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DISCOVERIES AT HADRON COLLIDERS
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LEADING ORDER

% For many of the theory predictions needed in the searches
for new physics as well as measuring properties of the SM,

leading order predictions are used

# In many regions of phase-space they do a (surprisingly)
good job, 1n particular for shapes of distributions

% Flexible computer codes readily available and relatively

easy to use and understand

% Unfortunately LO predictions describe total rates rather
poorly: you only get the order of magnitude
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NEED FOR NLO

Al

¢ If we would have the same flexible tools available at NLLO, analyses wnll
benehit a various ways:

% NLO predictions predict rates much more precisely

# Reduced theoretical uncertainties due to meaningful scale
dependence

KA

% Shapes of distributions are better described

A

3¢ Correct estimates for PDF uncertainties

KA

% These accurate theoretical predictions are particularly needed for

Al

K searches Of signal events iIl 1arge backgrounds samples and

Al

% precise extraction of parameters (couplings etc.) when new physics
signals have been found
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A

¢ b-jet transverse momentum
in b pair production

¢ LO: Pythia,

NLO: POWHEG - pyhia
NLO: MC@NILO . Herwig

S

¢ Shapes are well described by
[LO and by NLO

S

% Normalization 1s well

predicted at NLO

% At NLO, theory uncertainties
can be studied systematically
(not shown 1n this plot)



WHY AN AUTOMATIC
TOOL.?

N2

2 To save time
Less human time spending on computing matrix elements means

more time available on physics and phenomenology.

A

s¢ Robustness
Modular code structure means that elements can be checked
systematically and extensively once and for all. Trust can easily be

build.

# Wide accessibility
One framework for all. Available to everybody for an unlimited
set of applications. Suitable for Experimental collaborations.

Rikkert Frederix, University of Zurich
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QCD AND MC PROGRESS!
(SIMPLIFIED)

Automatic
New | Automatic NLOwPS
GW. oop NLO results
techmques
Matching: |
ME+PS
(CKKW, MLM)
NLOwWPS
(MC@NLO, POWHEG)

/

2003
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CONTENTS OF THESE
LECTURES

¢ These lectures will be about the concepts behind the
computation of NLO corrections (as implemented in

MadGraph)

% Cancellation of infrared singularities

using only tree-level matrix elements

ANVA

s Tutoral

¢ Please, interrupt me at any time if something 1s not clear!

11

Rikkert Frederix, University of Zurich



NOT YET PUBLICLY
AVAILABLE

¢ Disclaimer:
Although NLO corrections are included in MadGraph (version 4)
they are not yet publicly available. The reason 1s that the code 1s

N2

s still a bit slow (not possible to run on a single desktop anything
beyond a 2 — 1 process within 30 minutes or so)

= not yet completely general (some processes cannot be computed;
and no warning 1s given if one tries)

with virtual matrix elements taken from MCFM
[J.M. Campbell & R.K. Ellis; + C. Willhiams; + external collaborators]

12
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MASTER EQUATION FOR
HADRON COLLIDERS

o — 2; / dydzy fo(21s 1im) oo, for) dBapx (5s 1 1)

Parton density Parton-level
functions (differential)

Cross section

2% Parton-level cross section from matrix elements: model

and process dependent

# Parton density (or distribution) functions: process

independent

¢ Differences between colliders given by parton

luminosities

Rikkert Frederix, University of Zurich 14



PERTURBATIVE
EXPANSION

d(Afab_>X (§, UE, ,uR) Parton-level cross section

\\V,

* The parton-level cross section can be computed as a series 1n
perturbation theory, using the coupling constant as an expansion

parameter, schematically:

6 =oPom (14 O‘Sa<1>+<&s) = ) o+
2T 27

Al

% Including higher corrections improves predictions and reduces
theoretical uncertainties

16
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4 N
LO
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Al
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PERTURBATIVE
EXPANSION

d(Afab_>X (§, UE, ,uR) Parton-level cross section

\\V/

* The parton-level cross section can be computed as a series 1n
perturbation theory, using the coupling constant as an expansion

parameter, schematically:

A Born | (1) ( ) (2) ( ) (3)
14
c=9 27T * 27T * 27T o
A A

4 ) 4 )
LO NLO

predictions) \corrections

Al

% Including higher corrections improves predictions and reduces
theoretical uncertainties
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perturbation theory, using the coupling constant as an expansion

parameter, schematically:

A Born | (1) ( ) (2) ( ) (3)
14
c=9 27T * 27T * 27T o
A A A

4 ) 4 ) 4 )
LO NLO NNLO

predictions corrections corrections
_/ - J &

Al

% Including higher corrections improves predictions and reduces
theoretical uncertainties
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PERTURBATIVE
EXPANSION
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s GBorn (1, % (1) ( ) (2) ( ) (3)
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A A A A

4 ) 4 ) 4 ) 4 )
LO NLO NNLO NNNLO

corrections
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Al

% Including higher corrections improves predictions and reduces
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PERTURBATIVE
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Al

% Including higher corrections improves predictions and reduces
theoretical uncertainties
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NLO CORRECTIONS

A\

=
=

% There are two types of contributions to the NLO corrections:

# Virtual (or Loop) corrections: formed by an amplitude

with a closed loop of particles interfered with the Born
amplitudes

2

¢ Real emission corrections: formed by amplitudes with one

7]

A

extra parton compared to the Born process

A

¢ Both have one power of as extra compared to the Born
process

o0 = dYelt + [ d DoV + [ dWoP

m-+1 m m

16



NLO PREDICTIONS

¢ As an example, consider Drell-Yan production

6:0301‘]“(1 | &80(1)4—...)

2T

17
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan production

6:0301‘]“(1 | &80(1)4—...)
27T
f\

>WN

17
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan production

6:0301‘“(1 | &80(1)4—...)
27T
A
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan production

2T

6:030”1(1 | &80(1)4—...)

!\

>WW
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IMPROVED PREDICTIONS

Zb/d$1d$2 folx1, ur)fo(xo, ir) doar—x (8, pr, LR)

A Born | (1) ( ) (2) ( > (3)
1+
o ( 27T " 2T - 2T o >

l

¢ Remember, predlctlons are inclusive: also at LO nitial state
radiation 1s included via the PDF; final state radiation by the

definition of the parton, which represents all final state

\\V/

evolutions

% Due to these approximations, LLeading Order predictions
can depend strongly on the renormalization and

factorization scales

Al

% Including higher order corrections reduces the dependence
on these scales

Rikkert Frederix, University of Zurich =



GOING NLO

Al

% At NLO the dependence on the renormalization and factorization
scales 1s reduced

Al

¢ First order scale dependence

1n the running coupling and BT T —

L6 Top produstisn va g, WE=14Ta¥

the PDF's 1s compensated for I L0, eteqbit, myfHoIe130

18

MLA, ctegf_m, aeibl)=0.116

14

via the loop corrections

1.2

Better description of final state: |

\\/
\\

Al
Z\\

impact of extra radiation includec
(e.g. jets can have substructure) *

A

¢ Opening of additional initial 2

|
10

L=
a
L=
.
=
a
[oh)
=
o
2

state partonic channels E

19
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¢ Are all (IR-safe) observables that we can compute using a NLO
calculation correctly described at NLO?

¢ It depends on the observable...

% In the small transverse momentum region, this calculation breaks
down (it’s even negative in the first binl), and anywhere else it 1s

purely a LO calculation for V+1

20
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=

A\
7

P

¢ Are all (IR-safe) observables that we can compute using a NLO
calculation correctly described at NLO?

\/

=~

W

NO!

KA

% It depends on the observable...

KA

2 In the small transverse momentum region, this calculation breaks
down (it’s even negative in the first binl), and anywhere else it 1s

purely a LO calculation for V+1

20
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NLO...?

A

¢ Are all (IR-safe) observables that we can compute using a NLO
calculation correctly described at NLO?

6000 - ' vector boson p'T '

! LO
- /

P

2000 - NLO

/

¢ It depends on tha pbservable...

e o e ¢ e o e o e o e o e o e o e o e o @ o eme o G o G o G o G o G o Gm ¢ G ¢ @ o @ o @ o @ o @ o C emm o wmm o @ o O ——rar—aay

% In the small
down (it’s efen negative in the first bin!), and anywherg else it is
purely a L calculation for V+1j10 15 20

transverse momentum [GeV]

fransverse momentum region, this calculatibn breaks

20
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A

¢ Are all (IR-safe) observables that we can compute using a NLO
calculation correctly described at NLO?

v I

goool " vector boson pT N '

_I T
r / LO >\/\/\/\, |
4000 ' .
| ! ]
}
| |
L J
S0 NLO Z;//\/v\/ —
I / ]
r |
0 e e I ar—ara—— S -
L . . . . | . . . . | . . . . | . . . .
0 5 10 15 20

transverse momentum [GeV]

Al

% 1t depends on the observable...

Al

% In the small transverse momentum region, this calculation breaks
down (it’s even negative in the first binl), and anywhere else it 1s

purely a LO calculation for V+1

20
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NLO...?

A

¢ Another example: we have a NLLO code for pp — tt

9 “TOO000) - t 9 BBCOO0) : £ 9 TVVO00) « t
LO Real E Virt
> t I BBouTO > t

9 ~vooooo > t g WB%&W

[otal cross section

S
wN

\V/
I\

Al
2\

rm ]
[ransverse momentum of the top quark

A
W

S
7N

M ] *
[ransverse momentum of the jet

\V/
I\

S

Al
1

- : : :
lop-antitop iInvariant mass

Al

¢ Transverse momentum of the top-antitop pair X
¢ Azimuthal distance between the top and anti-top X

21
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BOTTLENECKS

/A

¢ Virtual amplitudes: how to compute the loops automatically
in a reasonable amount of time

Al

% How to deal with infra-red divergences: virtual corrections

and real-emission corrections are separately divergent and
only their sum 1s finite (for IR-safe observables) according to

the KILN theorem

R

% How to match these processes to a parton shower without
double Counting (will be covered by Paolo Torrielli’s lectures)

22
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan production

2T

6:030”1(1 | &80(1)4—...)

!\

>WW

Rikkert Frederix, University of Zurich

2 Re

J
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N
I\

A/
Z\§

N
N\

In the soft and collinear region, the branching of a gluon from a quark can
be written as

\\ /
) P a.Cr dz dk?
P t
L 0 Ohtg ™ O 1.2
7 0 % -_— t

where £/ 1s the transverse momentum of the gluon, £:=£ sin0.

The singularities cancel against the singularities in the virtual corrections,
which result from the integral over the loop momentum of the function

N /
\ /
) p p N asCr dz dk?
Oh = = Oh+V = —0Op 2
|

The sum 1s finite for observables that cannot distinguish between two
collinear partons (k; — 0); a hard and a soft parton (= — 1); and a single

parton (in the virtual contributions)
25
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INFRARED
CANCELLATION

o VO / d*®,, B(P / d*® / A1V (®,,) + / d®,, 1 R(®,, 1)
loop

Al

% The KLLN theorem tells us that divergences from virtual and

real-emission corrections cancel in the sum (for observables
insensitive to soft and collinear radiation)

% When doing an analytic calculation in dimensional

regularization this can be explicitly seen in the cancellation of
the 1/e and 1/¢? terms (with ¢ the regulator, ¢ = 0)

Al

% In the real emission corrections, the explicit poles enter after
the phase-space integration (in d dimensions)

Rikkert Frederix, University of Zurich 2



INFRARED SAFE
OBSERVABLES

¢ For an observable to be calculable in fixed-order perturbation
theory, the observable should be infrared safe, 1.e., it should be

insensitive to the emission of soft or collinear partons.

A

% In particular, if p; 1s a momentum occurring in the definition of
an observable, it most be invariant under the branching
Pi— P+ Ph

whenever p; and pt are collinear or one of them 1s soft.

¢ Examples

Nz,

% “The number of gluons” produced in a collision 1s not an
infrared safe observable

# “The number of hard jets defined using the k7 algorithm,”
produced in a collision 1s an infrared sate observable

27
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PHASE-SPACE INTEGRATIO

o VO / d*®,, B(® / d*® / ALV (®,,) + / d°®,, 1 R(®pi1)
loop

¢ For complicated processes we have to result to numerical phase-space

integration techniques (“Monte Carlo integration”), which can only be
performed in an integer number of dimensions

2% Cannot use a finite value for the dimensional regulator and take the
limit to zero 1n a numerical code

A

# But we still have to cancels the divergences explicitly

% Two commonly used solutions exists
¢ Phase-space slicing

2% Subtraction method

Rikkert Frederix, University of Zurich =



< R R — |
EXAMPLE

Al

% Suppose we want to compute the integral (“real emission radiation”,
where the 1-particle phase-space 1s referred to as the 1-dimensional )

/O iz f(2) ) ..

where f (Qj) - g(x) and g(£l?) 1s finite everywhere

X

2

¢ Let’s introduce a regulator

1 1
. glx) . iy
i | do $35% = i | o)

for any non-integer non-zero value for € this integral is finite

\!

% We would like to factor out the explicit poles in € so that they can be

canceled explicitly against the “virtual corrections”
Rikkert Frederix, University of Zurich
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PHASE-SPACE SLICING

1

lim [ dexz™°f(x) f(x) = 9(z)

e—0 0 X

% Introduce a small parameter 0

1 - 6 1
lim [ deax™°f(x) = lim /da: r “f(x) + /da? r~°f(x)
e—0 0 e—0 0 )

_ S 1 _
= lim /daz x € (0) | /daz T © 9(x)
0 5

e—0 | T :L‘]-‘I‘G
€ 1 ()
=1 0 dr ——=
61—>H(l) —€ g( ) - /5 33 i
1 1 1
= lim |— + log ¢ g(O)+/de
e—0 € 5 XL

* We get the explicit pole in € and a finite integral that can be
computed numerically

Rikkert Frederix, University of Zurich
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SUBTRACTION METHOD

1

lim [ dexz™°f(x) f(x) = 9(z)

e—0 0 X

% Add and subtract the same term

1 1 _

0 0

im [ dza—<f(z) = tim [ dza—<|?Y + pz)- 90
e—0 0 e—0 0 o T
1 T _ _

_ ¢  g(x)—g(0)
—21_{1(1) de _g(()) r pite

—1 1 — (0

= lim _9(0)+/d:13 9(z) ~ 9(0)

e—0 € 0 T

#* Like before, we have factored out the explicit divergence. The coethcient
in front of the 1/€ pole 1s the same 1n both methods (as it should be!)

% According to the KLLN theorem the divergence cancels against the virtual

corrections

Rikkert Frederix, University of Zurich 4



X

1 B _| “Plus distribution”}
Subtraction: / dx 9(z) — 9(0) « L
0

1
Slicing: /daj 9(2) - g(0) logd
)

X

/A

% Terms of order O are neglected in the slicing method;
the subtraction method 1s exact

¢ One has to proof that any observable is independent of 0 when 0 = 0

Al

¢ Both methods feature cancellations between large numbers: if for an
observable O, 1t :};li% Ol)) == O(U) g o0 dhosse the binsame (oo small,

instabilities render the computation useless

A

* We already knew that! KLLN 1s suthcient; one must have infra-red
safe observables and cannot ask for infinite resolution

% Subtraction method 1s more flexible -> method of choice in automation

Rikkert Frederix, University of Zurich e



NLO WITH SUBTRACTION =

SNLO /d4<I> B(® /d4 / A1V (® /ddq)m+1 R(Ppy1)
loop

¢ With the subtraction method this 1s replace by

oV O / d*®,, B(®,,)

+ / d*®,, /1 dlV (®,,) + / d°® G (P p1)
_ J loop de—0

+ /d4q)m+1 R((I)erl) o G(aerl)

¢ Terms between the brackets are finite. Can integrate them numerically and
independent from one another in 4 dimensions

Rikkert Frederix, University of Zurich 39



SUBTRACTION METHODS

\

% (7 ((I)m_H) should be defined such that

1) it exactly matches the singular behavior of R((I)m—l—l)

2) its form 1s convenient for MC integration techniques

3) it 1s exactly integrable in d dimensions over the one-particle
subspace / d'® G (D,,.1), leading to soft and/or collinear

divergences as explicit poles in the dimensional regulator

4) 1t 1s universal, 1.e. “process independent”
— “overall factor” times the Born process

34
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TWO METHODS

I

s Catani-Seymour dipole
subtraction

™M Most used method

™ Clear written paper on how to
use this method 1n practice

M Method evolved from

cancellation of the soft
divergence

™ Proven to work for simple as well
as complicated processes

M Automation in publicly available
packages: MadDipole,
AutoDipole, Helac-Dipoles,
Sherpa

Rikkert Frederix, University of Zurich

% FKS subtraction

™ Not so well-known
M (Probably) more efhicient,

because less subtraction terms
are needed

M Collinear divergences as a
starting point

M Proven to work for simple as well
as complicated processes

M Preferred method when

interfacing NLO to a parton
shower

M Implemented in MadFKS and (a)
MC@NLO

35



FKS SUBTRACTION

L

\

¢ FKS subtraction: Frixione, Kunszt & Signer 1996

Al

~N

\
\

Al
Ny

Also known as “residue subtraction”

Al

¢ Based on using plus-distributions to regulate the
infrared divergences of the real emission matrix

elements

L

\
\

Al

~N

wN

Implemented in the MadGraph/MadEvent
framework: MadFKS

Rikkert Frederix, University of Zurich
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Z,

5 2

S e e )
VB,

PHASE-SPACE PARTITION

“¢ Fasiest to understand by starting from real emission:

do' = |M" " Pdgni
1 & = Ei/Vs

5 - Wlth
fi L — Y5 Yi; = COS 97;3'

¢ Partition the phase space in such a way that each partition has at most one

P | M -l ‘2 diverges like

soft and one collinear singularity

dO’R — Z Sij|Mn+1‘2d¢n_|_1 Z Sz'j — 1
y i

¥

% Use plus distributions to regulate the singularities

d(}R:Z(é> ( 1 ) Ei(1 = yig)Sig | M™ 2 P dp 1
i/ 4 +

1 — vy,
ij Yij

Rikkert Frederix, University of Zurich 37



REGULARIZED BY
PLUS-PRESCRIPTION

d‘?R:Z(é) ( 1 ) &i(1 — yiz)Sij M 2dpr 41
i/ + +

> 1 — vy

% Dehinition plus distribution

/d§ <§>+g(g) _ /dg 9(&) gg(())

% One event has maximally three counter events:

s Soft: fz — 0

% Collinear: Yi; — 1

s Soft-collinear: fz — 0 Yij — 1

38
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REGULARIZED BY
PLUS-PRESCRIPTION

5 1 1 .
ds’t =) <€_> <1 ) &i(1 = i) Sij [M" 2 dpp 1
¢ gcut 50

% Modified definition plus distribution (include counter terms
only when event 1s close to being singular)

/ g (ELM 9(¢) = /dg 9(€) = g(0)O(Ecur — &)

§ §

% One event has maximally three counter events:
2 Soft: & — 0
% Collinear: Yij — 1
#* Soft-collinear: & — 0 Yij — 1

Rikkert Frederix, University of Zurich e



SUBTRACTION TERMS

oV O / d*®,, B(P,,)

+/d4c1>m{/l AUV (®,,) +/dd¢1G($m+1)}

oop e—0

b [ @i R®i) = G i)

¢ This defines the subtraction terms for the reals

¢ They need to be integrated over the one-parton phase space (analytically)
to get the explicit poles 1/¢ and added to the virtual corrections so that
these poles cancel

¢ these are process-independent terms proportional to the (color-

linked) Borns
¢ All formulae can be found in the MadFKS paper, arXiv:0908.4247

Rikkert Frederix, University of Zurich .
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MADFKS MATRIX ELEMENT

oV O / d*®,, B(P,,)

+/d4q>m{/looddw(q>m)+/dd<1>1G@m+1)}

b [ @i R®i) = G i)

e—0

% When give the real-emission process to Mad FKS

¢ It will generates the matrix elements for the Born, real-
emission and FKS subtraction terms

% Virtual corrections need to be provided by the user; linked

by a library to the MadFKS code. When running,
MadFKS tells the library for which phase-space points it

should compute the virtual corrections
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PHASE-SPACE INTEGRATION
IN MADFKS

o N0 / d*®,, B(®,,)

+ / d4<I>m{ [ooidlv(q)mH / ddcbl(;@mﬂ)} »
b [ @i R®i) = G i)

% Generate Born event using the standard MadGraph phase-space generation

% Generate the real-emission event, by choosing random numbers for the 3

extra integration variables: d&;, dyi;, dd;

Al

% Due to the phase-space partitioning, we know which singularities we need

to subtract, generate the corresponding phase-space points, i.e. where =0

OT Vij= 1, or both

Al

¢ Use these momenta to compute the terms in the NLO computations and

perform the Monte Carlo integration

Rikkert Frederix, University of Zurich 42



KINEMATICS OF
COUNTER EVENTS

¢ > L+]

(2

% If ( and j are two on-shell particles that are present in a splitting that leads

to an singularity, for the counter events we need to combine their momenta
to a new on-shell parton that’s the sum of ¢+/

#¢ This 1s not possible without changing any of the other momenta in the
process

RV

* When applying cuts or making plots, events and counter events might end-
up in different bins

¢ Use IR-safe observables and don't ask for infinite resolution! (KLN

theorem)

Rikkert Frederix, University of Zurich .
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EXAMPLE IN 4 CHARGED

LEPTON PRODUCTION

aMC@NLO

g

|||||

/bin [fb] at

—
LHC 7 TeV —

Rikkert Frederix, University of Zurich

recent paper (it appeared last
month on the arXiv)

% The NLO results shows a typical

peak—dip structure that hampers
fixed order calculations
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EVENT UNWEIGHTING? “

% It 1s not possible to generate unweighted events in this set-up

¢ Even though the integrals are finite, they are not bounded
: 1 : : :
(compare with f o dx % ), so there 1s no maximum to unweight

against: a single event can have an arbitrarily large weight

A

% Furthermore, event and counter event have different kinematics:
which one to use for the unweighted event?

d_U do
10 0 A

not possible

t NLO 11
- NEEEEE

Rikkert Frederix, University of Zurich i



FILLING HISTOGRAMS
ON-THE-FLY

o0 / d*®,,, B(®,,)

+/d4<1>m[/1 AUV (D) +/dd¢1G($m+1)]

oop e—0

b [ @i | R Opi) = GEit)

A

% In practice, when we do the MC integration we generate 2 sets of
momenta

1. An m-body set (for the Born, virtual and integrated counter terms)

2. An m+1-body (for the NLO) which we map to the counter term

momenta (for the counter terms)

% We compute the above formula; and apply cuts and fill histograms using

the momenta corresponding to each term with the weight of that
corresponding term

46
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W+4J AT NLLO

[Berger et al., 1009.2338]

50 100 150 50 100 150 50 100 150 100 150
0 0
10 EI LI I LI I LI I LI LI I LI I LI I LI IEEI LI I LI I LI I LI IEEI LI I LI I LI I LI IE 10
- W +4 jets +X ¢ \/T — 7TeV T —— LO -
— 10-1 3 NLO E 10‘1
> ; i
5
O i ]
¥a) . _
o 107 310
o | |
SN > 25GeV, In"1 < 3 |
9 107 F . . E3 3 10
F E. >20GeV, In | <25 % 3
= T e -
- v w + 4
A E 2 M 2
i “R=MF=HT/2 r >20GeV, M >20GeV | ]
10" F R = 05 [anti-k,] ¥ 510"
[ 1 ' I | I | T | 1 cr v v e v v e v byt P11
- —— | L B e S S -
[ - NLO scale dependence ]
2 F 2 5 12
15 F 1.5
1 11
50 100 150 50 100 150 50 100 150 50 100 150
First Jet Pr [ GeV ] Second Jet Pr [ GeV ] Third Jet Pr [ GeV ] Fourth Jet Pr [ GeV ]

W +4j production at the LHC: world record NLO computation
Uncertainty (due to scale dependence) 1s greatly reduced at NLO
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A

¢ Both the virtual and real-emission corrections are IR divergent, but
their sum 1s finite

A

¢ We can use the slicing or subtraction methods to factor the
divergences 1n the real-emission phase-space integration and cancel

them explicitly against the terms in the virtual corrections

Al

¢ Preferred method 1s the subtraction method (no approximations
needed and proven to work very well for complicated processes)

Al

¢ This generates events and counter events with slightly different
kinematics

-

2

** When making plots or applying cuts, use only IR safe observables

with finite resolution

Al

¢ Phase-space integrals are finite, but not bounded: cannot unweight
the events

48
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% Consider this m-point
loop diagram with n

external momenta

Al

% The integral to compute 1s

-
DoD1Ds3 - Dy

- N2 2
I +ki+...+ks =1 +ps ks Di = (l+pi)” —m;

Rikkert Frederix, University of Zurich A



STANDARD APPROACH

Z

% Passarino-Veltman reduction:

N (1) 1
d E : d
? ff@
/d lDODlDQ"'Dm_]_ i o /d ZDODl---

% Reduce a general integral to “scalar integrals” by

“completing the square”

Al

#* Let’s do an example:
Suppose we want to calculate this triangle integral

q [

D g / dn iz
(2m)™ (12 = mi)((L + p)* = m3)((L + ¢)* — m3)

P

Rikkert Frederix, University of Zurich e



/ d"l ¥
(2m)™ (12 = m{)(( +p)* —m3)((L + @) — m3)

% The only independent four vectors are P and g . Therefore, the integral
must be proportional to those. We can set-up a system of linear equations

and try to solve for C1 and C»

dl [H B Lo C
/(W(l gy (R R G )<02)

¢ We can solve for C1 and Cs2 by contracting with p and ¢

<2;>=(E$:§D=G<S;)E<§ii§ y(e)

where 20 - p] = f (dnl 12(l-|-pQ)lé]Zl-l-q)2 (For simplicity, the masses are neglected here)

\\V/

% By expressing 2Lp and 2/ as a sum of denominators we can express Ri
and Ro as a sum of simpler integrals, e.g.

[ d 2-p [ d"l ((+p? -1 p’
Rl‘/ @) B+ p2(+ q)? ‘/ 2m)" (1 +p)2 (I + 0)2

_/d”l 1 _/d”l 1 _Q/dnz 1
") e Bl+q? ) e U+p2i+q2 P ) o Bl +p)2(+q)

Rikkert Frederix, University of Zurich
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% And similarly for Ro

o an o - g [ dM (49— 1P -
R e e el e e e

_/d”l 1 _/d”l 1 _2/d”l 1
~J @ore+p? ) Cor e+ T ) @or R+ p)2(+ )2

L

A2

A

W

Now we can solve the equation
(1)-(R2)-<(2)- (31 20)(&
Ry 2 - q] Cr ) "\ 2p-q 2¢-q )\ O

by inverting the “Gram” matrix G
Ci \ 1 I
(&)= (&)

and we have expressed our original integral

i I C
2 2 oy ( " q" )
(2m) (12 = m7)((L 4 p)? — m3)((L 4 q)* — m3) C2
in terms of known, simpler integrals and we are done!

Rikkert Frederix, University of Zurich o3



HIGHER POINT
INTEGRALS

R

¢ For loop integrals with many legs,

the reduction to scalar integrals
can still be performed

% Only up to 4-point scalar
integrals are needed (in 4

dimensions)!

% The proof 1S beyond the scope of

these lectures (it is straight forward by
using the Van Neerven-Vermaseren basis

for the loop momentum); 1t 1s related

to the fact that in 4 dimensions
only four 4-vectors can be linearly

independent

54
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BASIS OF SCALAR
INTEGRALS

M L-loop Z Do i0i BOXi i1 iis % The a, .b, ¢, dand R
= coefthcients depend only
10<11<12<13

on external parameters

—+ Z Cigiiio Trlangleio,,;lh and momenta

'I:O<7:]_<7;2 l—|—pz) 2
+ ) b;,;, Bubble;,,

e o ot Tadpole; /

10<1?1
+ Z a;, Ladpole;_ Bubble; ;, = /

10
+R + Ole) Lriangle;y;,, = lp D D,

1
BOXiyiyigis = | d’I
OX 0t1t2¢t3 Dio DilDiQ Dig

% All these scalar mtegrals are known and available in computer libraries

(FF [v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])

Rikkert Frederix, University of Zurich %5



DIVERGENCES

1-1
MR = Z d’ioil’iﬂsBOXioilizi:% D; = (1 -|—p7;)2 - mzz
10<11<12<13 1
, Tadpole; = / dl

—|_ Z CiOil 19 Trla;ng].ez()zl io Dio
e 1

—I_ Z bioilBUbble’iOil . d 1
s Triangle; ;, ,, = [ d lDz'o D;. D,

| 1
" ; Do Tadpo}ei() BoXigirizis = ddlDio D; D;,D;,
0
+R + Ofe)

% The coethcients d, ¢, b and a are finite and do not contain poles in 1/¢
% The 1/e dependence is in the scalar integrals (and the UV renormalization)

% When we have solved this system (and included the UV renormalization) we have
the full dependence on the soft/collinear divergences in terms of coefficients in
front of the poles. These divergences should cancel against divergences 1n the real
emission corrections (according to KLIN theorem)

vl | U2

Virtual ~ vg 4 |
€ e .y

Rikkert Frederix, University of Zurich



:
R

[ ;
R

Al

% In our example the decomposition to scalar integrals was “exact”, 1.e. there
were no left-over terms.

% This 1s true for most integrals. Only if the rank of the integral 1s
> max{(N _ 1),2)}

there are some extra contributions which are called “Rational terms” that
are not proportional to a scalar integral

Al

% They are of UV origin and come from the ¢ (dimensional regulator)
dependence of the integral times a scalar integral that 1s UV divergent

Rational terms ~ eBy(p, m1,m2)

(The Bubble integrals are the only UV divergent integrals)

% When taking the limit ¢ = 0, only the leading contribution remains, which
are independent from the scalar integral itself

Rikkert Frederix, University of Zurich 2



AUTOMATION

\V/
7

Al
\

K\

Advantage:

Al

¢ The method above can be straight-forwardly generalized to
any one-loop integral (appearing in a renormalizable theory)

Al

#* Disadvantage:

Al

% For relatively simple processes, the number of terms already
explodes (several 100 MB of code is no exception for the matrix elements of a

2 — 3 process); simplifications require hard work and are
dithcult to do 1n a general way

R

% Does only work when the integrals are known analytically
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THE ‘“NLO REVOLUTION” =&

s fi

i

One indicator of NLO progress

pp 2> W + 0 jet
pp 2> W + 1 jet
pp 2> W + 2 jets
pp 2> W + 3 jets

pp 2> W + 4 jets

Rikkert Frederix, University of Zurich

1978 Altarelli. Ellis. Martinell

1989 Arnold, Ellis, Reno
2002 Campbell, Ellis
2009 BH+Sherpa

Ellis, Melnikov, Zanderighi
201 0 BH+Sherpa

Shide from LLance Dixon
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NEW LOOP TECHNIQUES

R

% The “loop revolution”: new techniques for computing one-loop
matrix elements are now established:

% Generalized unitarity (e.g. BlackHat, Rocket, ...)
[Bern, Dixon, Dunbar, Kosower, 1994...; Ellis Giele Kunst 2007 + Melnikov 2008;...]

Al
AN

]\

Integrand reduction (e.g. CutTools, GoSam)

[Ossola, Papadopoulos, Pittau 2006; del Aguila, Pittau 2004; Mastrolia, Ossola, Reiter,
Tramontano 2010;...]

# Tensor reduction (e.g. Golem)

[Passarino, Veltman 1979; Denner, Dittmaier 2005; Binoth Guillet, Heinrich, Pilon,
Reiter 2008]
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INTEGRAND REDUCTION

S

% Any one-loop integral can be decomposed 1n scalar integrals

S

¢ The task 1s to find these coethicients ethiciently (analytically
or numerically)

reduction method 1s a method that has been automated 1in the
CutTools program to find these coefficients in an automated

way

% The integrand reduction technique i1s what we have adopted
to use in MadGraph to compute the loop diagrams

6l
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AT THE INTEGRAND
LEVEL

MIoP = Z Aigiyizis BOXigiyigis

% The decomposition to scalar integrals 10 <11 <12 <13

pres.ented betore works at the level of 4 Z Ciiyi, Triangle; ; ;-

the 1ntegrals 10<11 <12
¢ It we would know a similar relation at T Z biyi, Bubble;yi,

the integrand level, we would be able 0=

to manipulate the integrands and + Z ai, Tadpole;,

extract the coefhicients without doing o

the integrals +R + O(e)

% This 1s exactly what the OPP reduction does

Al

¢ The decomposition 1s the same, except that there might be
contributions that integrate to zero

Rikkert Frederix, University of Zurich ¥



AT THE INTEGRAND LEVEL

2
7

¢ Consider, e.g., the Box coefhcient:

1
0¢1t2¢3 Dio Dil DiQ Di3
dioiligig
D;, Dy, D;, D,

_ /ddldioi1i2i3 +di0i1i2733 (l)
Dy, Dy, Di, Dy,

d d

TR s, @i A B

d?l

ddl dioi1i2i3 (l) —0
Dy, Di, D, D,

where

A

¢ And similarly for the ¢, 4, a and R terms

2

¢ The contributions that vanish when doing the integral are called
“spurious terms”

63
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l—|—/<:1—|—...—|-k6:l—|—p3

Rikkert Frederix, University of Zurich

% Consider this m-point
loop diagram with n

external momenta

Al

% The integral to compute

1S

DoyD1Dsy---D,,_4

D; = (I +p:)* —m]

(/

64



OPP DECOMPOSITION

e
% For the numerator of any integrand of a one- DoD1Dg -+ Dyy—q

loop computation we can therefore write 5 5
e D;=(l+pi)” —m;

m—1 m—1
N(l) — Z {dioi1i2i3 T d’ioil’iQis (Z)} D;
10<t1<i2<1i3 1710,%1,12,13
m—1 m—1
+ Z [Cioilig + Cigiyi (l)} H D;
10<11 <12 ’i#’ig,’il,’ig
m—1 ~ m—1
+ Z {bioil +bi0i1(l)] H D;
10<%1 170,11
m—1 m—1
10 ’i#’io
m—1
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NUMERICAL
EVALUATION

Ak

¢ By choosing specific values for the loop momentum /, we end up
with a system of linear equations

Al

% In a renormalizable theory, the rank of the integrand 1s always
smaller (or equal) to the number of particles in the loop (with

a conveniently chosen gauge)

% We can straight-forwardly set the it up by sampling the
numerator numerically for various values of the loop
momentum /

A

% By choosing / smartly, the system greatly reduces

A

2 In particular when we chose /to be a complex 4-vector
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FUNCTIONAL FORM OF
THE SPURIOUS TERMS

Al

% The functional form of the spurious terms is known (it
depends on the rank of the integral and the number

propagators 1n the loop) [del Aguila, Pittau 2004]

(2

¢ for example, a box coethicient from a rank 1 numerator 1s

7 _ Vpo VPO

Digiyinis (1) = digiyizis €77 1M pyp3
(remember that Pi 1S the sum of the momentum that has
entered the loop so far, so we always have po = 0)

A

% The integral 1s zero

~

gy Bioinizis (1) _ ~ /ddle“”p" Ipiphps _

DoD,DyDs l0frizis DoD:1 Dy D5

67

Rikkert Frederix, University of Zurich



HOW IT WORKS...

m—1 m—1
NO= ) [dioiligig + dioilizig(l)} D;
10<11<12<13 1710,%1,12,13
m—1 m—1
4 Z [Cioiliz - Eioilz’g(l)} H D;
10<iy1<iz 1710,11,%2
= 5 To solve the OPP reduction, choosing special
+ ; {bioil + bigi () } H Di values for the loop momenta helps a lot
10<1?1 { ZOa'Ll
] 3 For example, choosing / such that
+ 3 Jaig + s, (1) H D, N A A N
i0 1710 Do(l ):Dl(l ):DQ(Z ):Dg(l ):O
m—1
+P(1) [] D: sets all the terms 1n this equation to zero
i except the first line

There are two (complex) solutions to this
equation due to the quadratic nature of the
propagators

Rikkert Frederix, University of Zurich =



HOW IT WORKS...

N(IF) = do1as + dor23(I°

\/

m—1
:) H Dz(l:
1#£0,1,2,3

¢ Two values are enough given the functional form for the

)

spurious term. We can immediately determine the Box

coefthicient

1

do123 = 5

A

N(T)

N(I™)

[

m—1
1#£0,1,2,3 Di(H)

[l

m—1
1#0,1,2,3

D;(1)

¢ By choosing other values for /, that set other combinations of

4 “denominators” to zero, we can get all the Box coefhicients

Rikkert Frederix, University of Zurich
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Al

% Now that we have all the Box coefthcients we can start choosing values
for / that set 3 “denominators” to zero to get the Triangle coetficients. Of

course, now both the first and the second lines contribute.

m—1 m—1

N(l) - Z [di0i1i2i3 + d~’io?31’i2i3 (l)} D;

10<t1<12<13 ’i#’io,il,ig,ig

m—1
T Z [Cioilh T Eioi1i2 (l)} H Dz

10<11<12 120,21 ,12

\

% We already have solved the coethcients of the first line in the previous
iteration, so also here there is only a simple system of equations to solve

Al

% Once we have all the Triangle coefhicients, we can continue to determine

the Bubble coethcients; and finally the Tadpole coethicients

Rikkert Frederix, University of Zurich AL



K2

¢ For each phase-space point we have to solve the system of
equations

Al

% Due to the fact that the system reduces when picking special
values for the loop momentum, the system greatly reduces

2

% We can decompose the system at the level of the amplitude,

diagram or in between. As long as we provide the corresponding
numerator function. In MadGraph we decompose diagram by

diagram, but we are considering improvements

Al

% For a given phase-space point, we have to compute the numerator
function several times (~50 or so for a 2 — 3 process)

71
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A CLASSICAL EXAMPLE

¢ Suppose we want to A% 1
compute this integral DoD1DsDs Dy Ds Deg
% So we that the numerator 1s N(l) — ] D; = (l + pi)Q — m?

¢ We know that we need only Box, Triangle, Bubble (and Tadpole)

contributions. Let’s find the first Box integral coefhicient.

% Take the two solutions of

Do(I™) = D1(I7) = Da(I™) = D3(I7) =0

% And use the relation we found before and we directly have

1 1 1

do123 = 5 D4(I1)D5(I7)Dg(it) " D4(1=)D5(1=)Dg (1)
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COMPLICATIONS IN D
DIMENSIONS

“¢ In the previous consideration | was very sloppy in considering if
we are working in 4 or d dimensions

# In general, external momenta and polarization vectors are in 4
dimensions; only the loop momentum 1s in d dimensions

¢ To be more correct, we compute the integral

| 555, 5 AR
0=15=2" " Hm—1 d dim 4 dim epsilon dim

Di=(l+p)2 —m?=(1+p)?—m2+1?=D, +[?

. 1=0 [-p; =1 p; L l=1-1+1-1

73
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¢ The decomposition 1n
terms of scalar integrals

has to be done 1n d
dimensions

RV
K\

N

This 1s why the rational
part R 1s needed
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RATIONAL TERMS

Al

% The main difference 1s how we get the rational terms (we
already saw them in the Passarino-Veltman reduction)

% In the OPP method, they are split into two contributions,
generally called

R=R;+ R5

¢ Both have their origin in the UV part of the model, but only
Ri1 can be directly computed in the OPP reduction and 1s

given by the CutTools program

75

Rikkert Frederix, University of Zurich



R

% The origin of Rj 1s coming 1s the denominators of the

propagators in the loop

1 L1 P
D;, D; D D,

~

% Of course, the propagator structure 1s known, so these
contributions can be included in the OPP reduction

s They give contributions proportlonal to

2 i (p; — p;)?
a7 _ w2y 2 \Pi T D
d ZDD = | ™ +m; : + O(¢)
12 i
dy —_
d ZD DDy =~ + O(e)
/4 a2
del —— 40
D.D,DvD; 6 +0(¢)
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Al

% The other origin of rational terms 1s the numerator itself. For integrals
with rank > 2 we can have dependence in the numerator that 1s

proportional to [

R

¢ Unfortunately, this dependence can be quite hidden; maybe it 1s only
explicitly there after doing the Clifford algebra

¢ Because we want to solve the system without doing this algebra

analytically (we want to solve it numerically) we cannot get these
contributions directly within the OPP reduction

RV
K

¢ Within a given model, there 1s only a finite number of sources that can
give these contributions; They have all been 1dentified within the SM,
and can be computed with the “Ro counter terms”
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R> FEYNMAN RULES

R

¢ Given that the Ro contributions are of UV origin, only up to 4-point
functions contribute to it (in a renormalizable theory)

R

% They can be computed using special Feynman rules, similarly to the
UV counter term Feynman rules needed for the UV renormalization,

e.g.
L ig? N2, —1
" g col
—@ — O0r.1(— 2 p)
I A 1672 2N, k(=P + 2mq) Anv
k
3 2
1g° N —1 4
— — t 14+ A

[ Draggiotis, Garzell, Papadopoulos, Pittau]

Al

s Unfortunately these I eynman rules are model dependent.
= Maybe we can use FeynRules+FeynArts to compute them for any

model?
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IMPROVEMENT OVER
PASSARINO-VELTMAN

¢ In PV reduction, we need analytic expressions for all the integrals. Possible
to automate, but in practice too many terms which are difficult to simplify OO

Al

¢ In OPP reduction we reduce the system at the integrand level.

% We can solve the system numerically: we only need a numerical function
of the (numerator of) integrand. We can set-up a system of linear o

equations by choosing specific values for the loop momentum /
depending on the kinematics of the event

N2
w>

Choosing / such that internal propagators go on-shell, enormously ©
simplifies the resulting system

\I
K\

OPP reduction i1s implemented in CutTools (publicly available). Given ©
the integrand, CutTools provides all the coefficients in front of the scalar
integrals and the Ri term

A
I\

“¢ Analytic information 1s needed for the Ry term, but can be compute once

and for all for a given model

Rikkert Frederix, University of Zurich £



IN MADGRAPH

Ak

¢ MadGraph 1s very good at giving numerical
expressions for matrix elements. Exactly what 1s

needed by CutTools to get the coethicients of the scalar
integrals

A

¢ However, it 1s only tree-level...

¢ Needed to create an add-on to MadGraph to generate
loop diagrams: MadLoop!

Rikkert Frederix, University of Zurich
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A

MADLOOP

¢ Instead of writing a new code to generate loop diagrams, we use the existing,

well-tested MadGraph code to generate tree-level diagrams

% A loop diagrams with the loop cut open has to extra external particles.

Consider e*e” = u® ubar® u ubar (loop particles are denoted with a star).
MadGraph will generate 8 L-cut diagrams. Here are two of them:

A
K7\

A
KZ\§

Rikkert Frederix, University of Zurich

¢ Additional filter to eliminate

1

All diagrams with two extra
particles are generated and the
ones that are needed are
filtered out

Each diagram gets an unique 2

tag: any mirror and/or cyclic
permutations of tags of :
diagrams already in the set are
taken out

tadpoles and bubbles attached

to external lines
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% Several new features needed to be implemented in MadGraph

Rikkert Frederix, University of Zurich

MADLOOP

A

¢ Recognition of the loop topologies in order to filter L-cut diagrams

A

% Structure to deal with two MadGraph processes simultaneously (L-cut
and Born-like)

% Treat the color to obtain the correct interference between the Born and
the loop diagrams

¢ Special form of the integrand for CutTools: no propagator denominators,
complex momenta and reconstruction of the missing propagator for

sewed particles (e.g., when L-cut particle 1s a gluon, Y €*(p)€V(p) — gtV)

% Implementation of QCD ghosts

L

2

A

¢ Implementation of the special vertices for the rational part R; and the

7]

UV renormalization

32



MADLOOP:
EXCEPTIONAL PS POINTS

R

% There are (almost) always phase-space points for which the
numerical reduction to determine the coefficients in front of the scalar

integrals does not work due to numerical instabilities

% CutTools has build-in routines to determine if a phase-space point 1s
exceptional or not

Al

# CT can ask MadLoop to evalutate the integrand at a given loop

momentum and check if the result 1s close enough to the one from
the reconstructed integrand

% By sending m; — m; + M? CT has an independent reconstruction
of the numerator and can check if both match

% Using quadruple precision numerics 1n the reduction helps, but not
always

83
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MADLOOP:

EXCEPTIONAL PS POINTS

% When CutTools assigns a phase-space point to be unstable, Madl.oop

tries to cure it

Al
N

Al
N

’/l\

Check if the Ward Identity holds at a satisfactory level

Shift the phase-space point by rescaling one of the components of
the 3-momenta (for all particles), e.g. kf = (1 + A1)k} , and
adjusting the energy components to keep the point on-shell

% Provide an estimate of the virtual of the orlglnal phase -space
point (with uncertainty) ViV = |Ab0m (c = A) where

VFIN

1
_ FIN FIN FIN _ FIN FIN __
¢ = 2 (v)\_|_ + Uy > A= ‘UA+ Ux- Unt |Ab07"n 2

If all shifts fail (Very rarely) use the median of the results of the last
100 stable points and the median absolute deviation to determine the
associated uncertainty

Rikkert Frederix, University of Zurich ol



MADLOOP: LIMITATIONS

% Of course, there are some limitations on what the code cannot do yet...

Al

% No four-gluon vertex at the Born level: the special vertex to compute
the remainder 1s too complicated to implement in MadGraph v4

H1,a1 H2,a2

_ _ig4Ncol Z |: 5a1a25a3a4 + 5a1a35a4a2 + 6a1a45a2a3
967’(’2 Ncol
P(234)

4,04 Kn3,a3
+ A Tr (191493492494 4 $91404492193) (3 4 Ay

— Tr({t™ 2} {t%3¢Y) (5 4 ZAHV)] NG T

Ny 5)
—|—12N—T7“(ta1ta2ta3ta4) (§9u1u39M2N4 — Gurpousps — gmuggmm) }

col

Al

% If EW bosons appear in the loops, the reduction by CutTools might

not work because we use gauge a physical gauge (rank of diagrams
can become too large)

KA

¢ No finite-width effects for massive particles also appearing in the loops

A

% All Born contributions must factorize the same power of all coupling

orders

Rikkert Frederix, University of Zurich S



ON-GOING IMPROVEMENTS

% The MadlLoop code 1s being rewritten in MadGraph v5. This will:

A

% remove the limitations presented on the previous slide

A

% make 1t faster:

#* Recycling of tree-structures attached to the loops

¢ Identify identical contributions (e.g. massless fermion loops of
different flavors)

Al

# Call CutTools not per diagram, but per set of diagrams with the
same loop kinematics

# Use recursion relations (will mostly help the real-emission
corrections)

Al

¢ allow for the automatic generation of UV renormalization and

remainder vertices using FeynRules [Christensen, Dubr et al] for BSM physics

Rikkert Frederix, University of Zurich 10



LOCAL CHECKS

uii - WHTW~-bb MapLoop Ref. [33]
ag 2.338047209268890E-008 2.338047130649064E-008
Cc_o -2.493920703542680E-007 -2.493916939353002E-007
(] -4,885901939046758E-007 -4.885901774740355E-007
Co -2.775800623041098E-007 -2.775787767591390E-007
gg — WHW bb
ap 1.549795815702494E-008 1.549794572435312E-008
c_o -2.686312747217639E-007 -2.686310592221201E-007
(] -6.078687041491385E-007 -6.078682316434646E-007
Co -5.519004042667462E-007 -5.519004727276688E-007

Ref. [33]: A. van Hameren et al. arXiv:0905.9665

The numerics are pin-point on analytical

data, even with several mass scales.

Analytic computation via an

implementation of the formulae found in

a paper by J.J. van der Bij ¢5 N. Glover

Rikkert Frederix, University of Zurich

~25 processes checked against known

results (24 pages appendix of MadLoop
paper, arXiv:1103.0621)

We believe the code 1s very robust - e.g.,
MadLoop helped to find mistakes in
published NLLO computations
implementations (pp = Zjj, pp = W*W))

............
...........
»o

-

1.2x10°* [T gg ->Zg (axial contributions only)

=L MadLoop
Analytic

S
T iy
= e mecmm——.
et ce————
-

1x10™
8x107 [
6x107
4x10'5: ‘

2x107 |




INTEGRATED RESULTS

Rikkert Frederix, University of Zurich

Process v N ¢ Cross section (pb)
% Errors are the MC integration LO NLO
uncertainty only al ppoti Mitop 5 123.76 +0.05 162.08 +£0.12
a.2 pp—tj Mitop 5 34.78 £0.03 41.03 £0.07
% Cuts on jets, Y*/Z decay a3 pp—rijj Mitop 5 11.851 4 0.006 13.71 £0.02
a.d  pp—thj Miop/4 4 25.62 +0.01 30.96 & 0.06
products and PhOtonS:’ but no a5 pp—thjj Mgop,/4 4 8.195 +0.002 8.91+0.01
cuts on b quarks (their mass Bl e (7 et — 5 5072.5 2.9 6146.2+9.8
regulates the IR singularities) B2 s (T —etm, — 5 828.4 4 0.8 1065.3 + 1.8
b3 pp— (W+ =)etve jj mw 5 298.8 0.4 300.3 £ 0.6
% Efficient handling of exceptional b4 p— (/2 —>)6+ myz 5 1007.0£0.1 1170.0+2.4
phase-space points: their b.5 pp— (v*/Z —)eTe mz 5 156.11 +£0.03 203.0+0.2
. b.6 pp— (v /Z —>)e+e 919 myz 5 54.24 +0.02 56.69 £ 0.07
uncertainty always at least two
. el pp— (WT —=)etu,bb mw + 2my 4 11.557 +0.005 22.9540.07
orders of magnitude smaller than pp— (WF )etvett  muw +2mup 5 0.009415+0.000003  0.01159 = 0.00001
the integration uncertainty c.3 pp—(v* /Z —ete bb  myz+ 2my 4 9.459 +0.004 15.31 £0.03
cd pp—(v)Z =)ete tT  myz+2muw, 5 0.003513140.0000004 0.004876 - 0.000002
% Running time: two weeks on c5  pp—tt 2Mtop 5 0.2906 % 0.0001 0.4169 +0.0003
~150 node cluster leading to d1l pp—WHTW- 2myy 4 29.976 +0.004 43.92 4+ 0.03
rather small integration d2 pp—oWTW—j 2my 4 11.613 £0.002 15.174 4 0.008
.. d.3 pp—oWHW+jj 2my 4 0.07048 - 0.00004 0.1377 £0.0005
uncertainties
el pp— HW+ mw +mg 5 0.3428 +0.0003 0.4455 +0.0003
e2 pp— HW™; mw +mg 5 0.1223 +0.0001 0.1501 = 0.0002
MadFKS+MadLoop results are e3 pp—HZ : mz+my 5 0.2781 +0.0001 0.3659 = 0.0002
fully differential in the final states .4 pp—HZ j myz +my 5 0.0988 £ 0.0001 0.1237 40.0001
(but only parton-level) e5 pp— Htt Miop +me 5 0.08896 - 0.00001 0.09869 - 0.00003
e.6 pp— Hbb my+my 4 0.16510 == 0.00009 0.2099 %+ 0.0006
o7 pp— Hjj muy 5 1.104 4 0.002 1.036 == 0.002




o — v

DUMMARY
A

% One-loop integrals can be written as coethicients a, b, ¢ and d times scalar
functions and a rational part R

Al

¢ The traditional approach for computing one-loop diagrams (Passarino-
Veltman reduction) becomes more and more complicated and difficult to

automate when the number of external particles increases

A

% The OPP reduction works at the integrand level: choosing specific values

of the loop momentum results in a linear system of equations, which can be
solved numerically and efficiently

% MadGraph has been extended to compute loops by using the OPP

reduction as implemented in the CutTools computer code

A

#* MadLoop generates loop diagrams by cutting them open, which results in
tree-level diagrams with two extra external particles

A

¢ CutTools provides the values for which the numerator should be computed

numerically and solves the resulting system of equations numerically

Rikkert Frederix, University of Zurich £



