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Aims for this lecture

• Get you acquainted with the concepts and 
techniques used in event generation

• Give you hands-on experience with matrix 
element generation, event generation and analysis

• Answer as many of your questions as I can 
(so please ask questions!)
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Contents

• Ingredients to a NLO calculations
➡ A bit more detail on canceling divergences
➡ Computing loops efficiently

• aMC@NLO

• No Shower
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Master equation for hadron colliders

• Parton-level cross section from matrix 
elements: model and process dependent

• Parton density (or distribution) functions: 
process independent
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Parton density 
functions

Parton-level 
(differential) cross 

section
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Perturbative expansion

• The parton-level cross section can be computed as a series 
in perturbation theory, using the coupling constant as an 
expansion parameter, schematically:

• Including higher corrections improves predictions and 
reduces theoretical uncertainties
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Improved predictions

• Leading Order predictions can depend strongly on the 
renormalization and factorization scales

• Including higher order corrections reduces the dependence 
on these scales
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Going NLO
• At NLO the dependence on the renormalization and 

factorization scales is reduced
➡ First order where scale dependence

in the running coupling and the
PDFs is compensated for via the loop
corrections: first reliable estimate
of the total cross section

➡ Better description of final state:
 impact of extra radiation included
(e.g. jets can have substructure)

➡ Opening of additional initial state
partonic channels
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Going NNLO...?

• NNLO is the current state-of-the-art. There are only a few 
results available: Higgs, Drell-Yan, ttbar (qqbar induced only)

• Why do we need it?
➡  control of the uncertainties in a 

calculation
➡ It is “mandatory” if NLO corrections

are very large to check the behavior 
of the perturbative series

➡ It is needed for Standard Candles 
and very precise tests of perturbation theory, exploiting all the 
available information, e.g. for determining NNLO PDF sets

8

Fabio Maltoni CERN Academic Training Lectures - May 2012 47

Predictions at NNLO

Why?

● A NNLO computation gives control on the 
uncertainties of a perturbative calculation.

● It’s “mandatory” if NLO corrections are very large to 
check the behaviour of the perturbative series

● It’s the best we have! It is needed for Standard Candles 
and for really exploiting all the available information, for 
example that of NNLO PDF’s.
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Higgs predictions at NNLO

• LO calculation is not reliable,

• but the perturbative series 
stabilizes at NNLO

• NLO estimation of the 
uncertainties (by scale 
variation) works reasonably 
well

9Fabio Maltoni CERN Academic Training Lectures - May 2012 48

Higgs predictions at NNLO

• LO  calculation is not reliable.

• The perturbative series stabilizes. 

•NLO estimation of higher orders 
effects by scale uncertainty works 
reasonably well.
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Higgs predictions at NNLO

• LO  calculation is not reliable.

• The perturbative series stabilizes. 

•NLO estimation of higher orders 
effects by scale uncertainty works 
reasonably well.

Wednesday 2 May 2012

Let’s focus on NLO
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NLO corrections

• NLO corrections have three parts:
➡ The Born contribution, i.e. the Leading order.
➡ Virtual (or Loop) corrections: formed by an amplitude with 

a closed loop of particles interfered with the Born 
amplitudes

➡ Real emission corrections: formed by amplitudes with one 
extra parton compared to the Born process

• Both Virtual and Real emission have one power of αs 
extra compared to the Born process
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NLO predictions

• As an example, consider Drell-Yan Z/γ* 
production

11

x1E x2E
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Limitations of Fixed Order calculations

12
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Limitations of Fixed Order calculations
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Difficulties

• Multiple steps
➡ Fix divergencies
➡ Virtual amplitudes: how to compute the loops automatically in a 

reasonable amount of time
➡ How to deal with infra-red divergences: virtual corrections and 

real-emission corrections are separately divergent and only their 
sum is finite (for IR-safe observables) according to the KLN 
theorem

➡ How to match these processes to a parton shower without 
double counting

13

+ anything
= + O(αs2) +
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Canceling infrared 
divergences:
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NLO predictions

• As an example, consider Drell-Yan production
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Branching

• In the soft and collinear region, the branching of a gluon from a 
quark can be written as

where kt is the transverse momentum of the gluon, kt=E sinθ.

• The singularities cancel against the singularities in the virtual 
corrections, which result from the integral over the loop 
momentum of the function
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3.2 Initial-state parton splitting, DGLAP evolution

3.2.1 Final and initial-state divergences

In Eq. (26a) we wrote the universal form for the final-state ‘splitting’ of a quark into a quark and a soft

gluon. Let’s rewrite it with different kinematic variables, considering a hard process h with cross section
σh, and examining the cross section for h with an extra gluon in the final state, σh+g. We have

p
zp

E =

θ

(1−z)p

σ
h σh+g ! σh

αsCF

π

dz

1− z

dk2t
k2t

, (41)

where E in Eq. (26a) corresponds to E = (1 − z)p and we’ve introduced kt = E sin θ ! Eθ. If we
avoid distinguishing a collinear q+ g pair from a plain quark (measurements with IRC safe observables)
then, as we argued before, the divergent part of the gluon emission contribution always cancels with a

related virtual correction

p p
σ
h σh+V ! −σh

αsCF

π

dz

1− z

dk2t
k2t

. (42)

Now let us examine what happens for initial-state splitting, where the hard process occurs after the

splitting and the momentum entering the hard process is modified p → zp:

zp
p

(1−z)p

σ
h σg+h(p) ! σh(zp)

αsCF

π

dz

1− z

dk2t
k2t

, (43)

where we have made explicit the hard process’s dependence on the incoming momentum, and we assume

that σh involves momentum transfers ∼ Q % kt, so that we can ignore the extra transverse momentum
entering σh. For virtual terms, the momentum entering the process is unchanged, so we have

p p
σ
h σg+h(p) ! −σh(p)

αsCF

π

dz

1− z

dk2t
k2t

, (44)

The total cross section then gets contributions with two different hard cross sections:

σg+h + σV+h !
αsCF

π

∫ Q2

0

dk2t
k2t

︸ ︷︷ ︸

infinite

∫ 1

0

dz

1− z
[σh(zp)− σh(p)]

︸ ︷︷ ︸

finite

. (45)

Note the limits on the integrals, in particular theQ2 upper limit on the transverse-momentum integration:

the approximations we’re using are valid as long as the transverse momentum emitted in the initial state is

much smaller than the momentum transfersQ that are present in the hard process. Of the two integrations
in Eq. (45), the one over z is finite, because in the region of the soft divergence, z → 1, the difference of
hard cross sections, [σh(zp) − σh(p)], tends to zero. In contrast, the kt integral diverges in the collinear
limit: the cross section with an incoming parton (and virtual corrections) appears not to be collinear safe.

This is a general feature of processes with incoming partons: so how are we then to carry out calculations

with initial-state hadrons?

In Section 2.3.1, when trying to make sense of final-state divergences, we introduced a (non-

perturbative) cutoff. Let’s do something similar here, with a cutoff, µF, called a factorization scale
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Infrared cancellation

• The KLN theorem tells us that divergences from 
virtual and real-emission corrections cancel in the 
sum for observables insensitive to soft and collinear 
radiation (“IR-safe observables”)

• When doing an analytic calculation in dimensional 
regularization this can be explicitly seen in the 
cancellation of the 1/є and 1/є2 terms (with є the 
regulator, є ➞ 0)

• In the real emission corrections, the explicit poles 
enter after the phase-space integration (in d 
dimensions)

17
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Infrared safe observables

• For an observable to be calculable in fixed-order 
perturbation theory, the observable should be infrared 
safe, i.e., it should be insensitive to the emission of soft 
or collinear partons.

• In particular, if pi is a momentum occurring in the 
definition of an observable, it most be invariant under 
the branching
      pi ⟶ pj + pk,
whenever pj and pk are collinear or one of them is soft.

• Examples
➡ “The number of gluons” produced in a collision is not an 

infrared safe observable

18
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NLO...?

• Are all (IR-safe) observables that we can compute using a NLO 
code correctly described at NLO? Suppose we have a NLO 
code for pp ⟶ ttbar

➡ Total cross section

➡ Transverse momentum of the top quark

➡ Transverse momentum of the top-antitop pair

➡ Transverse momentum of the jet

➡ Top-antitop invariant mass

➡ Azimuthal distance between the top and anti-top

19
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➡ Transverse momentum of the jet

➡ Top-antitop invariant mass

➡ Azimuthal distance between the top and anti-top
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one-loop integral

• Consider this m-point 
loop diagram with n 
external momenta

• The integral to compute 
is

21

k1 k2

k3

k4

k5

k6

kn

D0 D1

D2

D3

Dm�1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3

Di = (l + pi)
2 �m2

i

Z
ddl

N(l)

D0D1D2 · · ·Dm�1
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 loop techniques

• Passarino-Veltman Reduction

• The “loop revolution”: new techniques for computing 
one-loop matrix elements are now established:
➡ Generalized unitarity (e.g. BlackHat, Rocket, ...)

[Bern, Dixon, Dunbar, Kosower, 1994...; Ellis Giele Kunst 2007 + Melnikov 2008;...]  
➡ Integrand reduction (e.g. CutTools, GoSam)

[Ossola, Papadopoulos, Pittau 2006; del Aguila, Pittau 2004; Mastrolia, Ossola, Reiter, 
Tramontano 2010;...]

➡ Tensor reduction (e.g. Golem)
[Passarino, Veltman 1979; Denner, Dittmaier 2005; Binoth Guillet, Heinrich, Pilon, Reiter 
2008]

22
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Integrand reduction

• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
numerically)

23
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Basis of scalar integrals

• The a, b, c, d and R 
coefficients depend 
only on external 
parameters and 
momenta

24

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

Tadpolei0 =
�

ddl
1

Di0

Bubblei0i1 =
�

ddl
1

Di0Di1

Trianglei0i1i2 =
�

ddl
1

Di0Di1Di2

Boxi0i1i2i3 =
�

ddl
1

Di0Di1Di2Di3

• All these scalar integrals are known and available in computer libraries (FF 
[v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])

Di = (l + pi)
2 �m2

i

Saturday, May 25, 13



UIUC

  O. Mattelaer                                                     MadGraph School, May 22-26 2013                               

Divergences

25

➡The coefficients d, c, b and a are finite and do not contain poles in 1/є

➡The 1/є dependence is in the scalar integrals (and the UV renormalization)

➡When we have solved this system (and included the UV renormalization) we have 
the full dependence on the soft/collinear divergences in terms of coefficients in front 
of the poles. These divergences should cancel against divergences in the real 
emission corrections (according to KLN theorem)

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

Tadpolei0 =
�

ddl
1

Di0

Bubblei0i1 =
�

ddl
1

Di0Di1

Trianglei0i1i2 =
�

ddl
1

Di0Di1Di2

Boxi0i1i2i3 =
�

ddl
1

Di0Di1Di2Di3

Di = (l + pi)
2 �m2

i

Virtual ⇠ v0 +
v1
✏

+
v2
✏2
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OPP Reduction

26

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)
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OPP Reduction

26

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals
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�
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+
�
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bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

• If we would know a similar relation at
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals
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OPP Reduction

26

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

• If we would know a similar relation at
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di
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OPP Reduction

26

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�
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+
�
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�
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• If we would know a similar relation at
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di Spurious term
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Functional form of the spurious terms

• The functional form of the spurious terms is 
known (it depends on the rank of the integral and 
the number of propagators in the loop) [del Aguila, Pittau 
2004]

➡ for example, a box coefficient from a rank 1 
numerator is

(remember that pi is the sum of the momentum that 
has entered the loop so far, so we always have p0 = 0)

➡ The integral is zero

27

d̃i0i1i2i3(l) = d̃i0i1i2i3 ✏
µ⌫⇢� lµp⌫1p

⇢
2p

�
3

Z
ddl

d̃i0i1i2i3(l)

D0D1D2D3
= d̃i0i1i2i3

Z
ddl

✏µ⌫⇢� lµp⌫1p
⇢
2p

�
3

D0D1D2D3
= 0
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Numerical evaluation

• By choosing specific values for the loop momentum l, 
we end up with a system of linear equations
➡ In a renormalizable theory, the rank of the integrand is 

always smaller (or equal) to the number of particles in the 
loop (with a conveniently chosen gauge)

➡ We can straight-forwardly set the it up by sampling the 
numerator numerically for various values of the loop 
momentum l

➡ By choosing l smartly, the system greatly reduces
✦ In particular when we chose l to be a complex 4-vector

28
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How it works...

To solve the OPP reduction, choosing special 
values for the loop momenta helps a lot

For example, choosing l such that

sets all the terms in this equation to zero 
except the first line

There are two (complex) solutions to this 
equation due to the quadratic nature of the 
propagators

29

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

D0(l
±) = D1(l

±) = D2(l
±) = D3(l

±) = 0
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How it works...

To solve the OPP reduction, choosing special 
values for the loop momenta helps a lot

For example, choosing l such that

sets all the terms in this equation to zero 
except the first and second line

30
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m�1�
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How it works...

To solve the OPP reduction, choosing special 
values for the loop momenta helps a lot

For example, choosing l such that

sets all the terms in this equation to zero 
except the first, second and third line
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How it works...

• For each phase-space point we have to solve the system of 
equations

• Due to the fact that the system reduces when picking special 
values for the loop momentum, the system greatly reduces

• We can decompose the system at the level of the squared matrix 
element, amplitude, diagram or anywhere in between. As long as 
we provide the corresponding numerator function. Since each 
reduction with CutTools is computationally heavy, we directly 
reduce the squared element with MadGraph.

• For a given phase-space point, we have to compute the numerator 
function several times (~50 or so for a box loop)

32
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Integrand reduction

• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
numerically)

• The integrand (or OPP [Ossola, Papadopoulos, Pittau 2006]) 
reduction method is a method that has been automated in 
the CutTools program to find these coefficients in an 
automated way

• The integrand reduction technique is what we have adopted 
to use in MadGraph to compute the loop diagrams

33
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Complications in d dimensions

• In the previous consideration I was very sloppy in considering if 
we are working in 4 or d dimensions

• In general, external momenta and polarization vectors are in 4 
dimensions; only the loop momentum is in d dimensions

• To be more correct, we compute the integral

34

Z
ddl

N(l, l̃)

D̄0D̄1D̄2 · · · D̄m�1

D̄i = (l̄ + pi)
2 �m2

i = (l + pi)
2 �m2

i + l̃2 = Di + l̃2

l̄ = l + l̃

4 dim epsilon dimd dim

l̄ · pi = l · pi l̄ · l̄ = l · l + l̃ · l̃l · l̃ = 0
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Implications

• The decomposition 
in terms of scalar 
integrals has to be 
done in d dimensions

• This is why the 
rational part R is 
needed

35

k n

k 1

k 1

k 2

k 3

D 2
k 2k 1 k 3

D 0  

k 4

k 5

k 6

k 6

D 3

D m−1

l l+

D1

+l+ +

l+...+

Figure 1: An n-point one-loop diagram with m propagators in the loop. The dark blob represents
a tree structure.

The values of the integers Mi depend on the particular diagram considered (e.g. in fig. 1

we have M1 = 1, M2 = 3, M3 = 6), but they must always fulfill the following conditions:

1 ≤ Mi < Mi+1 , Mm = n =⇒ p0 = 0 , (3.5)

where the last equality of eq. (3.5) follows from eq. (3.2). The inverses of the loop propa-

gators in d and four dimensions we denote by D̄ and D respectively. Hence:

D̄i = (!̄+ pi)
2 −m2

i = Di + !̃2 ≡ (!+ pi)
2 −m2

i + !̃2 , 0 ≤ i ≤ m− 1 , (3.6)

which follows from eq. (3.3), and from the fact that the (−2ε)-dimensional parts of the

external four-vectors are equal to zero, since the ’t Hooft-Veltman scheme is adopted. Note

that mi is the mass of the particle flowing in the ith propagator, and therefore in general

p2i %= m2
i . As is known [14], the one-loop integral C can be expressed as a cut-constructible

part, i.e. a linear combination of scalar boxes, triangles, bubbles, and tadpoles, plus a (non

cut-constructible) remainder term R, called rational part:

C =
m−1∑

0≤i0<i1<i2<i3

d(i0i1i2i3)

∫
dd!̄

1

D̄i0D̄i1D̄i2D̄i3

+
m−1∑

0≤i0<i1<i2

c(i0i1i2)

∫
dd!̄

1

D̄i0D̄i1D̄i2

+
m−1∑

0≤i0<i1

b(i0i1)

∫
dd!̄

1

D̄i0D̄i1

+
m−1∑

i0=0

a(i0)

∫
dd!̄

1

D̄i0

+ R . (3.7)

The essence of the OPP method is that of computing C by determining (in a numerical

manner) the set of coefficients and the rational part

d(i0i1i2i3), c(i0i1i2), b(i0i1), a(i0), R, (3.8)

– 10 –
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Rational terms
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R = R1 +R2
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Rational terms

• In the OPP method, they are split into two 
contributions, generally called

• Both have their origin in the UV part of the model, but 
only R1 can be directly computed in the OPP reduction 
and is given by the CutTools program
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Rational terms

• In the OPP method, they are split into two 
contributions, generally called

• Both have their origin in the UV part of the model, but 
only R1 can be directly computed in the OPP reduction 
and is given by the CutTools program
➡ R1: originates from the propagator (calculate by CutTools)
➡ R2: originates from the numerator (need in the model)

36

R = R1 +R2

Celine Degrande

How does it work?

FeynRules
Renormalize the Lagrangian

FeynArts
Write the amplitudes

NLO.m
Compute the NLO vertices

model.mod
model.gen model.nlo
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The MadGraph Solution: MadLoop

• Need to upgrade MadGraph so to generate 
loop diagrams and numerical code for the 
integrand N(q)

                           

37

Remember:

N (lµ) =
r
maxX

r=0

C(r)
µ0µ1···µr

lµ0 lµ1 · · · lµrd

d~

c

c~
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integrand N(q)
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Remember:
➡ For a given phase-space point, we have to compute the 

numerator function several times (~50 or so for a box loop) 
per external phase-space point.
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• Need to upgrade MadGraph so to generate 
loop diagrams and numerical code for the 
integrand N(q)
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Remember:
➡ For a given phase-space point, we have to compute the 

numerator function several times (~50 or so for a box loop) 
per external phase-space point.

➡ Cut the Loop and use HELAS (with no denominator)

➡ Generic

➡ recycling

N (lµ) =
r
maxX

r=0

C(r)
µ0µ1···µr

lµ0 lµ1 · · · lµrd

d~

c

c~

g g
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The MadGraph Solution: MadLoop

• Need to upgrade MadGraph so to generate 
loop diagrams and numerical code for the 
integrand N(q)

                           

37

Remember:
➡ For a given phase-space point, we have to compute the 

numerator function several times (~50 or so for a box loop) 
per external phase-space point.

➡ Cut the Loop and use HELAS (with no denominator)

➡ Generic

➡ recycling

N (lµ) =
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maxX
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g g

OpenLoop: [S. Pozzorini & al.(2011)]

coefficient computed iteratively by ALOHA
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The MadGraph Solution: MadLoop

• Need to upgrade MadGraph so to generate 
loop diagrams and numerical code for the 
integrand N(q)

                           

37

Remember:
➡ For a given phase-space point, we have to compute the 

numerator function several times (~50 or so for a box loop) 
per external phase-space point.

➡ Cut the Loop and use HELAS (with no denominator)

➡ Generic

➡ recycling

N (lµ) =
r
maxX

r=0

C(r)
µ0µ1···µr

lµ0 lµ1 · · · lµrd

d~

c

c~

g g

OpenLoop: [S. Pozzorini & al.(2011)]

coefficient computed iteratively by ALOHA

5-10 times faster
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phase-space integration

• For complicated processes we have to result to numerical 
phase-space integration techniques (“Monte Carlo 
integration”), which can only be performed in an integer 
number of dimensions

➡ Cannot use a finite value for the dimensional regulator and take 
the limit to zero in a numerical code

• But we still have to cancel the divergences explicitly

• Use a subtraction method to explicitly factor out the 
divergences from the phase-space integrals

39

�NLO �
�

d4�m B(�m) +
�

d4�m

�

loop
ddl V (�m) +

�
dd�m+1 R(�m+1)
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Example

• Suppose we want to compute the integral (“real emission radiation”, 
where the 1-particle phase-space is referred to as the 1-dimensional x)

where                               and             is finite everywhere

• Let’s introduce a regulator

for any non-integer non-zero value for     this integral is finite

• We would like to factor out the explicit poles in     so that they can be 
canceled explicitly against the virtual corrections

40

f(x) =
g(x)
x

g(x)

� 1

0
dx f(x)

�

�

2

gs

+ 
...

lim
�⇥0

� 1

0
dx

g(x)
x1+�

= lim
�⇥0

� 1

0
dx x��f(x)
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Subtraction method

• Add and subtract the same term

• We have factored out the 1/   divergence and are left with a finite integral

• According to the KLN theorem the divergence cancels against the virtual 
corrections

41

lim
�⇥0

� 1

0
dx

f(x)
x1+�

= lim
�⇥0

� 1

0
dx x��f(x) f(x) =

g(x)
x

lim
�⇥0

⇤ 1

0
dx x��f(x) = lim

�⇥0

⇤ 1

0
dx x��

�
g(0)
x

+ f(x)�g(0)
x

⇥

= lim
�⇥0

⇤ 1

0
dx

�
g(0)

x��

x
+

g(x)� g(0)
x1+�

⇥

= lim
��0

�1
�

g(0) +
� 1

0
dx

g(x)� g(0)
x

�
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Limitations

• Even though the divergence is factored, there are cancellations between 
large numbers: if for an observable    , if                                or we 
choose the bin-size too small, instabilities render the computation 
useless

➡ We already knew that! KLN is sufficient; one must have infra-red safe 
observables and cannot ask for infinite resolution (need a finite bin-
size)

• Subtraction method is very flexible -> method of choice in automation

42

� 1

0
dx

g(x)� g(0)
x

Subtraction:

lim
x�0

O(x) �= O(0)O

“Plus distribution”
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FKS

• Split the Phase space into pieces with at most one 
collinear and one soft divergencies

• Identify divergent part:

• Remove divergencies:

43

   KIAS MadGrace school, Oct 24-29 2011                                                            Event generation with MadGraph 5 Johan Alwall

Parton Shower MC event generators

Matrix elements involving q →q g ( or g →  gg) are 
strongly enhanced when the final state particles are 
close in the phase space:

1

(pq + pg)2
!

1

2EqEg(1 − cos θ)

z

1-z

Mp

Monday, October 24, 2011

X

i,j

Sij = 1Mn+1 =
X

i,j

SijM
n+1 ⌘

X

i,j

Mij

Mij =
Ei(1� cos✓ij)

Ei(1� cos✓ij)
Mij

˜

Mij =

✓
1

Ei

◆

+

✓
1

1� cos ✓ij

◆

+

(Ei(1� cos✓ij))Mij
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Kinematics of counter events

• If i and j are two on-shell particles that are present in a 
splitting that leads to an singularity, for the counter events we 
need to combine their momenta to a new on-shell parton 
that’s the sum of i+j

• This is not possible without changing any of the other 
momenta in the process

• When applying cuts or making plots, events and counter 
events might end-up in different bins

44

i

j

i+j

Real emission Subtraction term
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Example in 4 charged lepton production

• The NLO results shows a 
typical peak-dip structure 
that hampers fixed order 
calculations

45

Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between

the various predictions are larger in this case. In particular, aMC@LO is closer to NLO

than to LO, which is a consequence of the more important role played by extra radiation in

this case (as one expects, the present one being a correlation between two particles rather

than a single-inclusive observable). Again, the closeness of NLO and aMC@NLO results

shows the desired perturbative behaviour. The more significant impact of extra radiation

on this variable is reflected in the slightly larger scale dependence at large pT ’s w.r.t. what

happens for the transverse momentum of the individual leptons discussed before. The two

leptonic channels agree well, also when removing the Z-id cuts.

Figure 3 shows two observables constructed after applying the Z-id cuts, namely the

pseudorapidity of lepton pairs with opposite charge which are also Z-id matched (left

panel; this is then the pseudorapidity of would-be Z bosons), and the azimuthal distance

between leptons of opposite charge which are not Z-id matched (right panel; thus, these

are leptons emerging from different would-be Z bosons). As in the case of fig. 2, there are

two entries in each histogram for any given event. These two observables are dominated

by small transverse momenta, and therefore it is not suprising that, at both O(α0
S) and
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Pheno 2011 - Madison Fabio Maltoni

MadGraph

THE                JOINT VENTURE 

 MC@NLOCutTools

FKS 

FKS 

Sunday 15 May 2011
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aMC@NLO

• Why automation?
➡ Time: Less tools, means more time for physics
➡ Robust: Easier to test, to trust
➡ Easy: One framework/tool to learn

48
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aMC@NLO

• Why automation?
➡ Time: Less tools, means more time for physics
➡ Robust: Easier to test, to trust
➡ Easy: One framework/tool to learn

• Why matched to the PS?
➡ Parton are not an detector observables
➡ Matching cure some fix-order ill behaved observables

• Why NOT merging?
➡ works in progress

48
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ME+PS merging at NLO

• Hardest and 2nd hardest jets in Higgs production by gluon fusion

• Merged sample agrees with NLO in the regions of phase-space where it 
should; smooth in between; and nearly no dependence on the matching scale

• Not yet automated... work in progress
49

Figure 6: As in fig. 3, with N = 2.

to disappear, and the merging-parameter dependence reduced, when pcut
T

becomes large.

We finally turn to discussing the case of the N = 2, sharp-D function, Sudakov-

reweighted merging; that is, we increase the largest multiplicity by one unit w.r.t. what

was done before. The settings are the same as in the N = 1 case, and figs. 6, 7, and 8 are

the analogues of figs. 3, 4, and 5 respectively (with the exception of one panel in fig. 8).

The numerators of the ratios that appear in the upper insets are the same as before for

the H + 0j and H + 1j cases; that for H + 2j is obviously specific to N = 2. In the lower

insets, together with the ratios that allow one to assess the merging systematics, we have

plotted (as histograms overlaid with open circles) the ratios of the N = 1 results over the

N = 2 ones, both for µQ = 50 GeV. We have also recomputed the Alpgen predictions, by

adding the H + 3 parton sample, for consistency with N = 2. The corresponding results

will not be shown in the plots, since these are already quite busy, and there is no difference

– 26 –

Figure 7: As in fig. 4, with N = 2.

at all in the patterns discussed above, except in a very few cases which we shall comment

upon when appropriate.

The common feature of all but one of the observables presented in figs. 6–8 is that

they are extremely close, in both shape and normalization, to their N = 1 counterparts

of figs. 3–5. This is highly non-trivial, since the individual i-parton contributions are

different in the two cases. The exception is the pseudorapidity of the second-hardest jet

(upper right panel of fig. 7), which the inclusion of the 2-parton sample turns into a more

central distribution, as anticipated in the discussion relevant to fig. 4, and brings it very

close to the Alpgen result obtained with the same µQ.

The small impact of the increase of the largest multiplicity is also generally in agree-

ment with what is found in Alpgen, where the inclusion of the H +3 parton contribution

changes the fully-inclusive rate by +0.3%. The effects on differential observables are also

– 27 –

RF & Frixione, 2012
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• Generation
➡ add [QCD]

• list run in 2 weeks in a 
150 node cluster

50

Process µ nlf Cross section (pb)

LO NLO

a.1 pp→ tt̄ mtop 5 123.76±0.05 162.08±0.12

a.2 pp→ tj mtop 5 34.78±0.03 41.03± 0.07

a.3 pp→ tjj mtop 5 11.851±0.006 13.71± 0.02

a.4 pp→ tb̄j mtop/4 4 25.62±0.01 30.96± 0.06

a.5 pp→ tb̄jj mtop/4 4 8.195±0.002 8.91± 0.01

b.1 pp→ (W+ →)e+νe mW 5 5072.5±2.9 6146.2±9.8

b.2 pp→ (W+ →)e+νe j mW 5 828.4±0.8 1065.3±1.8

b.3 pp→ (W+ →)e+νe jj mW 5 298.8±0.4 300.3± 0.6

b.4 pp→ (γ∗/Z →)e+e− mZ 5 1007.0±0.1 1170.0±2.4

b.5 pp→ (γ∗/Z →)e+e− j mZ 5 156.11±0.03 203.0± 0.2

b.6 pp→ (γ∗/Z →)e+e− jj mZ 5 54.24±0.02 56.69± 0.07

c.1 pp→ (W+ →)e+νebb̄ mW + 2mb 4 11.557±0.005 22.95± 0.07

c.2 pp→ (W+ →)e+νett̄ mW + 2mtop 5 0.009415±0.000003 0.01159±0.00001

c.3 pp→ (γ∗/Z →)e+e−bb̄ mZ + 2mb 4 9.459±0.004 15.31± 0.03

c.4 pp→ (γ∗/Z →)e+e−tt̄ mZ + 2mtop 5 0.0035131±0.0000004 0.004876±0.000002

c.5 pp→ γtt̄ 2mtop 5 0.2906±0.0001 0.4169±0.0003

d.1 pp→W+W− 2mW 4 29.976±0.004 43.92± 0.03

d.2 pp→W+W− j 2mW 4 11.613±0.002 15.174±0.008

d.3 pp→W+W+ jj 2mW 4 0.07048±0.00004 0.1377±0.0005

e.1 pp→HW+ mW +mH 5 0.3428±0.0003 0.4455±0.0003

e.2 pp→HW+ j mW +mH 5 0.1223±0.0001 0.1501±0.0002

e.3 pp→HZ mZ +mH 5 0.2781±0.0001 0.3659±0.0002

e.4 pp→HZ j mZ +mH 5 0.0988±0.0001 0.1237±0.0001

e.5 pp→Htt̄ mtop +mH 5 0.08896±0.00001 0.09869±0.00003

e.6 pp→Hbb̄ mb +mH 4 0.16510±0.00009 0.2099±0.0006

e.7 pp→Hjj mH 5 1.104±0.002 1.036± 0.002

Table 2: Results for total rates, possibly within cuts, at the 7 TeV LHC, obtained with MadFKS

and MadLoop. The errors are due to the statistical uncertainty of Monte Carlo integration. See
the text for details.

• In the case of process c.5, the photon has been isolated with the prescription of

ref. [13], with parameters

δ0 = 0.4 , n = 1 , εγ = 1 , (2.3)

and parton-parton or parton-photon distances defined in the 〈η,ϕ〉 plane. The photon
is also required to be hard and central:

p(γ)T ≥ 20 GeV ,
∣∣∣η(γ)

∣∣∣ ≤ 2.5 . (2.4)

– 7 –

generate  p p > w+ j [QCD]
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Conclusion

• We are now in the Automated loop 
computations area

• We expect improvement in ALL directions
➡ Speed
➡ Merging
➡ Tools

• aMC@NLO
➡ MadLoop: OPP+OpenLoops
➡ Real: FKS subtraction
➡ Matched to the shower (MC@NLO)

51

Saturday, May 25, 13



UIUC

  O. Mattelaer                                                     MadGraph School, May 22-26 2013                               

Conclusion

• We are now in the Automated loop 
computations area

• We expect improvement in ALL directions
➡ Speed
➡ Merging
➡ Tools

• aMC@NLO
➡ MadLoop: OPP+OpenLoops
➡ Real: FKS subtraction
➡ Matched to the shower (MC@NLO)

51

Saturday, May 25, 13



UIUC

  O. Mattelaer                                                     MadGraph School, May 22-26 2013                               52

Saturday, May 25, 13



MadGraph School 2013                                                                                                                                     May 22-26 2013

UIUC

53

Saturday, May 25, 13


