

hard 

shape
pp→gg,gq,qq→jets+ET~~~~~~

Background shapes needed. 
Flexible MC for both signal and 
backgroud tuned and validated 
with data. 
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Leading order

For many of the theory predictions needed in the searches 
for new physics as well as measuring properties of the SM, 
leading order predictions are used

In many regions of phase-space they do a (surprisingly) 
good job, in particular for shapes of distributions

Flexible computer codes readily available and relatively 
easy to use and understand

Unfortunately LO predictions describe total rates rather 
poorly: you only get the order of magnitude
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Need for NLO
If we would have the same flexible tools available at NLO, analyses will 
benefit a various ways:

NLO predictions predict rates much more precisely

Reduced theoretical uncertainties due to meaningful scale 
dependence

Shapes of distributions are better described

Correct estimates for PDF uncertainties

These accurate theoretical predictions are particularly needed for

searches of signal events in large backgrounds samples and

precise extraction of parameters (couplings etc.) when new physics 
signals have been found
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B pair production at 
the LHC

b-jet transverse momentum 
in b pair production

LO: Pythia,
NLO: POWHEG + Pythia

NLO: MC@NLO + Herwig

Shapes are well described by 
LO and by NLO

Normalization is well 
predicted at NLO

At NLO, theory uncertainties 
can be studied systematically 
(not shown in this plot)
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Why an automatic 
tool?

To save time
Less human time spending on computing matrix elements means 
more time available on physics and phenomenology.

Robustness
Modular code structure means that elements can be checked 
systematically and extensively once and for all. Trust can easily be 
build.

Wide accessibility
One framework for all. Available to everybody for an unlimited 
set of applications. Suitable for Experimental collaborations.
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SM status: since 
2007

7

Accuracy
[loops]
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QCD and MC progress 
(simplified)

2003

2008 2009
2011

Matching:
ME+PS 
        (CKKW, MLM)

NLOwPS
        (MC@NLO, POWHEG)

New loop
techniques

Automatic
NLO results

Automatic
NLOwPS
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SM status: since a 
few months
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Contents of these 
lectures

These lectures will be about the concepts behind the 
computation of NLO corrections (as implemented in 
MadGraph)

Cancellation of infrared singularities

FKS subtraction in MadFKS

Computing Loop corrections without doing integrals and 
using only tree-level matrix elements

MadLoop

Tutorial

Please, interrupt me at any time if something is not clear!
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Not yet publicly 
available

Disclaimer:
Although NLO corrections are included in MadGraph (version 4) 
they are not yet publicly available. The reason is that the code is

still a bit slow (not possible to run on a single desktop anything 
beyond a 2 → 1 process within 30 minutes or so)

not yet completely general (some processes cannot be computed; 
and no warning is given if one tries)

The code is being rewritten in MG5. When this is done, it will be 
made publicly available

The tutorial will be based on parts of the automatic tool: MadFKS 
with virtual matrix elements taken from MCFM
[J.M. Campbell & R.K. Ellis; + C. Williams; + external collaborators]
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Master equation for 
hadron colliders

Parton-level cross section from matrix elements: model 
and process dependent

Parton density (or distribution) functions: process 
independent

Differences between colliders given by parton 
luminosities

14

Parton density 
functions

Parton-level 
(differential) 
cross section

fa(x1, µF )fb(x2, µF )
�

a,b

�
dx1dx2dσ = dσ̂ab→X(ŝ, µF , µR)
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Perturbative 
expansion

The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter, schematically:

Including higher corrections improves predictions and reduces 
theoretical uncertainties

15

σ̂ = σBorn

�
1 +

αs

2π
σ(1) +

�αs

2π

�2
σ(2) +

�αs

2π

�3
σ(3) + . . .

�

Parton-level cross sectiondσ̂ab→X(ŝ, µF , µR)
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NLO corrections

There are two types of contributions to the NLO corrections:

Virtual (or Loop) corrections: formed by an amplitude 
with a closed loop of particles interfered with the Born 
amplitudes

Real emission corrections: formed by amplitudes with one 
extra parton compared to the Born process

Both have one power of αs extra compared to the Born 
process

16

σNLO =
�

m+1

d(d)σR +
�

m
d(d)σV +

�

m
d(4)σB
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NLO predictions
As an example, consider Drell-Yan production

17

σ̂ = σBorn

�
1 +

αs

2π
σ(1) + . . .

�
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NLO predictions
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Improved predictions

Remember, predictions are inclusive: also at LO initial state 
radiation is included via the PDF; final state radiation by the 
definition of the parton, which represents all final state 
evolutions

Due to these approximations, Leading Order predictions 
can depend strongly on the renormalization and 
factorization scales

Including higher order corrections reduces the dependence 
on these scales

18

σ̂ = σBorn

�
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Going NLO

At NLO the dependence on the renormalization and factorization 
scales is reduced

First order scale dependence
in the running coupling and
the PDFs is compensated for
via the loop corrections

Better description of final state:
 impact of extra radiation included
(e.g. jets can have substructure)

Opening of additional initial
state partonic channels

19
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NLO...?
Are all (IR-safe) observables that we can compute using a NLO  
calculation correctly described at NLO?

It depends on the observable...

In the small transverse momentum region, this calculation breaks 
down (it’s even negative in the first bin!), and anywhere else it is 
purely a LO calculation for V+1j

20
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NLO...?
Another example: we have a NLO code for pp ⟶ tt

Total cross section

Transverse momentum of the top quark

Transverse momentum of the top-antitop pair

Transverse momentum of the jet

Top-antitop invariant mass

Azimuthal distance between the top and anti-top
21

LO VirtReal

NLO?
✔

✔

✘

✘

✔

✘
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Bottlenecks

Virtual amplitudes: how to compute the loops automatically 
in a reasonable amount of time

How to deal with infra-red divergences: virtual corrections 
and real-emission corrections are separately divergent and 
only their sum is finite (for IR-safe observables) according to 
the KLN theorem

How to match these processes to a parton shower without 
double counting (will be covered by Paolo Torrielli’s lectures)

22
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NLO predictions
As an example, consider Drell-Yan production

24
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Branching
In the soft and collinear region, the branching of a gluon from a quark can 
be written as

where kt is the transverse momentum of the gluon, kt=E sinθ.

The singularities cancel against the singularities in the virtual corrections, 
which result from the integral over the loop momentum of the function

The sum is finite for observables that cannot distinguish between two 
collinear partons (kt ⟶ 0); a hard and a soft parton (z ⟶ 1); and a single 
parton (in the virtual contributions)

25

3.2 Initial-state parton splitting, DGLAP evolution

3.2.1 Final and initial-state divergences

In Eq. (26a) we wrote the universal form for the final-state ‘splitting’ of a quark into a quark and a soft

gluon. Let’s rewrite it with different kinematic variables, considering a hard process h with cross section
σh, and examining the cross section for h with an extra gluon in the final state, σh+g. We have

p
zp

E =

!

(1!z)p

"
h σh+g ! σh

αsCF

π

dz

1− z

dk2t
k2t

, (41)

where E in Eq. (26a) corresponds to E = (1 − z)p and we’ve introduced kt = E sin θ ! Eθ. If we
avoid distinguishing a collinear q+ g pair from a plain quark (measurements with IRC safe observables)
then, as we argued before, the divergent part of the gluon emission contribution always cancels with a

related virtual correction

p p
"
h σh+V ! −σh

αsCF

π

dz

1− z

dk2t
k2t

. (42)

Now let us examine what happens for initial-state splitting, where the hard process occurs after the

splitting and the momentum entering the hard process is modified p → zp:

zp
p

(1!z)p

"
h σg+h(p) ! σh(zp)

αsCF

π

dz

1− z

dk2t
k2t

, (43)

where we have made explicit the hard process’s dependence on the incoming momentum, and we assume

that σh involves momentum transfers ∼ Q % kt, so that we can ignore the extra transverse momentum
entering σh. For virtual terms, the momentum entering the process is unchanged, so we have

p p
"
h σg+h(p) ! −σh(p)

αsCF

π

dz

1− z

dk2t
k2t

, (44)

The total cross section then gets contributions with two different hard cross sections:

σg+h + σV+h !
αsCF

π

∫ Q2

0

dk2t
k2t

︸ ︷︷ ︸

infinite

∫ 1

0

dz

1− z
[σh(zp)− σh(p)]

︸ ︷︷ ︸

finite

. (45)

Note the limits on the integrals, in particular theQ2 upper limit on the transverse-momentum integration:

the approximations we’re using are valid as long as the transverse momentum emitted in the initial state is

much smaller than the momentum transfersQ that are present in the hard process. Of the two integrations
in Eq. (45), the one over z is finite, because in the region of the soft divergence, z → 1, the difference of
hard cross sections, [σh(zp) − σh(p)], tends to zero. In contrast, the kt integral diverges in the collinear
limit: the cross section with an incoming parton (and virtual corrections) appears not to be collinear safe.

This is a general feature of processes with incoming partons: so how are we then to carry out calculations

with initial-state hadrons?

In Section 2.3.1, when trying to make sense of final-state divergences, we introduced a (non-

perturbative) cutoff. Let’s do something similar here, with a cutoff, µF, called a factorization scale
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Infrared 
cancellation

The KLN theorem tells us that divergences from virtual and 
real-emission corrections cancel in the sum (for observables 
insensitive to soft and collinear radiation)

When doing an analytic calculation in dimensional 
regularization this can be explicitly seen in the cancellation of 
the 1/є and 1/є2 terms (with є the regulator, є ➞ 0)

In the real emission corrections, the explicit poles enter after 
the phase-space integration (in d dimensions)

26

σNLO ∼
�

d4Φm B(Φm) +
�

d4Φm

�

loop

ddl V (Φm) +
�

ddΦm+1 R(Φm+1)
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Infrared safe 
observables

For an observable to be calculable in fixed-order perturbation 
theory, the observable should be infrared safe, i.e., it should be 
insensitive to the emission of soft or collinear partons.

In particular, if pi is a momentum occurring in the definition of 
an observable, it most be invariant under the branching
      pi ⟶ pj + pk,
whenever pj and pk are collinear or one of them is soft.

Examples

“The number of gluons” produced in a collision is not an 
infrared safe observable

“The number of hard jets defined using the kT algorithm,” 
produced in a collision is an infrared safe observable

27
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phase-space integration

For complicated processes we have to result to numerical phase-space 
integration techniques (“Monte Carlo integration”), which can only be 
performed in an integer number of dimensions

Cannot use a finite value for the dimensional regulator and take the 
limit to zero in a numerical code

But we still have to cancels the divergences explicitly

Two commonly used solutions exists

Phase-space slicing

Subtraction method

28

σNLO ∼
�

d4Φm B(Φm) +
�

d4Φm

�

loop

ddl V (Φm) +
�

ddΦm+1 R(Φm+1)
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Example
Suppose we want to compute the integral (“real emission radiation”, 
where the 1-particle phase-space is referred to as the 1-dimensional x)

where                               and             is finite everywhere

Let’s introduce a regulator

for any non-integer non-zero value for     this integral is finite

We would like to factor out the explicit poles in     so that they can be 
canceled explicitly against the “virtual corrections”

29

f(x) =
g(x)
x

g(x)

� 1

0
dx f(x)

�

�

2

gs + ...

lim
�→0

� 1

0
dx

g(x)
x1+�

= lim
�→0

� 1

0
dx x−�f(x)
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Phase-space slicing

Introduce a small parameter 

We get the explicit pole in    and a finite integral that can be 
computed numerically

30

lim
�→0

� 1

0
dx

f(x)
x1+�

= lim
�→0

� 1

0
dx x−�f(x)

δ

lim
�→0

� 1

0
dx x−�f(x) = lim

�→0

� � δ

0
dx x−�f(x) +

� 1

δ
dx x−�f(x)

�

= lim
�→0

� � δ

0
dx x−� g(0)

x
+

� 1

δ
dx x−� g(x)

x1+�

�

= lim
�→0

�
−1
�

+ log δ

�
g(0) +

� 1

δ
dx

g(x)
x

= lim
�→0

δ−�

−�
g(0) +

� 1

δ
dx

g(x)
x

�

f(x) =
g(x)
x
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Subtraction method

Add and subtract the same term

Like before, we have factored out the explicit divergence. The coefficient 
in front of the 1/   pole is the same in both methods (as it should be!)

According to the KLN theorem the divergence cancels against the virtual 
corrections
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lim
�→0

� 1

0
dx

f(x)
x1+�

= lim
�→0

� 1

0
dx x−�f(x) f(x) =

g(x)
x

lim
�→0

� 1

0
dx x−�f(x) = lim

�→0

� 1

0
dx x−�

�
g(0)
x

+ f(x)−g(0)
x

�

= lim
�→0

� 1

0
dx

�
g(0)

x−�

x
+

g(x)− g(0)
x1+�

�

= lim
�→0

−1
�

g(0) +
� 1

0
dx

g(x)− g(0)
x

�
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Slicing vs Subtraction

Terms of order δ are neglected in the slicing method;
the subtraction method is exact

One has to proof that any observable is independent of δ when δ ➞ 0

Both methods feature cancellations between large numbers: if for an 
observable    , if                                or we choose the bin-size too small, 
instabilities render the computation useless

We already knew that! KLN is sufficient; one must have infra-red 
safe observables and cannot ask for infinite resolution

Subtraction method is more flexible -> method of choice in automation
32

� 1

0
dx

g(x)− g(0)
x

� 1

δ
dx

g(x)
x

+ g(0) log δSlicing:

Subtraction:

lim
x→0

O(x) �= O(0)O

“Plus distribution”
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NLO with Subtraction

With the subtraction method this is replace by

Terms between the brackets are finite. Can integrate them numerically and 
independent from one another in 4 dimensions
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σNLO ∼
�

d4Φm B(Φm) +
�

d4Φm

�

loop

ddl V (Φm) +
�

ddΦm+1 R(Φm+1)

σNLO ∼
�

d4Φm B(Φm)

+
�

d4Φm

� �

loop

ddl V (Φm) +
�

ddΦ1G(Φm+1)
�

�→0

+
�

d4Φm+1

�
R(Φm+1)−G(Φm+1)

�
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Subtraction methods

                    should be defined such that 

1) it exactly matches the singular behavior of 

2) its form is convenient for MC integration techniques

3) it is exactly integrable in d dimensions over the one-particle 
subspace                          , leading to soft and/or collinear 
divergences as explicit poles in the dimensional regulator

4) it is universal, i.e. “process independent”
➞ “overall factor” times the Born process 
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G(Φm+1)
R(Φm+1)

�
ddΦ1G(Φm+1)
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Two methods

Catani-Seymour dipole 
subtraction

Most used method

Clear written paper on how to 
use this method in practice

Method evolved from 
cancellation of the soft 
divergence

Proven to work for simple as well 
as complicated processes

Automation in publicly available 
packages: MadDipole, 
AutoDipole, Helac-Dipoles, 
Sherpa

FKS subtraction
Not so well-known

(Probably) more efficient, 
because less subtraction terms 
are needed

Collinear divergences as a 
starting point

Proven to work for simple as well 
as complicated processes

Preferred method when 
interfacing NLO to a parton 
shower

Implemented in MadFKS and (a)
MC@NLO
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FKS subtraction

FKS subtraction: Frixione, Kunszt & Signer 1996

Also known as “residue subtraction”

Based on using plus-distributions to regulate the 
infrared divergences of the real emission matrix 
elements

Implemented in the MadGraph/MadEvent 
framework: MadFKS
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Phase-space partitions
Easiest to understand by starting from real emission:
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dσR =
�

ij

Sij |Mn+1|2dφn+1

�

ij

Sij = 1

Partition the phase space in such a way that each partition has at most one 
soft and one collinear singularity

Use plus distributions to regulate the singularities

dσR = |Mn+1|2dφn+1

dσ̃R =
�

ij

�
1
ξi

�

+

�
1

1− yij

�

+

ξi(1− yij)Sij |Mn+1|2dφn+1

ξi = Ei/
√

ŝ
                      diverges like                            with 

1
ξ2
i

1
1− yij yij = cos θij

|Mn+1|2



Rikkert Frederix, University of Zurich

Regularized by
plus-prescription
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dσ̃R =
�

ij

�
1
ξi

�

+

�
1

1− yij

�

+

ξi(1− yij)Sij |Mn+1|2dφn+1

One event has maximally three counter events:

Soft:

Collinear:

Soft-collinear: ξi → 0 yij → 1
yij → 1

ξi → 0

�
dξ

�
1
ξ

�

+

g(ξ) =
�

dξ
g(ξ)− g(0)

ξ

Definition plus distribution
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dσ̃R =
�

ij

�
1
ξi

�

ξcut

�
1

1− yij

�

δO

ξi(1− yij)Sij |Mn+1|2dφn+1

�
dξ

�
1
ξ

�

ξcut

g(ξ) =
�

dξ
g(ξ)− g(0)Θ(ξcut − ξ)

ξ

Modified definition plus distribution (include counter terms 
only when event is close to being singular)

One event has maximally three counter events:

Soft:

Collinear:

Soft-collinear: ξi → 0 yij → 1
yij → 1

ξi → 0

Regularized by
plus-prescription
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Subtraction terms

This defines the subtraction terms for the reals

They need to be integrated over the one-parton phase space (analytically) 
to get the explicit poles 1/є and added to the virtual corrections so that 
these poles cancel

these are process-independent terms proportional to the (color-
linked) Borns

All formulae can be found in the MadFKS paper, arXiv:0908.4247
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loop
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�→0
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MadFKS matrix elements

When give the real-emission process to MadFKS

It will generates the matrix elements for the Born, real-
emission and FKS subtraction terms

Virtual corrections need to be provided by the user; linked 
by a library to the MadFKS code. When running, 
MadFKS tells the library for which phase-space points it 
should compute the virtual corrections
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σNLO ∼
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loop
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�→0
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Phase-space integration 
in MadFKS

Generate Born event using the standard MadGraph phase-space generation

Generate the real-emission event, by choosing random numbers for the 3 
extra integration variables: dξi, dyij, dφi

Due to the phase-space partitioning, we know which singularities we need 
to subtract, generate the corresponding phase-space points, i.e. where ξi=0 
or yij=1, or both

Use these momenta to compute the terms in the NLO computations and 
perform the Monte Carlo integration
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loop
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Kinematics of 
counter events

If i and j are two on-shell particles that are present in a splitting that leads 
to an singularity, for the counter events we need to combine their momenta 
to a new on-shell parton that’s the sum of i+j

This is not possible without changing any of the other momenta in the 
process

When applying cuts or making plots, events and counter events might end-
up in different bins

Use IR-safe observables and don’t ask for infinite resolution! (KLN 
theorem)
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Example in 4 charged 
lepton production

Here is an example of a very 
recent paper (it appeared last 
month on the arXiv)

The NLO results shows a typical 
peak-dip structure that hampers 
fixed order calculations
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Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between

the various predictions are larger in this case. In particular, aMC@LO is closer to NLO

than to LO, which is a consequence of the more important role played by extra radiation in

this case (as one expects, the present one being a correlation between two particles rather

than a single-inclusive observable). Again, the closeness of NLO and aMC@NLO results

shows the desired perturbative behaviour. The more significant impact of extra radiation

on this variable is reflected in the slightly larger scale dependence at large pT ’s w.r.t. what

happens for the transverse momentum of the individual leptons discussed before. The two

leptonic channels agree well, also when removing the Z-id cuts.

Figure 3 shows two observables constructed after applying the Z-id cuts, namely the

pseudorapidity of lepton pairs with opposite charge which are also Z-id matched (left

panel; this is then the pseudorapidity of would-be Z bosons), and the azimuthal distance

between leptons of opposite charge which are not Z-id matched (right panel; thus, these

are leptons emerging from different would-be Z bosons). As in the case of fig. 2, there are

two entries in each histogram for any given event. These two observables are dominated

by small transverse momenta, and therefore it is not suprising that, at both O(α0
S) and
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Event unweighting?

It is not possible to generate unweighted events in this set-up

Even though the integrals are finite, they are not bounded 

(compare with                 ), so there is no maximum to unweight 

against: a single event can have an arbitrarily large weight

Furthermore, event and counter event have different kinematics: 
which one to use for the unweighted event?
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   Copenhagen, 17-19 Nov 2010                                                                                                                          Fabio Maltoni

Event generator

MC integrator

Acceptance-Rejection

O

dσ

dO

O

dσ

dO

Event generation

   Copenhagen, 17-19 Nov 2010                                                                                                                          Fabio Maltoni

Event generator

MC integrator

Acceptance-Rejection

O

dσ

dO

O

dσ

dO

Event generation

not possible 
at NLO

� 1
0 dx

1√
x
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Filling histograms 
on-the-fly

In practice, when we do the MC integration we generate 2 sets of 
momenta

1. An m-body set (for the Born, virtual and integrated counter terms)

2. An m+1-body (for the NLO) which we map to the counter term 
momenta (for the counter terms)

We compute the above formula; and apply cuts and fill histograms using 
the momenta corresponding to each term with the weight of that 
corresponding term
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σNLO ∼
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d4Φm B(Φm)

+
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d4Φm
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loop
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W+4j at NLO

W+4j production at the LHC: world record NLO computation

Uncertainty (due to scale dependence) is greatly reduced at NLO
47
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FIG. 2: A comparison of the pT distributions of the leading four jets in W− + 4-jet production at the LHC at
√
s = 7 TeV.

In the upper panels the NLO distribution is the solid (black) histogram and the LO predictions are shown as dashed (blue)
lines. The thin vertical line in the center of each bin (where visible) gives its numerical (Monte Carlo) integration error. The
lower panels show the LO distribution and LO and NLO scale-dependence bands normalized to the central NLO prediction.
The bands are shaded (gray) for NLO and cross-hatched (brown) for LO.

no. jets W− LO W− NLO W+/W− LO W+/W− NLO W−n/(n−1) LO W−n/(n−1) NLO

0 1614.0(0.5)+208.5
−235.2 2077(2)+40

−31 1.656(0.001) 1.580(0.004) — —

1 264.4(0.2)+22.6
−21.4 331(1)+15

−12 1.507(0.002) 1.498(0.009) 0.1638(0.0001)+0.044
−0.031 0.159(0.001)

2 73.14(0.09)+20.81
−14.92 78.1(0.5)+1.5

−4.1 1.596(0.003) 1.57(0.02) 0.2766(0.0004)+0.051
−0.037 0.236(0.002)

3 17.22(0.03)+8.07
−4.95 16.9(0.1)+0.2

−1.3 1.694(0.005) 1.66(0.02) 0.2354(0.0005)+0.034
−0.025 0.216(0.002)

4 3.81(0.01)+2.44
−1.34 3.55(0.04)+0.08

−0.30 1.812(0.001) 1.73(0.03) 0.2212(0.0004)+0.026
−0.020 0.210(0.003)

TABLE I: Total cross sections in pb for W + n jet production at the LHC at
√
s = 7 TeV, using the anti-kT jet algorithm

with R = 0.5. The NLO result for W + 4 jets uses the leading-color approximation discussed in the text. The fourth and
fifth columns give the cross-section ratios for W+ production to W− production. The last column gives the ratios of the cross
section for the given process to that with one jet less. The numerical integration uncertainty is in parentheses, and the scale
dependence is quoted in super- and subscripts.

ratio is somewhat larger for R = 0.4, for n > 2; in con-
trast, the ratios of W+ to W− cross sections are un-
changed within errors.

In fig. 2, we show the pT distributions of the leading
four jets in W− + 4-jet production at LO and NLO; the
predictions are normalized to the central NLO prediction
in the lower panels. With our central scale choice, there is
a noticeable shape difference between the LO and NLO
distributions for the first three leading jets, while the
fourth-jet distribution is very similar at LO and NLO.
Similarly, in W + 3-jet production, the pT distributions
of the leading two jets exhibit shape changes from LO to
NLO, while the third-jet distribution does not [1].

Fig. 3 shows the distribution of the total transverse
energy HT , given by the scalar sum of the jet and lep-
ton transverse energies, HT =

∑

j E
jet
T,j + Ee

T + Eν
T . We

show the NLO and LO predictions, along with their scale-
dependence bands. As in the pT distributions, the NLO
band is narrower. The shapes at LO and NLO are similar
above 200 GeV, where the integration errors are small.

The results of this study validate our understanding of
the W + 4-jet process for typical Standard-Model cuts.
It will be interesting, and necessary, to explore the size of
corrections for observables and cuts used in new-physics
searches.

In order to compare our parton-level results to forth-
coming experimental data, the size of non-perturbative
effects (such as hadronization and the underlying event)
needs to be estimated, for example using LO parton-
shower Monte Carlo programs. As NLO parton-shower
programs are developed [29], the virtual corrections com-
puted here should be incorporated into them.

[Berger et al., 1009.2338]
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Summary
Both the virtual and real-emission corrections are IR divergent, but 
their sum is finite

We can use the slicing or subtraction methods to factor the 
divergences in the real-emission phase-space integration and cancel 
them explicitly against the terms in the virtual corrections

Preferred method is the subtraction method (no approximations 
needed and proven to work very well for complicated processes)

This generates events and counter events with slightly different 
kinematics

When making plots or applying cuts, use only IR safe observables 
with finite resolution

Phase-space integrals are finite, but not bounded: cannot unweight 
the events

48



Loops



Rikkert Frederix, University of Zurich

one-loop integral

Consider this m-point 
loop diagram with n 
external momenta

The integral to compute is
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k1 k2

k3

k4

k5

k6

kn

D0 D1

D2

D3

Dm−1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3

�
ddl

N(l)
D0D1D2 · · · Dm−1

Di = (l + pi)2 −m2
i
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Standard Approach

Passarino-Veltman reduction:

Reduce a general integral to “scalar integrals” by 
“completing the square”

Let’s do an example:
Suppose we want to calculate this triangle integral
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�
ddl

N(l)

D0D1D2 · · ·Dm−1
→

�

i

coeffi

�
ddl

1

D0D1 · · ·

p

q
p+ q

l

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =









. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .









, Ycollinear =









. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .









. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4 − 2ε.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ε

s12s23

×
{

2

ε2

(

(−s12)
−ε + (−s23−)−ε

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ε) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ε. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27
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The only independent four vectors are pµ and qµ . Therefore, the integral 
must be proportional to those. We can set-up a system of linear equations 
and try to solve for C1 and C2

We can solve for C1 and C2 by contracting with p and q

where                                                (For simplicity, the masses are neglected here)

By expressing 2l.p and 2l.q as a sum of denominators we can express R1 
and R2 as a sum of simpler integrals, e.g. 
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of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =









. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .









, Ycollinear =









. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .









. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4 − 2ε.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ε

s12s23

×
{

2

ε2

(

(−s12)
−ε + (−s23−)−ε

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ε) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ε. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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∫

dnl

(2π)n
lµlν

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2 − l2 − p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ‖ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ‖ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1 − κδ.p
p2(1+κ2) κ + κδ.p

p2(1+κ2)

κ + κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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∫

dnl

(2π)n
lµlν

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2 − l2 − p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ‖ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ‖ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1 − κδ.p
p2(1+κ2) κ + κδ.p

p2(1+κ2)

κ + κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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R1 =

�
dnl

(2π)n
2l · p

l2(l + p)2(l + q)2
=

�
dnl

(2π)n
(l + p)2 − l2 − p2

l2(l + p)2(l + q)2

=

�
dnl

(2π)n
1

l2(l + q)2
−

�
dnl

(2π)n
1

(l + p)2(l + q)2
− p2

�
dnl

(2π)n
1

l2(l + p)2(l + q)2
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And similarly for R2

Now we can solve the equation

by inverting the “Gram” matrix G

and we have expressed our original integral

in terms of known, simpler integrals and we are done!
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∫

dnl

(2π)n
lµlν

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2 − l2 − p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ‖ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ‖ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1 − κδ.p
p2(1+κ2) κ + κδ.p

p2(1+κ2)

κ + κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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∫

dnl

(2π)n
lµlν

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2 − l2 − p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ‖ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ‖ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1 − κδ.p
p2(1+κ2) κ + κδ.p

p2(1+κ2)

κ + κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =









. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .









, Ycollinear =









. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .









. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4 − 2ε.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ε

s12s23

×
{

2

ε2

(

(−s12)
−ε + (−s23−)−ε

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ε) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ε. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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R2 =

�
dnl

(2π)n
2l · q

l2(l + p)2(l + q)2
=

�
dnl

(2π)n
(l + q)2 − l2 − q2

l2(l + p)2(l + q)2

=

�
dnl

(2π)n
1

l2(l + p)2
−

�
dnl

(2π)n
1

(l + p)2(l + q)2
− q2

�
dnl

(2π)n
1

l2(l + p)2(l + q)2
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Higher point 
integrals

For loop integrals with many legs, 
the reduction to scalar integrals 
can still be performed

Only up to 4-point scalar 
integrals are needed (in 4 
dimensions)!

The proof is beyond the scope of 
these lectures (it is straight forward by 
using the Van Neerven-Vermaseren basis 
for the loop momentum); it is related 
to the fact that in 4 dimensions 
only four 4-vectors can be linearly 
independent
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k1 k2

k3

k4

k5

k6

kn

D0 D1

D2

D3

Dm−1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3
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Basis of scalar 
integrals

The a, b, c, d and R 
coefficients depend only 
on external parameters 
and momenta
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M
1-loop =

�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

Tadpolei0 =
�

ddl
1

Di0

Bubblei0i1 =
�

ddl
1

Di0Di1

Trianglei0i1i2 =
�

ddl
1

Di0Di1Di2

Boxi0i1i2i3 =
�

ddl
1

Di0Di1Di2Di3

All these scalar integrals are known and available in computer libraries 
(FF [v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])

Di = (l + pi)
2 −m2

i
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Divergences

56

The coefficients d, c, b and a are finite and do not contain poles in 1/є

The 1/є dependence is in the scalar integrals (and the UV renormalization)

When we have solved this system (and included the UV renormalization) we have 
the full dependence on the soft/collinear divergences in terms of coefficients in 
front of the poles. These divergences should cancel against divergences in the real 
emission corrections (according to KLN theorem)

M
1-loop =

�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

Tadpolei0 =
�

ddl
1

Di0

Bubblei0i1 =
�

ddl
1

Di0Di1

Trianglei0i1i2 =
�

ddl
1

Di0Di1Di2

Boxi0i1i2i3 =
�

ddl
1

Di0Di1Di2Di3

Di = (l + pi)
2 −m2

i

Virtual ∼ v0 +
v1
�

+
v2
�2
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About the R term
In our example the decomposition to scalar integrals was “exact”, i.e. there 
were no left-over terms.

This is true for most integrals. Only if the rank of the integral is

there are some extra contributions which are called “Rational terms” that 
are not proportional to a scalar integral

They are of UV origin and come from the є (dimensional regulator) 
dependence of the integral times a scalar integral that is UV divergent

(The Bubble integrals are the only UV divergent integrals)

When taking the limit є → 0, only the leading contribution remains, which 
are independent from the scalar integral itself
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r ≥ max
�
(N − 1), 2)

�

∫

dnl

(2π)n
lµ

l2(l + p)2(l + q)2
=

(

p′µ q′µ
)

(

C ′
1

C ′
2

)

=
(

p′µ q′µ
)

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

The momentum corresponding to the singular eigenvalue is

q′µ = −δµ +
δ · pκ(1 + κ)

p2(1 + κ2)
= O(δ) (4.31)

R′
2 ∼ κ[2l · p] − [2l · q] ∼ O(δ) (4.32)

As expected the result for the tensor integral is finite in the limit δ → 0, but the vanishing
of R′

2 is not manifest; it is realized as a property of a combination of scalar integrals. One
approach would be to work in the primed basis, which would thus differ for every phase
space point. (Numerical problems halved?)

4.3 Rational terms by PV reduction

The rational part is related to the ultraviolet behavior of the theory; the naive expectation
is that the better the UV behavior, the “smaller” the rational part. When the integral
is free from the rational part, it is said to be “cut-constructible”. A natural expectation
is that the rational part is absent in UV-finite integrals. As we explain below, this
expectation turns out to be wrong; the correct result is that a Feynman N -point integral
is cut constructible, provided that tensor rank, r, of the integral satisfies the following
condition [11]

r < max{(N − 1), 2} . (4.33)

The condition is illustrated in Fig. 4.3. If this condition is violated the integral will
contain rational parts. Explicitly, Eq. (4.33) implies that the UV finite rank-two four-
point function is cut-constructible, whereas the UV-finite rank-three four-point function
is not.

In this section we give an proof of the condition that an integral has to satisfy for being
cut-constructible, Eq. (4.33). This proof is based on the Passarino-Veltman reduction.
We will proceed case-by-case for the two-, three- and four-point integrals which occur in
a renormalizable theory. The extension to higher point integrals will be performed at the
end. We first note that the Passarino-Veltman decomposition described in Section ??

and ??, yields the coefficients of the scalar integrals D0, C0, B0, A0 for arbitrary values of
the number of dimensions. Since the rational terms are related to UV singularities they
will show up at the end of the reduction as terms of the form

Rational terms ∼ εB0(p,m1,m2) , (4.34)

because B0 is the only UV divergent scalar integral. Such terms can only arise if the
reduction involves the dimensional parameter D. This means that integrals of rank r less
than two will always be cut-constructible, since their reduction coefficients are always D
independent. Ultraviolet divergent integrals of rank two or greater (e.g. Diiii, Ciii, Cii, Bii)
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Automation

Advantage:

The method above can be straight-forwardly generalized to 
any one-loop integral (appearing in a renormalizable theory)

Disadvantage:

For relatively simple processes, the number of terms already 
explodes (several 100 MB of code is no exception for the matrix elements of a 

2 → 3 process); simplifications require hard work and are 
difficult to do in a general way

Does only work when the integrals are known analytically
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The “NLO revolution”
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New loop techniques

The “loop revolution”: new techniques for computing one-loop 
matrix elements are now established:

Generalized unitarity (e.g. BlackHat, Rocket, ...)
[Bern, Dixon, Dunbar, Kosower, 1994...; Ellis Giele Kunst 2007 + Melnikov 2008;...]  

Integrand reduction (e.g. CutTools, GoSam)
[Ossola, Papadopoulos, Pittau 2006; del Aguila, Pittau 2004; Mastrolia, Ossola, Reiter, 
Tramontano 2010;...]

Tensor reduction (e.g. Golem)
[Passarino, Veltman 1979; Denner, Dittmaier 2005; Binoth Guillet, Heinrich, Pilon, 
Reiter 2008]
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Integrand reduction

Any one-loop integral can be decomposed in scalar integrals

The task is to find these coefficients efficiently (analytically 
or numerically)

The integrand (or OPP [Ossola, Papadopoulos, Pittau 2006]) 
reduction method is a method that has been automated in the 
CutTools program to find these coefficients in an automated 
way

The integrand reduction technique is what we have adopted 
to use in MadGraph to compute the loop diagrams
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At the integrand 
level

The decomposition to scalar integrals
presented before works at the level of
the integrals

If we would know a similar relation at
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals

This is exactly what the OPP reduction does

The decomposition is the same, except that there might be 
contributions that integrate to zero
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At the integrand level
Consider, e.g., the Box coefficient:

And similarly for the c, b, a and R terms

The contributions that vanish when doing the integral are called 
“spurious terms”
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one-loop integral

Consider this m-point 
loop diagram with n 
external momenta

The integral to compute 
is
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OPP decomposition
For the numerator of any integrand of a one-
loop computation we can therefore write
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Numerical 
evaluation

By choosing specific values for the loop momentum l, we end up 
with a system of linear equations

In a renormalizable theory, the rank of the integrand is always 
smaller (or equal) to the number of particles in the loop (with 
a conveniently chosen gauge)

We can straight-forwardly set the it up by sampling the 
numerator numerically for various values of the loop 
momentum l

By choosing l smartly, the system greatly reduces

In particular when we chose l to be a complex 4-vector
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Functional form of 
the spurious terms
The functional form of the spurious terms is known (it 
depends on the rank of the integral and the number 
propagators in the loop) [del Aguila, Pittau 2004]

for example, a box coefficient from a rank 1 numerator is

(remember that pi is the sum of the momentum that has 
entered the loop so far, so we always have p0 = 0)

The integral is zero
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How it works...

To solve the OPP reduction, choosing special 
values for the loop momenta helps a lot

For example, choosing l such that

sets all the terms in this equation to zero 
except the first line

There are two (complex) solutions to this 
equation due to the quadratic nature of the 
propagators
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How it works...

Two values are enough given the functional form for the 
spurious term. We can immediately determine the Box 
coefficient

By choosing other values for l, that set other combinations of 
4 “denominators” to zero, we can get all the Box coefficients
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How it works...
Now that we have all the Box coefficients we can start choosing values 
for l that set 3 “denominators” to zero to get the Triangle coefficients. Of 
course, now both the first and the second lines contribute.

We already have solved the coefficients of the first line in the previous 
iteration, so also here there is only a simple system of equations to solve

Once we have all the Triangle coefficients, we can continue to determine 
the Bubble coefficients; and finally the Tadpole coefficients
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How it works...

For each phase-space point we have to solve the system of 
equations

Due to the fact that the system reduces when picking special 
values for the loop momentum, the system greatly reduces

We can decompose the system at the level of the amplitude, 
diagram or in between. As long as we provide the corresponding 
numerator function. In MadGraph we decompose diagram by 
diagram, but we are considering improvements

For a given phase-space point, we have to compute the numerator 
function several times (~50 or so for a 2 → 3 process)
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A classical example
Suppose we want to
compute this integral

So we that the numerator is 

We know that we need only Box, Triangle, Bubble (and Tadpole) 
contributions. Let’s find the first Box integral coefficient.

Take the two solutions of

And use the relation we found before and we directly have
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Complications in d 
dimensions

In the previous consideration I was very sloppy in considering if 
we are working in 4 or d dimensions

In general, external momenta and polarization vectors are in 4 
dimensions; only the loop momentum is in d dimensions

To be more correct, we compute the integral
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Implications

The decomposition in 
terms of scalar integrals 
has to be done in d 
dimensions

This is why the rational 
part R is needed
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Figure 1: An n-point one-loop diagram with m propagators in the loop. The dark blob represents
a tree structure.

The values of the integers Mi depend on the particular diagram considered (e.g. in fig. 1

we have M1 = 1, M2 = 3, M3 = 6), but they must always fulfill the following conditions:

1 ≤ Mi < Mi+1 , Mm = n =⇒ p0 = 0 , (3.5)

where the last equality of eq. (3.5) follows from eq. (3.2). The inverses of the loop propa-

gators in d and four dimensions we denote by D̄ and D respectively. Hence:

D̄i = (!̄+ pi)
2 −m2

i = Di + !̃2 ≡ (!+ pi)
2 −m2

i + !̃2 , 0 ≤ i ≤ m− 1 , (3.6)

which follows from eq. (3.3), and from the fact that the (−2ε)-dimensional parts of the

external four-vectors are equal to zero, since the ’t Hooft-Veltman scheme is adopted. Note

that mi is the mass of the particle flowing in the ith propagator, and therefore in general

p2i %= m2
i . As is known [14], the one-loop integral C can be expressed as a cut-constructible

part, i.e. a linear combination of scalar boxes, triangles, bubbles, and tadpoles, plus a (non

cut-constructible) remainder term R, called rational part:
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The essence of the OPP method is that of computing C by determining (in a numerical

manner) the set of coefficients and the rational part

d(i0i1i2i3), c(i0i1i2), b(i0i1), a(i0), R, (3.8)
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Rational terms

The main difference is how we get the rational terms (we 
already saw them in the Passarino-Veltman reduction)

In the OPP method, they are split into two contributions, 
generally called

Both have their origin in the UV part of the model, but only 
R1 can be directly computed in the OPP reduction and is 
given by the CutTools program
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R1

The origin of R1 is coming is the denominators of the 
propagators in the loop

Of course, the propagator structure is known, so these 
contributions can be included in the OPP reduction

They give contributions proportional to
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R2

The other origin of rational terms is the numerator itself. For integrals 
with rank > 2 we can have dependence in the numerator that is 
proportional to 

Unfortunately, this dependence can be quite hidden; maybe it is only 
explicitly there after doing the Clifford algebra

Because we want to solve the system without doing this algebra 
analytically (we want to solve it numerically) we cannot get these 
contributions directly within the OPP reduction

Within a given model, there is only a finite number of sources that can 
give these contributions; They have all been identified within the SM, 
and can be computed with the “R2 counter terms”
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R2 Feynman rules
Given that the R2 contributions are of UV origin, only up to 4-point 
functions contribute to it (in a renormalizable theory)

They can be computed using special Feynman rules, similarly to the 
UV counter term Feynman rules needed for the UV renormalization, 
e.g.

Unfortunately these Feynman rules are model dependent.
⇒ Maybe we can use FeynRules+FeynArts to compute them for any 
model?
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Figure 2: Effective vertices contributing to R2 in pure QCD.
∑

P (234) stands for a summation over
the six permutations of the indices 2, 3 and 4, and {taitaj} ≡ taitaj + taj tai . λHV = 1 in the HV
scheme and λHV = 0 in the FDH scheme. Ncol is the number of colors and Nf is the number of
fermions running in the quark loop.
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improvement over 
Passarino-Veltman

In PV reduction, we need analytic expressions for all the integrals. Possible 
to automate, but in practice too many terms which are difficult to simplify

In OPP reduction we reduce the system at the integrand level.

We can solve the system numerically: we only need a numerical function 
of the (numerator of) integrand. We can set-up a system of linear 
equations by choosing specific values for the loop momentum l, 
depending on the kinematics of the event

Choosing l such that internal propagators go on-shell, enormously 
simplifies the resulting system

OPP reduction is implemented in CutTools (publicly available). Given 
the integrand, CutTools provides all the coefficients in front of the scalar 
integrals and the R1 term

Analytic information is needed for the R2 term, but can be compute once 
and for all for a given model
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In MadGraph

MadGraph is very good at giving numerical 
expressions for matrix elements. Exactly what is 
needed by CutTools to get the coefficients of the scalar 
integrals

However, it is only tree-level...

Needed to create an add-on to MadGraph to generate 
loop diagrams: MadLoop!
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MadLoop
Instead of writing a new code to generate loop diagrams, we use the existing, 
well-tested MadGraph code to generate tree-level diagrams

A loop diagrams with the loop cut open has to extra external particles. 
Consider e+e- ➞ u* ubar* u ubar (loop particles are denoted with a star). 
MadGraph will generate 8 L-cut diagrams. Here are two of them:
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All diagrams with two extra 
particles are generated and the 
ones that are needed are 
filtered out

Each diagram gets an unique 
tag: any mirror and/or cyclic 
permutations of tags of 
diagrams already in the set are 
taken out

Additional filter to eliminate 
tadpoles and bubbles attached 
to external lines

≡

≡

Diag 1 = [u∗(6)g∗(5)u∗(A)]

Diag 3 = [u∗(A)u∗(6)g∗(5)]
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MadLoop
Several new features needed to be implemented in MadGraph

Recognition of the loop topologies in order to filter L-cut diagrams

Structure to deal with two MadGraph processes simultaneously (L-cut 
and Born-like)

Treat the color to obtain the correct interference between the Born and 
the loop diagrams

Special form of the integrand for CutTools: no propagator denominators, 
complex momenta and reconstruction of the missing propagator for 
sewed particles (e.g., when L-cut particle is a gluon, ∑ϵµ(p)ϵν(p) ➞ gµν )

Implementation of QCD ghosts

Implementation of the special vertices for the rational part R1 and the 
UV renormalization
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There are (almost) always phase-space points for which the 
numerical reduction to determine the coefficients in front of the scalar 
integrals does not work due to numerical instabilities

CutTools has build-in routines to determine if a phase-space point is 
exceptional or not

CT can ask MadLoop to evalutate the integrand at a given loop 
momentum and check if the result is close enough to the one from 
the reconstructed integrand

By sending                         CT has an independent reconstruction 
of the numerator and can check if both match

Using quadruple precision numerics in the reduction helps, but not 
always

MadLoop:
Exceptional PS points
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When CutTools assigns a phase-space point to be unstable, MadLoop 
tries to cure it

Check if the Ward Identity holds at a satisfactory level

Shift the phase-space point by rescaling one of the components of 
the 3-momenta (for all particles), e.g.                              , and 
adjusting the energy components to keep the point on-shell

Provide an estimate of the virtual of the original phase-space 
point (with uncertainty)                                           where

If all shifts fail (very rarely) use the median of the results of the last 
100 stable points and the median absolute deviation to determine the 
associated uncertainty
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MadLoop: limitations
Of course, there are some limitations on what the code cannot do yet...

No four-gluon vertex at the Born level: the special vertex to compute 
the remainder is too complicated to implement in MadGraph v4

If EW bosons appear in the loops, the reduction by CutTools might 
not work because we use gauge a physical gauge (rank of diagrams 
can become too large) 

No finite-width effects for massive particles also appearing in the loops

All Born contributions must factorize the same power of all coupling 
orders
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Figure 2: Effective vertices contributing to R2 in pure QCD.
∑

P (234) stands for a summation over
the six permutations of the indices 2, 3 and 4, and {taitaj} ≡ taitaj + taj tai . λHV = 1 in the HV
scheme and λHV = 0 in the FDH scheme. Ncol is the number of colors and Nf is the number of
fermions running in the quark loop.
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On-going improvements
The MadLoop code is being rewritten in MadGraph v5. This will:

remove the limitations presented on the previous slide

make it faster:

Recycling of tree-structures attached to the loops

Identify identical contributions (e.g. massless fermion loops of 
different flavors)

Call CutTools not per diagram, but per set of diagrams with the 
same loop kinematics

Use recursion relations (will mostly help the real-emission 
corrections)

allow for the automatic generation of UV renormalization and 
remainder vertices using FeynRules [Christensen, Duhr et al.] for BSM physics
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Local checks

87

Ref. [33]: A. van Hameren et al. arXiv:0903.4665

The numerics are pin-point on analytical 
data, even with several mass scales.

Analytic computation via an 
implementation of the formulae found in  
a paper by J.J. van der Bij & N. Glover

~25 processes checked against known 
results (24 pages appendix of MadLoop 
paper, arXiv:1103.0621)

We believe the code is very robust - e.g., 
MadLoop helped to find mistakes in 
published NLO computations 
implementations (pp ➞ Zjj, pp ➞ W+W+jj)
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Integrated results
Errors are the MC integration 
uncertainty only

Cuts on jets, γ*/Z decay 
products and photons, but no 
cuts on b quarks (their mass 
regulates the IR singularities)

Efficient handling of exceptional 
phase-space points: their 
uncertainty always at least two 
orders of magnitude smaller than 
the integration uncertainty

Running time: two weeks on 
~150 node cluster leading to 
rather small integration 
uncertainties

MadFKS+MadLoop results are 
fully differential in the final states 
(but only parton-level)

Process µ nlf Cross section (pb)

LO NLO

a.1 pp→ tt̄ mtop 5 123.76±0.05 162.08±0.12

a.2 pp→ tj mtop 5 34.78±0.03 41.03± 0.07

a.3 pp→ tjj mtop 5 11.851±0.006 13.71± 0.02

a.4 pp→ tb̄j mtop/4 4 25.62±0.01 30.96± 0.06

a.5 pp→ tb̄jj mtop/4 4 8.195±0.002 8.91± 0.01

b.1 pp→ (W+ →)e+νe mW 5 5072.5±2.9 6146.2±9.8

b.2 pp→ (W+ →)e+νe j mW 5 828.4±0.8 1065.3±1.8

b.3 pp→ (W+ →)e+νe jj mW 5 298.8±0.4 300.3± 0.6

b.4 pp→ (γ∗/Z →)e+e− mZ 5 1007.0±0.1 1170.0±2.4

b.5 pp→ (γ∗/Z →)e+e− j mZ 5 156.11±0.03 203.0± 0.2

b.6 pp→ (γ∗/Z →)e+e− jj mZ 5 54.24±0.02 56.69± 0.07

c.1 pp→ (W+ →)e+νebb̄ mW + 2mb 4 11.557±0.005 22.95± 0.07

c.2 pp→ (W+ →)e+νett̄ mW + 2mtop 5 0.009415±0.000003 0.01159±0.00001

c.3 pp→ (γ∗/Z →)e+e−bb̄ mZ + 2mb 4 9.459±0.004 15.31± 0.03

c.4 pp→ (γ∗/Z →)e+e−tt̄ mZ + 2mtop 5 0.0035131±0.0000004 0.004876±0.000002

c.5 pp→ γtt̄ 2mtop 5 0.2906±0.0001 0.4169±0.0003

d.1 pp→W+W− 2mW 4 29.976±0.004 43.92± 0.03

d.2 pp→W+W− j 2mW 4 11.613±0.002 15.174±0.008

d.3 pp→W+W+ jj 2mW 4 0.07048±0.00004 0.1377±0.0005

e.1 pp→HW+ mW +mH 5 0.3428±0.0003 0.4455±0.0003

e.2 pp→HW+ j mW +mH 5 0.1223±0.0001 0.1501±0.0002

e.3 pp→HZ mZ +mH 5 0.2781±0.0001 0.3659±0.0002

e.4 pp→HZ j mZ +mH 5 0.0988±0.0001 0.1237±0.0001

e.5 pp→Htt̄ mtop +mH 5 0.08896±0.00001 0.09869±0.00003

e.6 pp→Hbb̄ mb +mH 4 0.16510±0.00009 0.2099±0.0006

e.7 pp→Hjj mH 5 1.104±0.002 1.036± 0.002

Table 2: Results for total rates, possibly within cuts, at the 7 TeV LHC, obtained with MadFKS

and MadLoop. The errors are due to the statistical uncertainty of Monte Carlo integration. See
the text for details.

• In the case of process c.5, the photon has been isolated with the prescription of

ref. [13], with parameters

δ0 = 0.4 , n = 1 , εγ = 1 , (2.3)

and parton-parton or parton-photon distances defined in the 〈η,ϕ〉 plane. The photon
is also required to be hard and central:

p(γ)T ≥ 20 GeV ,
∣∣∣η(γ)

∣∣∣ ≤ 2.5 . (2.4)
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Summary
One-loop integrals can be written as coefficients a, b, c and d times scalar 
functions and a rational part R

The traditional approach for computing one-loop diagrams (Passarino-
Veltman reduction) becomes more and more complicated and difficult to 
automate when the number of external particles increases

The OPP reduction works at the integrand level: choosing specific values 
of the loop momentum results in a linear system of equations, which can be 
solved numerically and efficiently

MadGraph has been extended to compute loops by using the OPP 
reduction as implemented in the CutTools computer code

MadLoop generates loop diagrams by cutting them open, which results in 
tree-level diagrams with two extra external particles

CutTools provides the values for which the numerator should be computed 
numerically and solves the resulting system of equations numerically
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