X-sect = 6.717E-03(pb)  AVG = 4.850E+00  RMS = 2.131E+00
Tot # Evts = 49450  Entries = 48760  Undersc = 0  Over
X-sect = 6.717E-03(pb)   AVG = 4.413E-01   RMS = 6.981E-01
Tot # Evts =  49450  Entries =  49450  Undersc =  0  Over
X-sect = 6.717E-03(pb)   AVG = 3.998E-01   RMS = 6.432E-01
Tot # Evts = 49450  Entries = 49450  Undersc = 0  Over
$X$-sect = $6.717 \times 10^{-3}$ (pb)  AVG = $2.562 \times 10^{-1}$  RMS = $5.018 \times 10^{-1}$

Tot # Evts = 49450  Entries = 49450  Undersc = 0  Over
Missing ET

X-sect = 6.717E-03(pb)   AVG = 6.637E+01   RMS = 6.256E+01
Tot # Evts = 49450  Entries = 48396  Undersc = 0  Over
$pt(jet1)$

X-sect = 6.717E-03(pb)   AVG = 1.429E+02   RMS = 7.061E+01
Tot # Evts = 49450  Entries = 48709  Undersc = 0  Over
\begin{align*}
\text{pt(jet2)} \\
\end{align*}
pt(b1)

X-sect = 6.717E-03(pb)   AVG = 8.116E+01   RMS = 6.100E+01
Tot # Evts = 49450  Entries = 16825  Undersc = 0  Over
pt(mu1)

X-sect = 6.717E-03(pb)   AVG = 5.723E+01   RMS = 6.356E+01
Tot # Evts =   49450  Entries =   15990  Undersc =     0  Over
X-sect = 6.717E-03(pb)   AVG = 2.738E+01   RMS = 3.279E+01
Tot # Evts =   49450  Entries =    3316  Undersc =     0  Over
\[ \text{pt(\text{el1})} \]

- X-sect = 6.717E-03(pb)
- AVG = 8.891E+01
- RMS = 6.682E+01

Tot # Evts = 49450
Entries = 8218
Undersc = 0
Over
pt(el2)

X-sect = 6.717E-03(pb)  AVG = 5.318E+01  RMS = 4.189E+01
Tot # Evts = 49450  Entries = 1085  Undersc = 0  Over

# events/bin vs pt
pt\textsubscript{(ta2)}

\begin{tabular}{|c|}
\hline
\textbf{X-sect = 6.717E-03(pb)} & \textbf{AVG = 3.076E+01} & \textbf{RMS = 2.110E+01} \\
\textbf{Tot # Evts = 49450} & \textbf{Entries = 1303} & \textbf{Undersc = 0} & \textbf{Over} \\
\hline
\end{tabular}
The graph represents the distribution of $m(jet1,jet2)$, where $m$ is likely the invariant mass. Statistical information is provided below the graph:

- X-sect = 6.717E-03(pb)
- AVG = 2.232E+02
- RMS = 1.544E+02
- Tot # Evts = 49450
- Entries = 46938
- Undersc = 0
- Over
$m(jet1,\mu_1)$

X-sect = 6.717E-03(pb)   AVG = 1.542E+02   RMS = 1.263E+02
Tot # Evts = 49450   Entries = 15651   Undersc = 0   Over
$m(jet2,mu2)$

X-sect = 6.717E-03(pb)  AVG = 6.196E+01  RMS = 5.722E+01
Tot # Evts =  49450  Entries =  2968  Undersc = 0  Over
$m(jet1,el1)$

X-sect = 6.717E-03(pb)  
AVG = 2.118E+02  
RMS = 1.306E+02

Tot # Evts = 49450  
Entries = 7922  
Undersc = 0  
Over
\[ m(\text{jet2,el2}) \]

X-sect = 6.717E-03(pb)  AVG = 9.299E+01  RMS = 7.140E+01
Tot # Evts = 49450  Entries = 822  Undersc = 0  Over

# events/bin vs mij
$m(jet_1,ta_1)$

X-sect = 6.717E-03(pb)  AVG = 1.491E+02  RMS = 9.740E+01
Tot # Evts = 49450  Entries = 11077  Undersc = 0  Over
$m(\text{jet}2,\text{ta}2)$

X-sect = 6.717E-03(pb)   AVG = 8.233E+01   RMS = 5.176E+01
Tot # Evts =   49450  Entries =    1187  Undersc =     0  Over
$m(b1,b2)$

X-sect = 6.717E-03(pb)  AVG = 1.218E+02  RMS = 9.179E+01
Tot # Evts = 49450  Entries = 4117  Undersc = 0  Over
m(b1, mu1)

X-sect = 6.717E-03(pb)   AVG = 8.413E+01   RMS = 8.998E+01
Tot # Evts = 49450  Entries = 6138  Undersc = 0  Over
$m(b_2,\mu_2)$

X-sect = 6.717E-03(pb)  AVG = 3.825E+01  RMS = 3.540E+01
Tot # Evts = 49450  Entries = 453  Undersc = 0  Over
$m(b_1, e_1)$

X-sect = 6.717E-03(pb)   AVG = 1.322E+02   RMS = 9.898E+01
Tot # Evts = 49450   Entries = 2404   Undersc = 0   Over
\[ m(b2, e12) \]

Graph showing distribution of data with axes labeled:
- X-Label: \( \text{mij} \)
- Y-Label: \( \# \text{ events/bin} \)

Legend:
- X-sect = 6.717E-03(pb)
- AVG = 7.593E+01
- RMS = 5.186E+01
- Tot # Evts = 49450
- Entries = 54
- Undersc = 0
- Over
m(mu1,mu2)

# events/bin

mij

X-sect = 6.717E-03(pb)   AVG = 7.455E+01   RMS = 7.376E+01
Tot # Evts = 49450   Entries = 3316   Undersc = 0   Over
m(\mu_1,\tau_1)

X-sect = 6.717E-03(pb)   AVG = 7.303E+01   RMS = 7.243E+01
Tot # Evts = 49450  Entries = 3410  Undersc = 0  Over
$m(\mu_2, \tau_2)$

![Graph showing the distribution of $mij$ with $\# \text{ events/bin}$ on the y-axis and $mij$ on the x-axis.]

- X-sect = 6.717E-03(pb)
- AVG = 3.607E+01
- RMS = 3.036E+01
- Tot # Evts = 49450
- Entries = 84
- Undersc = 0
- Over

**Legend:**
- X-sect = Cross Section
- AVG = Average
- RMS = Root Mean Square
m(\text{el1}, \text{el2})

X-sect = 6.717E-03(pb)   AVG = 1.224E+02   RMS = 9.239E+01
Tot # Evts = 49450   Entries = 1085   Undersc = 0   Over
\[ m(\text{el1,ta1}) \]

![Graph showing the distribution of "mij" with "# events/bin" on the y-axis and "mij" on the x-axis.](graph.png)

- X-sect = 6.717E-03(pb)
- AVG = 1.084E+02
- RMS = 8.544E+01
- Tot # Evts = 49450
- Entries = 1411
- Undersc = 0
- Over
$m(\text{el2, ta2})$

X-sect = 6.717E-03(pb)  AVG = 9.000E+01  RMS = 5.362E+01
Tot # Evts = 49450  Entries = 4  Undersc = 0  Over

# events/bin

mij
$m(ta_1, ta_2)$

X-sect = 6.717E-03(pb)  AVG = 7.345E+01  RMS = 5.052E+01
Tot # Evts = 49450  Entries = 1303  Undersc = 0  Over