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Abstract

| give an introduction to perturbative QCD. I illustrate @gplications irete~
physics, deep-inelastic scattering, and hard producti@mpmena in hadron
collisions.

1 STRONG INTERACTIONS

Strong interactions are characterized at moderate esdygithe presence of a single dimensionful scale,
of the order of few hundred MeV, a scale that we will call in thBowing As. No hint to the presence
of a small parameter, in which to develop a perturbative esjoa, is present in the strong interaction
world. Thus, typical cross sections are of the order of 10ilmaiins (corresponding roughly tg/A%),
the width of hadronic resonances is of ordef, and the size of a baryon is typically of the order of
1/As. This is very much different from the case of electromagmetand of weak interaction, where all
reactions can be viewed as originating from a weakly couplgdt-like vertex, the fermion—fermion—
photon vertex in electrodynamics, and the four fermioneserh weak interactions. The development
of a model of strong interactions has therefore followedtheamintricate path. Aside from what can be
inferred from symmetry properties, S-Matrix models wereali@ped in the 60’s, since the general feeling
prevailed that it was impossible to describe strong inteyas using a field theoretical framework similar
to the one used for QED. Dual models, which eventually gaiggroto string theories, were discovered
precisely in this context, but failed to give a consisterglaration of strong interaction dynamics.

2 MOTIVATIONS FOR QCD

Today we have a satisfactory model of the strong interactigrich is given in terms of a non—-Abelian
gauge theory. The main motivations for this model are esdinthe following.

2.1 Hadron Spectrum
The hadron spectrum can be completely classified from th@fwig assumptions

1. Hadrons are made up of sp}nquarks. The charge and masses of the known quarks are given in
table 1. One usually refers tq d, s, ¢, b andt as “flavours”, and commonly refers tg d ands as
the light flavours, and, b andt as heavy flavours.

Electric Charge- %e up charm top
m= few MeV ~ 1.5 GeV ~170 GeV

Electric Charge- —3e | down strange bottom
m = few MeV | few hundred MeV| =~ 5 GeV

Table 1: Known quarks

2. Each quark flavour comes in 3 colours. Therefore, quarttsfigte spinors, and carry a flavour and

a colour index:z/)fﬁgﬂ,ﬁour

3. The SU(3) symmetry acting on colour is an exact symmetry.



4. Observable hadrons are neutral in colour, in the sensétiaare colour singlets under the SU(3)
colour group (“singlet” means invariant under the actionhaf group).

The SU(3) group is the group 8fx 3 complex unitary matrice§ with unit determinant
Ulv =1, detU=1. 1)

Invariants can be easily formed out of quark—antiquarlkestat

> g = > U Uik = Y (Z U}iUik> ik =Y itk 2)
i K

ijk kj i

which gives us the possibility of forming integer spin cadimglet states with a quark and an antiquark.
We can form colour singlet also from three-quark states

S € papip = > MU Uy Ui tpu b = Y € 1R iy 3)

ijk ijk,i§' k! ik
where the last equality is a consequence of the identity

> U U Uy = det U 7% (4)
ijk

anddet U = 1 for SU(3) matrices. Therefore we have the possibility ofiforg colour neutral, semi—
integer spin hadrons formed of three quarks. The most irmpbtiadron multiplets are displayed in
fig. 1. Multiplets are classified according their transfotiora properties under the flavour group. Each
multiplet contains particles with similar properties. ®h& that we need colour if we want a particle
like the A™T, which is made of three up quark with the same flavours and sqine to have similar
properties to thez?, which has three different flavours. In fact, if we didn’t eagolour, because of
the Pauli principle, the spatial wave function of theét should be antisymmetric, while that of b
could very well be symmetric. With colour, instead, the ecolvave-function itself is antisymmetric, and
so there is no problem to have the particle of the multipleined symmetric spin, flavour, and spatial
wave-function.

It can be shown that in order to form an SU(3) singlet in a syskéth n, quarks anch; antiquark,
we have the constraint
ng—ng=mnx3 (5)

with n integer. It is a simple exercise to show that because of timslidfon observable hadrons must
have integer charges.

2.2 Scaling

Scaling was first observed in deep inelastic scatteringrerpats at SLAC (Stanford Linear Accelerator
Center, Stanford, California), around 1968. The deep #tielscattering process, depicted in fig. 2, is
the collision of a lepton (an electron in the SLAC case) withugleon target, which fragments into a
high multiplicity, massive final state. The scattering @sx kinematics can be defined by the following

dimensionless variables )

q-p
% -1 7 6
v 7 YTk (6)

whereQ? = —¢?. The valuerg; = 1 corresponds to elastic scattering. In fact

IBj =

M3 = (g+p)? = —Q* +m2 +2v = 20(1 — zp;) + m2. (7)
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Fig. 2: Deep inelastic scattering.

Scaling means that the differential cross section, wheressed in terms of these dimensionless param-
eters, in the limit of high energy with andy fixed, scales like the energy in the process, according to its

canonical dimension
do 1

m x @ . (8)
This property is quite remarkable, since the right hand daks not depend upa\y, like most moderate
energy cross sections, and it looks more like the behavinamaay find in a renormalizable field theory
with a dimensionless coupling, like electrodynamics. Ewarre spectacular scaling phenomena are
observed irete~ annihilation, where the total hadron production crossisediecomes proportional to
the muon pair cross section at high energies.



The discovery of scaling phenomena in deep inelastic sgajtand ine™e~ annihilation, has
given a strong evidence that if a field theory was to descrilmng interactions, it had to be weakly
coupled at high energies, that is to say, it had to be “asytigpity free”. The only known asymptotically
free four—dimensional field theories are the non—-Abeliaimggaheories. It becomes therefore natural to
attempt to describe the hadronic forces by using an SU(3}Abelian gauge theory, coupled to the
colour quantum number. This is also hinted by the fact thatdbndition of colour neutrality of the
hadron spectrum must have a dynamical origin.

2.3 The QCD Lagrangian
The QCD Lagrangian reads

L= FIE, +Z¢ (9 = mp)ais — g5ty Aa) ¥

Ff, = 0,A% —gs Z Fabe AD A (9)
Sum over repeated Lorentz and colour indices is always asgurmhe sum over different flavours is
explicitly indicated. The symbolg; are theSU (3) generators and thg,,. are the structure constant of

the SU(3) algebra. The matrice$ form a complete basis of traceleds< 3 matrices. There are 8 such
matrices, and therefore there are 8 gluons. The basis igcliosuch a way that

Tr (t“t”) L gab (10)
The symbolsf are then defined by (square brackets indicate the commjutator
[1, 8] = i f et (12)

| also give the important property (which follows from coraf@ness, tracelessness and relation (10))

1
thtkl ( 8i10kj — gaij5k1> : (12)

The colour structure of the Lagrangian may seem complicatdist sight. One simple way to look
at it, is to think of quarks as objects having 3 colour stafHise gluon can be thought as carrying the
combination of a colour and an anticolour, except that otlh@hine possible combinations the “neutral”
one, formed by the sum of all equal colour-anticolour padrstibtracted away. Figure 3 shows how to
compute colour factors by using this intuitive point of vielihe Feynman rules for the QCD Lagrangian
are given in fig. 4.

The QCD Lagrangian is very similar to the QED Lagrangian. Flegnman rules are also very
similar. The most apparent difference is due to the facttth@fermions carry a new quantum number,
the color (the indices, j = 1,2,3 in eq. (9)). Also the gluons carry a colour related quantunmmioer.
Unlike the case of QED, therefore, the gluons are chargatican emit other gluons.

As in the case of electrodynamics, one defines the strondingugpnstant
2
ag =I5 (13)
41
As we will see in the following, this coupling constant hagrarsgth that depends upon the energy scale
of the process in which enters. In leading order

= — (14)

by log X_z
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Fig. 3: Colour Feynman rules for QCD

where
11Ca —4Tp ny

127

whereTy = 1/2 andCy = N for SU(N) (3 for SU(3)) andh is the number of flavours. Thusis the
parameter that characterizes the QCD coupling constant.

by =

(15)

2.4 Symmetries

We know that the strong interaction world has a very good sgirymproperty, the isospin symmetry.
Particles in the same isospin multiplet, like the proton tr@neutron, or the charged and neutral pions,
have nearly the same mass. Furthermore, the Wigner-Edieotedm can be used to relate decay and
scattering processes which are connected by isospin oramsfions. This symmetry properties must be
present in some way in the fundamental QCD Lagrangian, wiessgonic sector is given by

Lr =" ((ip = mp)di; — gt fa) . (16)
fiig
An isospin transformation acts on the quark field as a unit@eyrix

(N ZUff,z/)(f,) (17)
fl
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Fig. 4. Feynman rules for QCD



where f and f' are restricted to the up and down flavours, &hds a unitary two dimensional matrix.
By a simple exercise, one can verify that, in order for thenfenic Lagrangian to be invariant under
the isospin transformation, we must have eithgy = mq4 or m,, myq — 0. The distinction of the two
possibilities is a physical one. It can be phrased as follofsthe up and down masses are of the order
of the QCD scale\ or larger, then they must be nearly equal in order for thepisosymmetry to work.
Alternatively, the up and down masses must be much smablerthfor the isospin symmetry to work.
The first possibility is not very appealing from a theordtigaint of view. From what we know from
the theory of weak interactions, particles belonging téedént families have different masses. It would
be very hard to justify the fact that two quark flavours haveatgnasses while all the others are very
different. In fact, there is a large body of evidence thabtag the second possibility, that is to say, that
the up and down quark masses are very small. This fact has eefearkable consequences, due to the
fact that, for small masses, the QCD fermionic Lagrangias danuch larger symmetry than isospin
alone. In order to see this fact, let us define left and rigirteled field components

o=, bn= L+ (19

and substituting) = 1, + 1 in the fermionic Lagrangian we have (suppressing coloucex])

to =3 {0 0o da v + ) 0o )i}
f
=Yy (B0 + D)) (19)
f

Terms that mix left and right components in the kinetic epeand terms diagonal in the left and right
component of the mass terms are absent because of the fujl@ementary identities

Y=g (l—w) v r=(L+) n (20)
P =1 %(1 +75)  Yr=14Yr %(1 —5) (21)

and from the fact that; anticommutes withy,. If we could neglect the fermion masses the Lagrangian
would have the large symmetry

SUL(N) X SUR(N) X UL(l) X UR(l) (22)
whereN is the number of flavours. In fact, the transformation
¢(Lf) s oL Z Ugf Q/)(Lf)
fl
W) = @or N Uy (23)
fl
whereU, andUy, are (independent) matrices ® (/N ), leaves the Lagrangian invariant. The phase fac-
tors constitute the tw® (1) groups. The isospin symmetry group is a subgroup of the aladse called
the vector subgroup, characterized by equal transformaiatrices for the left and right components.
Besides the isospin transformations, there are other ermt symmetry transformations, in which the
left and right-handed component transform with matriced #re the inverse of each other. These are

called axial transformations (they do not form a subgroupheynselves). In the following, | will only
state what happens of all these symmetries, without givetgid explanations

e The vector SU(N) subgroup is realized in the spectrum. hésdbserved isospin symmetry. The
U(1) vector subgroup is a phase symmetry related to baryarbeuconservation.
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e The axial U(1) symmetry does not survive quantization, beeaf the so-called triangle anomaly.
This symmetry is simply not there in the full theory.

e The remaining axial transformations are broken symmetiiée Goldstone bosons of these bro-
ken symmetries are the pion fields.

Goldstone bosons are massless particles, while the piensoar This is a consequence of the fact that
the axial symmetries are only approximate, due to the fadttlie quark masses are not strictly zero.

Thus, by assuming that the up and down quark masses are smabkplain the presence of isospin
symmetry, as well as the lightness of the pions. Other dycalrpredictions follow, like relations among
the low energy scattering properties of the pions and the gexay constant. The interested reader can
find many good references where to study this subject [1].

2.5 Summary
In summary, by accepting QCD as the fundamental theory ohgtinteractions we can

e Explain the low energy symmetry properties, and give afjaation of the observed spectrum.
e Explain scaling phenomena at high energies.

e Leave Weak interactions in peace. The QCD colour group caesnwith the electroweak group
SU(2)xU(1). Since the electroweak interactions are less symmétrey break parity and CP),
this guarantees that there is no mixing between electrowrelstrong interactions that enhances
the parity—violating effects (giving rise, for example p@rity violating interactions of size.y ag
instead ofae,, /M7,) or flavour changing neutral current effects.

e Give a description of the hadronic forces which is similaekectroweak forces, thus opening the
possibility of a uniform description of the forces in natimgerms of gauge theories (unification).

There are two common points of view among physicists, wigfare to QCD.

Many believe that QCD is an extremely well established theouch better established than the
Electro-Weak theory. In fact, the Lagrangian is fully sfied in term of a single parameter. Remember,
in fact, that quark masses have electroweak origin, andedaged to the Yukawa coupling and to the
electroweak symmetry breaking. In Electroweak theorieghe other hand, we have lots of parameters
and quite a few alternatives are possible for the symmetgking sector.

Others believe that Electro-Weak theories are much bestabkshed. In fact, we can compute
every accessible phenomenon we like with great accuradyseek accurate comparisons with experi-
mental results. On the other hand, in QCD, we are unable tiaiexpgorously even basic phenomena
like colour confinement, and perturbative calculationyg tglon unproven assumptions.

The first point of view can be stated by simply saying that QQIsnbe right because we cannot
think of anything else that is even plausible as a theoryrohstinteraction. The second point of view is
more humble, and assumes that in order to establish a phifscay one must make testable predictions,
and compare them with experiments.

Thus, we find that essentially no viable alternative to QClehaeen formulated so far, and yet
there is a huge ongoing effort in theoretical and experialgitysics aimed at testing the predictions of
QCD.

At low energy, QCD is a strongly interacting theory. Besitles phenomenological results that
follow from its symmetry properties, the only known way tafpem calculations in this regime is by
computer simulation of QCD on a lattice, that is to say on ddiand discretized model of space-time.
This approach is bound to improve as time goes by, since pdmatome more and more clever, and
computers become more and more powerful.



At high energy, in many cases, standard perturbative metbhad be applied. In these lectures |
will deal mostly with the perturbative applications of QClYe will see that, even at high energy, the
application of perturbative techniques is not straightfnd. In fact, we will be able to perform calcula-
tions only when the long distance (low energy) part of thecpss we examine has no or little influence
upon the guantity we want to compute. In the following, | vililistrate the basics of perturbative QCD
by examining the process of hadrons production via the datidn of ane e~ pair at high energy. This
process is particularly simple, since no strongly inteéracparticles appear in the initial state.

3 ANILLUSTRATION OF ASYMPTOTIC FREEDOM IN THE PROCESS ete™ — HADRONS

We will now introduce the basic features of QCD via the simapjgocess in which it can be applied, that
is to say the production of hadronsdre™ annihilation. By studying this process we will illustratest
remarkable property of asymptotic freedom, and its phygicplications.

We are considering the process depicted in fig. 5. The pramuof hadrons takes place via the

D

7*)20
Hadrons

0]

Fig. 5: Electron—positron annihilation into hadrons.

production of a virtual photon, or of a real or virtuzl boson. From the point of view of QCD, the
decay of a virtual photon, or of & or Z boson, are very similar, and in fact strong corrections #s¢h
processes are given by essentially the same formulae. mpiisity, however, we can always think
about the decay of a virtual photon. We will begin by attemgtio compute the total cross section for
the decay of a virtual photon, with a virtuality?) much larger then typical hadronic scales. Our attempt
will be extremely crude. We will simply use the QCD Lagramgand the corresponding Feynman rules,
and try to compute the cross section order by order in thegtooupling constant. The prediction at
zeroth order in the strong coupling comes simply from diagtaof fig. 6. It is usually expressed in

<
o

Fig. 6: Diagrams for the QCD calculation &fe*e~ — Had.) up to the orderys.



terms of the ratio of the hadronic cross section divided leyctioss section for the production ofia .~
pair. It is given by

o(y* — hadrons) 9
Ry = ~3% ¢ (24)
T oyt =t ; /

where f runs over the quark flavour species, andis the electric charge of the quark of flavofiin
units of the electron charge. The factor of 3 accounts forfdlsethat there are three colours for each
quark. The sum extends to all the flavours that can be prodaicie given energy. The formula is valid
in all cases when we can neglect quark masses. Near thedhtdshheavy quark production one must
include a correction factor, which in the general case ofcoréboson decay is given by

4m> 2m2
R0:3Z\/1—Tf<1+7f>c§ (25)
!

Corrections of orderag to R can be computed in a straightforward way. The relevant dnritons
come from the interference of the virtual diagramwith diagrama, plus the square of the real emission
graphsc + d. There are also diagrams with self-energy on the fermiags|imot shown in the figure,
that should be included with the appropriate weight. Theltdsrns out to be completely finite. All
ultraviolet divergences that arise in intermediate stdphecalculation cancel among each other. This
is a consequence of the fact that the electromagnetic dugenconserved current, and therefore it is
not renormalized by strong interactions. Other kind of glagties arise in intermediate steps of the
calculation, namely soft and collinear singularities. ya# cancel in the total. Their meaning will be
discussed further on. The corrected value of R becomes

R =Ry (1+%). (26)

If we go on, and compute the corrections of ordér something new happens. We find ultraviolet
divergences that do not cancel, and the result is

M? 2
R = R, <1+%+ [c+7rbglog—2] (%) ) @27)
s Q s
whereM is the ultraviolet cutoff (for those who are familiar withndénsional regularization, the cutoff
scale ind = 4 — 2e dimensions iV = pexp %), and
b — 33 —2ny
T T lorn

andn is the number of light flavours. The divergence is dealt wlih isual prescription of renormal-
ization. We define a renormalized charge, function of artrantyi scaley,

(28)

as(p) = as + by log Fas (29)

and express the result in termsf(y) instead ofs. We obtain then

2 2
R =Ry (1 + as(w) + [c + by log H—] (as—(u> > + 0 (as(p)?) . (30)
T Q? T
The formula forR is now finite. The theory of renormalization guarantees Wit this procedure we
can remove the divergences from all physical quantitiess Thplies that the one loop divergence of
any physical quantity which in lowest order has the vallu€? must have the formAbg log M 2o,
Observe that, as a consequence of this procedure, we engrgssing our results in terms of a coupling
constant which is function of a scale.
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3.1 Renormalization group and asymptotic freedom

I will now give a more general and abstract description of ifr@ormalization group and asymptotic
freedom. From the following discussion it should be cleat the existence of the renormalization group
follows from the property of renormalizability of field theo and that asymptotic freedom is a possible
consequence of the renormalization group. | will not givg tathnical details on the computation of
the renormalization group flow (i.e. of the so callddunction), which can be found in many good
textbooks.

In field theories we encounter ultraviolet divergences,clhin renormalizable theories can be
removed by a suitable redefinition of the coupling constamd the fields. In the simplest case of a
theory characterized by a single coupling constant, realizability can be stated in the following way.
A physical quantityG will be given in such a theory as a power expansion in the éogjt (which we
will assume to be dimensionless), with possibly UV divetgmefficients. We will write:

G=G(a,M,s1...5,), (32)

that is to say,G depends upon the coupling, the ultraviolet cutdff, and some invariants; ... s,
constructed out of the momenta and masses involved in tlregsan question. Renormalizability means
that | can define a renormalized coupling.,,

Qpen = @ + 102 + c2a? + . .. (32)
with
¢ = ci(M/p) (33)
in such a way that .
G(a,M,s1...58,) = G(Qren, by $1 - - - Sn) - (34)

So, the physical quantity can be expressed in term of themsalzed coupling, the finite scaleand the
invariants, in terms of a finite function. In other words, thi¢ divergences have been reabsorbed in the
renormalized coupling. The finite scaléhas to be introduced in order for the dimensionless coefiisie

¢; to depend upon the dimensional quaniity We will also write

Qren = aren(aa M/:U‘) ) a = a(arena M/M) . (35)

and

G(a(apen, M/ ), M, s1...8,) = é(aren,,u, S1...8p). (36)
Therefore, renormalizability means that by a redefinitibthe coupling of the form (35), eq. (36) holds
for all physical quantities. Theameredefinition ofa: makesall physical quantities independent of the
cutoff.

In the redefinition of eq. (35) we are forced to introduce despa If we changeu and oy, by
keepinga and M fixed, the physics remain invariant, because physical dies)tto begin with, are
functions ofa and M only. Let us study the infinitesimal transformatidn,., du? that leaves the
physics invariant. This will lead us to the introduction bétrenormalization group. In order fdtv.cp,
dp? to leave the physics invariant, we must have

8a(arenv M/N) aa(arenv M//j’)

dQtren dp? =0 37
Dtsen Qren + 8/1’2 1 ( )
which implies y R
aG(arena H,P1 - - pn) 8G(arena H,P1 - - pn) 2
doven du®=0. 38
Dtren Qren + 8N2 H 0 ( )
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From equations (37) and (38) we get

o dOren _ _,u2 %a(aren, M/ p) _ _M2 a%ﬂé(aren’u’ S1---8n) (39)
d//f2 aaareu O{(Oérena M//J«) 3C¥6ren (Oéren, U Sn)
from which it follows that J
(6%
? d;;n = B(0tren) (40)

wheres does not depend upen . .. s,, M or y. Observe that does not depend upaW, becausé/
does not appear on the right hand side of the second equél{89) it cannot depend upas ... s,
because they do not occur on the right hand side of the firgtligguFinally, it could only depend upon
. But i is dimensionful, while3 is obviously dimensionless, and so it cannot even depend upo

Using the expression

ct(rren, M/ 1) = otren + c1(M/p) ok, + ... (41)
we find
B0ren) = k5103 1 (M) + .. @2)
Comparing this equation with eq. (29), we immediately get
Blawen) = —bo ol + ... . (43)
and therefore y
Was(ﬂ) = —bo Ao, + - -+ (44)

which characterizes the evolution of the coupling consdard function of the scaje Equation (44) can
be also written, at the lowest relevant order

d 1

S — 45
dlog 2 as(p) (45)
which can be easily solved to give
1 w? 1
= bo log — + . (46)
as(p) M(2) s (o)
Without loss of generality, the solution can be written
1 w2 1

:bglogﬁ = ags(p) (47)

as(p) " b log u? /A2

whereA plays the role of an integration constant. In Q@PRis positive, and eq. (47) makes sense only
for 4 > A. One is tempted to infer that is the value ofi; at which the coupling constant becomes
infinite. In fact, this identification is superficial. Wheretlioupling constant starts to be large, we can
no longer trust the perturbative expansion, and the abouatieq has been derived only at the lowest
order in perturbation theory. It is better therefore to khofi A as the scale parameter of the theory which
defines the value afs at large scales. In other words,is defined only through the formula fers (1),
and this formula has a meaning only for layge

QED is very similar to QCD in many respects, and one may wantigrwe never talk about a
Aqep analogous to thé in QCD. In fact, the basic difference between QED and QCDesvilue of

by. We have

4n
Qep _ _ 21 4
bo 1271_ ) ( 8)
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a negative value. The expression for the running couplin@&b is then

L ey, 15 (49)
aQED(:u) 0 A(QQED

The expression in eq. (49) makes sense onlyfex. A (so that the right hand side is positive), while the
expression in eq. (47) makes sense only i&> A. In other words, QCD is a weakly coupled theory at
high energy, while QED is weakly coupled at low energy. Thithe content of the statement that QCD
is asymptotically free, while QED is not. The scale at whida@pecomes strongly coupled is obtained
by solving the equation

1 m2
- =¥ e 50
aQED(me) 0 & AaED ( )
which gives
bQED
Aqup = meexp <—70 ) . (51)
Qqep(MMe)

This formula is valid only if all charged fermions have thexeamass, equal ta., and the same charge.
However, even if one does a more accurate job, the basict iesthiat A, iS an astronomic scale,
and this is the reason why we never talk about it. Notice thigtfact indicates that QED cannot be a
fundamental theory. The existence of a high scale at whielihteory becomes strongly coupled makes
it impossible to measure the basic vertex of QED at shoradcst, which is somewhat of a contradiction,
since we assume that we know the local Lagrangian of theyheor

We have now discussed the evolution of the coupling constatite leading order level. The
content of the theory of renormalization is much deepertales that up to any order in perturbation
theory, we can remove all ultraviolet divergences from asptal quantity just by a redefinition of the
coupling constant. Furthermore, it states that equatidndéneralizes to all order of perturbation theory,
and the right hand side of the equation is free of ultravidleérgences. In other words

dos ()

dlog pu? = —boa2 (1) — brad () — baara(p) + ... (52)

whereby, by, by, etc., are ultraviolet-finite.

From eq. (29), we see that, = as(M), that is to say that the original bare, was in fact the
running coupling evaluated at the cutoff scale. It is notfuls® try to express physical quantities in
terms ofa evaluated at a scale which differs widely from the scaleslired in the physical quantities
under consideration. In fact, in this case, large logar#ttohthe ratio of the physical scale toarise in
the perturbative expansion, as one cannot trust the treeh¢iked order) result. In order to get a reliable
result, one should instead ugex @, so that no big logarithms appear in the perturbative expan©f
course, we do not know the precise value:ofre should use. We can uge= Q, u = 2Q, n = Q/2,
without the possibility of arguing what is the best choica. practice, a difference in the value of the
scale used makes a difference in the result, but this difteres of the order of the neglected terms in
the perturbative expansion. This can be easily verified fimmmula (30) (students are encouraged to try
this).

It is now tempting to formulate the first prediction of our ¢ting From the expression of the
running coupling, eq. (47), we see that the strong couplioigstant is of order 1 when the scale
approached\. It is tempting to sef\ = 300 MeV, the typical hadronic scale, and then predict that

%) = Ro(M)(1 +0.046) (53)

R(Mz) = Ry(Mz) <1 +
in reasonable agreement with the LEP value. Of course, #@mple is very sloppy, does not take
into account the heavy flavour thresholds, higher ordectffeand other important facts. It is however
important to remark that, had we foudty Ry = 1 + 0.08 at LEP, this would have implied = 5GeV,
an absolutely unacceptable value.
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3.2 Relation among the couplings with different number of Ight flavours

Now | will spend a few words concerning the number of light dlass. In order to make the discussion
clearer, let us assume that there is a top quark of 100 GeMhatdhll the other quarks are massless.
Intuitively, we should then be able to describe the effe€@GD, for scales much below 100 GeV, but
still much above\, in a perturbative fashion, forgetting about the existasfdbe top quark. The formula
for ete” — hadrons contains therb, evaluated witha; = 5. On the other hand, if the heavy top is
really there, the true description of our phenomenon shbelgiven in terms of the theory with top.
While up to the ordetrs a top loop never enters our Feynman graphs, at two loops wawnahtop loop
contribution, represented in the graphs of fig. 7. In spitéheffact that there is not enough energy to

Fig. 7: Top loop contribution te™e™ — hadrons.

produce the top, these graphs do contribute. They are alasseiated to a propagator corrections, so
that their effect is simply to multiplys by a factorl — s /(67)(d +log(M?/m?)), whered is a number
which depends upon the particular renormalization schemeuses. This result can also be guessed on
the basis of the fact that the UV divergence coming from tipeléop must have the same form as the
UV divergence coming from any light fermion. We have then

l M2 1 M2 I 2
R =Ry 1+ 25 4 c+mhbolog —5 — ~ | d+1log — %s . (54)
v Q? 6 m; s

With «/; we indicated the true (bare) coupling, of the theory in whicl heavy quark is taken into
account properly, instead of the “fake” theory in which tleawy quark is ignored. The renormalization
procedure for the theory including the top requires now thesstution

' ' / M? 12
g (1) = s + by log Fas (55)

whereb) = (33 — 2(ns + 1))/(127), and the renormalized formula fét becomes

! 2

R=R, <1+ O‘ST(”) + [c—i—wbolog% —é (d+log7':b—2%>] (@)j + O (as(p)?) .  (56)

Equation (30) and (56) must be completely equivalent, atlep the orders?. It turns out that in the
commonly usedIS renormalization scheme, we have= 0. In this scheme, the equivalence of the two
formulas imply that

as(p) = as(p)  for p=my. (57)
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Therefore, in thé/S scheme the relation between coupling constants definedbyiigy a heavy flavour,
and the coupling with the heavy flavour included, is simpbteti by saying that the two running cou-
plings should coincide for = my,, wherem,, is the mass of the heavy flavour. In practice, we have three
useful definitions of the coupling constants. One that igadhe charm quark (and heavier flavours),

which has three light flavours, and may be indicated \M&“ﬂ, one that ignores bottomx?)) and one
that ignores toch(SE’)).

A plot of the ratios ofa(53)/a(55) and a(54)/a(55) is given in fig. 8. The couplings are correctly
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Fig. 8: Ratios of the coupling defined for different valuespf

matched at the heavy flavour thresholds according taMBeprescription. From the plot, it appears
that the couplings for four and five flavours are not very défe. This is indeed the case. One should
however be careful, because the corresponding valueisfin fact very different. The values used in
the figure have\; = 310 MeV, A, = 260 MeV andA5 = 170 MeV. A common error is, for example, to
use values of\, whereA; should be used. One should never forget thé nothing but a parameter in
the formula foras. If we change the formula (going for example from one to twaple) the value of\
should be changed. Similarly, if we plug in the same valua of the expression fcm(s?’) anda(s4), their
value would be very different, even far = m,, while if we use the appropriate value &f andA,4 in
the corresponding formulas, their value will be identidathat scale.

3.3 State of the art in the beta function and R
The expression of the beta function known today has the form

Oag

(58)

W = —boag - blaz - bgaé - bga‘;’
where the ternby has been computed in ref. [2], and the tdirhas been very recently computed in
ref. [3]. Here I report below only the values &f andb,, and the corresponding solution of the renor-
malization group equation at the two loop level. This is wikatommonly used in most applications.

M2
), ! by 108108 7

_ 59
Us by log ALnf (59)

- E
by logx—g
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33 — 2n;

by = Tor (60)
153 — 19n;
b= 1

The reader can verify that the above formula satisfies eauéi8) up to terms of order?.

The radiative corrections t& have been computed up to the ordérin ref. [4], a rather remark-
able achievement. The result foy = 5, expressed in theIS scheme reads

R=R, {1 + % (1+0.44805 — 1.30a§)} (62)

whereas = a(;’)(Q), Q is the annihilation energy. Besides finding applicationg s~ annihilation
physics, this formula has found recently a very intereséipglication to the determination ofs; from
the hadronic decay of the lepton [5]. After what we have learned in this section abbetratio R, it
should be easy for us to compute the ratio between the hadaoxi the leptonic branching ratios of the
T, at zeroth order in the strong coupling constant. This isaleg symbolically in fig. 9. From the figure,

v,

=

q

q

Vs

=

Ve

Fig. 9: The ratio between thehadronic and leptonic width.

it is clear that the top and bottom processes only differ lgyrthmber of possible final states. Thus, the
top graph has a factor of 3, because of the three colours. @&nlyp-anti-down, or up-antistrange pair
can be produced, since phase space forbids the productidraohed final states. Neglecting the mass
difference between the down and the strange, one can sethé¢h@abibbo angle is irrelevant in this
case. Thus, the ratio of the hadronic width to the (for exanelectron width is 3 at zeroth order in the
coupling constant. As in the case of R, this ratio will reeestrong corrections, and the displacement of
this ratio from 3 can be used to attempt a determination ostiang coupling constant from decays.
Observe that the value of; at the scale of the mass is quite large, around 0.35. At LEP1 energy this
value is around 0.12. In table 2 (taken from ref. [6]) the expental determinations afs coming from

R below theZ peak,R on theZ peak, and tau decays, are reported. All determinationsexfermed

at the relevant scale of the process (thus, for examples thetermination is performed in terms of
as(M;)), and then evolved at th& mass for comparison. Notice the rather remarkable agresmen
among the different determinations.

4 JETSIN ete  ANNIHILATION

The computation of the total hadronic cross sectioneine™ annihilation presented in the previous
sections has left open a few important questions, that Iredlime in three points.
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Measurements as(mz)

R- 0.122+ 0.006 (Th)
Rete™ (/s < 62 GeV) 0.124+ 0.021 (Exp)
Z line shape (Assuming SM) 0.120+ 0.004  (Exp)

Table 2: The determinations ofs from inclusive hadronic decays. The error is either theawnuhated (Th) or experiment
dominated (Exp).

1. How can we identify a cross section for producing quarks glimons with a cross section for
producing hadrons?

2. Given the fact that free quarks are not observed, why isdhgputed Born cross section so good?

3. Are there any other calculable quantities besides tla ¢obdss section?

We will see in the following that question 1 and 2, althouglanswerable in QCD, imply no contradic-
tion. We will also see that, under the same assumptions thkér and 2 work, also question 3 has an
affirmative answer.

Looking at the lowest order formula, we immediately wondewha formula describing the pro-
duction of quarks in the final state should also be able tordesthe production of hadrons, since we
never observe free quarks in the final state. The structutieegberturbative expansion by itself give us
a hint of how this may happen. Consider in fact the correstiohordera; to the total cross section.
They are given by diagrams in which a real gluon is emitted ihe final state, and diagrams in which a
virtual gluon is exchanged (interfered with a Born graphdlegicted in fig. 10. In the previous section |

k

k=q-k-1

Fig. 10: Soft gluon emission ik e~ annihilation

have just stated that the total of the corrections of orderis finite, and equalss /7. | will now show
that the individual real contributions (those with a gluarthe final state) and the virtual ones (which
have only the quark-antiquark pair in the final state) areviddally infinite, and only the total is sensible
and finite. Let us therefore compute the diagram of fig. 10. Weperform the calculation under the
simplifying assumption that the gluon energy is much smahlan the total available energy. It turns
out that in this approximation the computation will requiay little effort, and the approximation itself
contains all the interesting features of the result. It By/da convince oneself that the colour factors for
all contributing diagrams (after squaring and taking thewantraces) are one factor 6fr (which equals
4/3) relative to the Born term (which has a factor of 3, equahe number of colours that can flow in the
loop), a result wich is illustrated in the last equality of. {8y The amplitude for the Born process is

M =T(k) ey, 0 (k) (63)
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wheree is the virtual photon polarizatiory is the incoming four momentunt, is the momentum of the
outgoing fermion and’ = ¢ — k is the momentum of the outgoing antifermion. Defining

N = e“yyv(k') (64)
we have

M =a(k)N. (65)
Consider now the diagram of fig. 10, in which the gluon is esdittrom the outgoing fermion. The
amplitude is given by

_ K] %
=k 66
Actually we should have also substitutétl= ¢ — k — [ in A/, but we are assuming thatis small.
Fermion masses are also being neglected, since we assunte wengidering a high energy process.
Neglectingl in the numerator, and using the identityk)} = 0, and expanding the denominator (recall
that!? = 0, k2 = 0) we obtain

My =

g

Yok + FYa ke
Qrewire (k+1)? ke VT ()Zk [ -lM' (67)

Analogously, for the amplitude with the gluon emitted frdme butgoing antiquark, we obtain

kl
K

My = M (68)

and the total is " "

which vanishes when contracted with as gauge invariance requires. Taking the square (withxine e
minus for the gluon projector)

k- K
ngg - mMZ (70)

From the amplitude square we turn to the cross section byhsnpghe phase space factor for the gluon

&l koK
Crgsop™. / 2 : 71
Oqtg = V95T 200(2m)3 " (k- 1) (k' - 1) ()

At this stage | have also included the coupling constant hadappropriate colour factor. Let us now
consider the process in the rest frame of the incoming Vigthaton, withg = (¢°, 0, 0,0), andk = —k'.
Let us callf the angle that the gluon makes with the fermion direction.Hakee then

k- K 4
2(k ) (K1) B lo?(1 — cos §)(1 + cos #) (72)

so that (usingxs = g2/(4))

di° 4
Qs Born
- d cos 6= : 3
Oqq9 = CF2 qq /COS 19 (1 —cos)(1+ cosh) (73)

The cross section for producing an extra gluon is therefaergent in three regions:

e when the emitted gluon is in the direction of the outgoingrgué = 0)

e when the emitted gluon is in the direction of the outgoingcarark @ = )
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e when the emitted gluon is soft’(— 0).

The first two kind of divergences are called collinear diesices, while the last one is called a soft
divergence. Both divergences are of infrared (IR from nowtgpe, that is to say, they involve long

distances. In fact, because of the indeterminacy principieneed an infinite time in order to specify
accurately the particle momenta, and therefore their times. Unlike UV divergences, there is nothing
like renormalization for the IR divergences. Their meangitpe following: the cross section is sensitive
to the long distance effects, like the fermion masses, thedmézation mechanisms, and so on. In fact, if
we give a fictitious mass to the gluon, the result becomeseargewnt, but it will be sensitive to the value

of the gluon mass.

It was stated in the previous lecture that the total of theembions of orderx to the production
of hadrons ine* e~ annihilation is finite, and equaks:. The way this happens is due to the fact that also
the virtual corrections have the same kind of infinities, ahtare negative. If we cutoff these divergences
with some method (like dimensional regularization, or byirgd a mass to the gluon), and then sum up
real and virtual contributions, the divergences cancel,tae left-over is finite and equal tes /7 times
the Born cross section, independent of the method we usedjttarize the diagrams. This cancellation
is a consequence of the Kinoshita-Lee-Nauenberg theoremgty speaking, this theorem deals with
divergences that arise because of degeneracy in the fital Biar example, the final state with an extra
soft gluon is nearly degenerate with the state with no gladrdl, and the state with a quark split up into
a quark plus a gluon, with parallel momenta, is degenerate tive state with no radiation at all. The
theorem states that the cross section obtained by summiogenmiegenerate states are not divergent.

We are now ready to show, as promised, that point 1 and 2 ingpbontradiction. We have in fact
shown that if we attempt to compute the cross section for tbdyztion of a pair of quark—antiquark
alone, while the zeroth order term (the Born term) is finite,term of ordets is infinite, being collinear
and soft divergent. This means that a perturbative exparisiothis quantity does not work, since the
coefficients of the expansion are large (actually infinitEherefore, even the Born term alone, cannot
represent the cross section for producing a quark—ankcper. Thus, the fact that a final state with a
guark—antiquark pair and nothing else is not observed ismoobntradiction with perturbation theory,
since we have shown that there is no valid perturbative estparior this quantity. On the contrary, the
cross section for producing strongly interacting pari¢ieo matter how many quarks or gluons) remains
finite even after perturbative corrections are added. Onesbaw that in fact it remains finite order by
order in perturbation theory. Its lowest order approximmtis in fact the Born cross section. So, the
Born cross section is the lowest order term in a well definetugeative expansion with infrared finite
coefficients, which is just the cross section for producitigregly interacting particles (no matter how
many and which types). This is why the Born cross sectioresspnts quite accurately the total hadronic
cross section. We are now also in the position to answer trekgiestion. We will show that there are
quantities which characterize the hadronic final statecwhre infrared finite in perturbation theory, and
therefore, with the same right as the total cross sectianyldtbe calculable in perturbative QCD.

4.1 Sterman-Weinberg jets

Sterman and Weinberg [7] first realized that one can definess@ection which is calculable and finite
in perturbation theory, and characterizes in some way tlkeonic final state. The definition goes as
follows.

We define the production of a pair of Sterman—Weinberg jetpedding on the parameterand
d, in the following way. An event contributes to the Stermam#Werg jets cross section if we can find
two cones of opening anglethat contain all of the energy of the event, excluding at nadsactione of
the total. The jet event is depicted in fig. 11. We will now shbwat the computation of the cross section
for the production of Sterman—Weinberg jets, in the appnation introduced in the previous chapter, is
infrared finite. The various contributions to the crossisectillustrated in fig. 12) are as follows
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Fig. 11: Sterman—-Weinberg jets.

e All the Born cross section contributes to the Sterman—-\Wampleross section, irrespective of the
value ofe andé (fig. 12a).

¢ All the virtual cross section contributes to the Stermaniiderg cross section, irrespective of the
value ofe andé (fig. 12b).

e The real cross section, with one gluon emission, when theygmd the emitted gluod® is limited
by I° < eE (fig. 12c), contributes to the Sterman—Weinberg cross@ecti

e The real cross section, whéh > ¢E, when the emission angle with respect to the quark (or
antiquark) is less tha# (fig. 12d), contributes to the Sterman—Weinberg cross@ecti

The various divergent contributions are given formally by

Born = oy (74)
0
Virtual = 40‘50F / dt / _deost (75)
g—o 1 —cos? @
dasCp [P dI° / dcosf

Real (¢c)= 76
eal (€)= oo 21 /0 9—o 1 —cos20 (76)

4asCr /E di® /‘5 dcosf g dcosf
Real (d)= — _— — . 77
eal (d)= oo 21 g 19 [ Jo—o 1 —cos?0 * g—n_s 1 — cos? 6 (77)

Observe that the expression of the virtual term is fixed byidhethat it has to cancel the total of the real
contribution. Since we are looking only at divergent terarsj since the virtual term is independent of
0 ande, the expression (75) is fully adequate for our purposes.rSiagnall terms we get

: 4 0 fm=0
Born + Virtual 4+ Real (aH Real (b)= 09 — g¢ asCr / i / dcos 6
27 B g—s 1 —cos20

4
= 0y (1 — O;SWCF log e log 52> (78)

which is finite, as long as andé are finite. Furthermore, as long asndé are not too small, we find
that the fraction of events with two Sterman-Weinberg jets,iup to a correction of orders.

20



1°>eE
1°<¢E V<6 p
e’ e e’ 4
q
(

Fig. 12: Contributions to the Sterman—Weinberg crossisecBorn: (a), virtual: (b), real emission: (c) and (d).

T (o) d)

Now we are ready to perform a qualitative step: we intergret3terman-Weinberg cross section,
computed using the language of quarks and gluons, as a @asssfor producing hadrons. Thanks to
this qualitative step, we make the following predictionhegh energy, most events have a large fraction
of the energy contained in opposite cones, that is tonsagt events are two jet eventads the energy
becomes largets becomes smaller. Therefore we can use smaller valuesuodl ) to define our jets.
Thus, at higher energies jets become thinner.

It should be clear now to the reader that, by the same reagdollowed so far, the angular
distribution of the jets will be very close, at high energyttie angular distribution one computes using
the Born cross section, that is to say, the typicat cos? § distribution. These predictions have been
verified experimentally since a long time.

4.2 A comparison with QED

The alert reader will have probably realized that the disiamsgiven in this section could have been
given as well with respect to electrodynamics. In fact, tkegriman diagrams we have considered are
present also in electrodynamic processes, dike~ — p* i, and they differ from the QCD graphs
only by the color factor. Thus, from the previous discussme would infer that Sterman-Weinberg
jets in electrodynamic processes at high energy do not depeon long distance features of the theory.
For example, they become independent fromhmass wher¥ > u. Also in electrodynamics, the
cross section for producing;a”x~ pair plus a photon is divergent, as is divergent the crossosefor
producing the pair without any photon. In many books on quanglectrodynamics these divergences
are discussed, and it is shown that a resolution parametérdaninimum energy of a photon is needed
in order to have finite cross section order by order in pedtiob theory. In electrodynamics, we can
go even farther, and prove that by resumming the whole tofvdivergent graphs, the infinite negative
virtual correction to the production ofiat .~ pair with no photons exponentiates, and gives a zero cross
section. In other words, as it is well known, it is impossitdgroduce charged pairs without producing
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arbitrarily soft photons. What is then the difference witRQ? Why is that we cannot prove similar
results in QCD? The answer is asymptotic freedom, and itgagn that is to say, the strengthening of
the coupling constant for soft processes. Thus it is not sohntlie technical problem of resumming
divergent classes of graphs that is more difficult to apgraa®CD, but the fact that when the scale of
an emission process approaches a few hundred MeV the cguimstant becomes of order one, and
perturbation theory becomes inapplicable. Itis in thisseghhat perturbative QCD is an incomplete theo-
retical framework. In order to make predictions we need suage that the soft phenomena characterized
by scales of the order of few hundred MeV do not spoil comptetee computation of the high energy
part of the process. This assumption is consistent withugaation theory; it is however an assumption,
and it cannot be proved using perturbation theory alone.

4.3 Shower Montecarlo programs

Perturbation theory can be used to compute radiation pseseas long as the energies involved are
safely above the typical hadronic scales. It is then pasgiblconstruct event generator programs that
implement the properties of QCD Feynman diagrams for thigtisgl of partons into more partons, as
long as the splitting is energetic, and then use some plausibdel for last step of the splitting process,
in which the partons become hadrons. These programs areafigrealled shower Montecarlo event
generators [8, 9, 10], and are an invaluable tool for expemtiad physicists. They essentially sum a large
class of Feynman graphs, precisely the most collinear andqine cases) soft-singular ones. In the
attempt to describe the full final state, they give up the emuthat can be obtained in perturbation
theory. They are (until now) compatible with QCD only at tleading order in the strong coupling.
While the QCD part is quite similar in all of them, for the |las¢p of the final state formation, that is to
say the hadronization, they differ widely, since they havesty on models, like the so called Lund string
model or the Herwig cluster model. Hadronization modelstaned to data. Nevertheless, one should
not forget that there is very little predictivity in these dabs, since they are only qualitatively based
upon the theory. One can expect in general that the hadt@rizaroperties for which the Montecarlo
has been tuned for will be well reproduced by it, but not mucrerthan this.

4.4 More jet definitions and shape variables

The key property of the Sterman-Weinberg jets, that makas ttalculable in perturbation theory, is the
insensitivity of the jet definition to radiation of soft piafes, and to the collinear splitting of an particle
into two particles that share its momentum. This inserigitig necessary to guarantee the cancellation
of effects that depend strongly upon long distance phenamirat is to say, those effects that have
infrared divergences when computed in perturbation theory

After the paper of Sterman and Weinberg, it was soon realilzadit is not difficult to build a
whole class of final state observables that do have the sampenty of soft and collinear insensitivity,
and can thus be computed in perturbation theory, and compétie experimental measurements: thrust,
oblateness, the C parameter, clusters, the mass of theebeaeimispheres, etc.. The important thing
which is assumed in these definitions is ttiet same definition must be applied to the final state hadrons
by the experimenter that measures this quantity, and byhiharist that computes this quantity in terms
of quark and gluons Only if this condition is satisfied, one can assume that entilgh energy limit
the computed quantity will agree with the measured one, otections that are suppressed by some
inverse power of the energy.

One of the first of these infrared safe shape variables isthiis defined by the equation

¢ = max 2P0l (79)
i 2 il
In words, one takes an arbitrary vector (in the centre-ofsrisame of the colliding electron-positron
pair) and sums the absolute values of the projection of thenemba of all final state particles into that
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vector, normalized to the sum of all absolute values of tlirdramomenta. The vector is rotated until a
maximum is found. The maximum direction is called the thaigs, and the value at the maximum the
thrust of the event. The maximum value of thrust is one, fonal state of two massless particles in the
back-to-back direction. It is easy to check that thrust isnfirmared safe shape variables. In fact, a soft
emission does not alter the thrust abruptly, since all eadhiftarticles enter weighted by their momenta.
Also collinear splitting does not alter the thrust of an @éy@s one can easily verify. An example of a
quantity which is not infrared safe is the total number oftigles in the final state, which changes by
one unit in case of soft emission. Examples of a quantitieslwére sensitive to collinear splitting are

the axis of the tensor

S = Zpﬁp{ (80)
I

which were actually used in the past to classify the “jetgieof an event.

A modern, and very clever way to define jets is by clusterir.[For a given events, one forms
the invariant mass of all pairs of particles in the final stdtiee pair with the smallest mass is merged into
a single pseudopatrticles, and then the procedure is ceatinith the pseudoparticles, and it is stopped
when the smallest mass of a pair exceeds a given cytgffS. One ends up with a definite number of
clusters, and one can thus define the cross section for pradtwo, three, four or more clusters for a
giveny cut. It is easy to convince oneself that these cross secébinitibns are infrared safe.

Since the computation of these cross sections performed psirtons should in first approxima-
tion give the correct answer, we see that in perturbative @@Doughly expect (for not too extreme
values ofy) that most events will be made up by two clusters, a fractioorder o will be made up by
three clusters, and a fraction of order will be made by four clusters.

Analogously, we expect thrust to be near one in average taugparture from one to be of order
«as. Also, we expect that a fraction of events of orderwill have thrust well below one.

Because of the obvious interest in the determinationnofrom jet shape variables, a lot of effort
has gone in the study of jet and shape variables that arelgiproportional toas, which we may call
“three-jet sensitive”, like the thrust distribution, aretfraction of events with three clusters. There are
tens of variables of these kind that have been studied @t machines.

The present state of the art for the determinatiorgffrom jets inete~ annihilation is the
following. Three-jet sensitive shape variables can be eagatgup to the next-to-leading level, that is
to say at order?, thanks to the results of ref. [12]. Various computer praggdor the computations
of these quantities are available, and many of these gigantibve been tabulated [13]. Effects due to
the mass of the heavy quarks can be also computed at the sderdbt]. These quantities have been
intensively studied at™ e~ machines, The recent results of LEP1 and SLD have given a meritarkable
contribution to the tests of QCD, and considerably reirdgdrour confidence in perturbative QCD. Four-
jets sensitive quantities (like, for example, the fractidevents with four clusters for a givencut) have
been known only at the leading order (that is to say at ordgrfor a long time, and only recently a
next-to-leading order calculation has been completed [TBg corresponding experimental studies are
somewhat less developed.

4.5 Thrust as an example
Let us focus upon the case of thrust as an example. The thstaigbdtion has the perturbative expansion

2

2
Uiocjl—: =5(1—1t)+ a;—gf)A(t) + (a;—glf”) [A(t) 27 by log% + B(t)| +0(ag) . (81)

The first term, proportional to a delta function, is the Boamtribution, which corresponds to the pro-
duction of two back-to-back massless partons. The funstitf) and B(¢) can be computed using the
machinery of the [12] calculation, see for example ref. [1Bhe renormalization scale is explicitly
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indicated in the formula. As in the total cross section folamthe explicit scale dependence of the term
of orderca? is related to the coefficient of the term of ordey. Again, using the renormalization group
equation at 1 loop (i.eQas/0log u? = —bya), one can prove that the scale dependence of the above
equation cancels up to the ordef. Of course, if the whole perturbative expansion was inauife

the right hand side, no scale dependence would survivee sirecleft hand side is scale independent.
However, only terms up to the ordet are included, and thus one expects a residual scale demanden
at ordera?.

Radiative corrections are generally quite large. For examp

=L@ +3a,)

12905 (Q) (1 — 4.3as)

1£5QS(Q)(1 —0.025a) (82)

(1-1)
(0)
<M12),t> =

where the second quantity is oblateness (for a precise tiefinsee ref. [13]), and the third quantity is
the difference of the square of the masses of the heavy hkerispvith respect to the light hemisphere,
with the hemisphere defined according to the thrust axissTémrrections can be as large as 40% even
at LEP1 energies. Because of this, it is mandatory that ctiores of even higher ordera{ and higher)
should be at least estimated and given as a theoretical &rhare is no universal rule to estimate the
theoretical error in this case. A commonly used method iso& kt the scale dependence of the result.
Since the remaining terms of the perturbative expansionldrmmpensate the scale dependence, they
must be at least as large as the scale variation of the treohcasult. The scale should be varied in a
range around the typical scale of the process. It shouldeohbsen neither much higher of this typical
scale, nor much smaller, since in these cases the peruglgagpansion is not well behaved. A common
choice ism, /4 < u < my, which accounts for the fact that the typical scale of theeess is somewhat
below theZ mass.

Hadronization effects should also be estimated, and iedud the theoretical error. A naive
estimate can be made for the observdhle ¢) in the following way. Let us assume that the emission of
an extra soft pion is a process that takes place with a priiyadfiorder one in the formation of the final
state. This emission takes away from the thrust a value otigndred MeV (the transverse mass of a
soft pion) divided by the total available energy. To fix thenhers, let us say that = 0.5/90 =~ 0.0055,
assuming a 500 MeV average transverse mass for the pion. erhelmative value ofl — ¢) is roughly
as/m ~ .04, increased by the? correction to roughly 0.055. Thug/(1 — t) = 0.1. This means that
we can expect that hadronization effects may have a 10% &fféee determination ofes from (1 —¢).

An instructive example of a QCD study at LEP can be found in [f8]. There it can be seen
how a hadronization correction of the order of 10% needs taggied to the data in order to get a
good fit. Experiments typically estimate the hadronizatorrection by running a shower Montecarlo
with or without the hadronization stage. The correctiores dgtermined by looking at the difference
between the two runs, and are then applied to the data. Tbearrthe hadronization corrections are
estimated by using different Montecarlo programs withedt#ht hadronization models. It is quite clear
that this procedure is perhaps a bit risky. The QCD stagefecirsimilar in all shower Montecarlo. The
hadronization step is different, but it is in all cases tutefit the data. This means roughly that there is
a bias towards determining the same value:plused in the Montecarlo. On the other hand, the size of
the radiative correction is reported in the [16] paper, dntthe pessimistic reader may use the whole
hadronization correction as an error on the determinaiiome wishes to do so. Even assuming this
most pessimistic attitude, one must recognize that LEHAteeda show a remarkable consistency with
perturbative QCD results. | find figure 13 most instructivlefie, a determination efs; was performed
for several shape variables. The determination was peerinst using a leading order formula (left
plot), and then the fulD(a?) formula. No hadronization correction was applied to theadafhree
values of the renormalization scale were chosen for eadghblar i = m,/4, m,/2, andm. In the
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Fig. 13: Bin-by-bin determination afs for several different shape variables.

figure, parallel bands correspond to these three choiceseifbrs on the various point are experimental
errors. If we had a perfect QCD calculation, e.g. all ordarperturbation theory, and hadronization
corrections were truly negligible, we should expect all empental point to lie (within errors) on a
constant line. If we only have a leading order calculation,expect instead large differences among the
various points, that should become smaller and smaller aimcliede higher order corrections. In the
plot, of course, we can only represent the leading and mebdeding result, since af(a?) calculation
has never been performed. It is quite striking to see hownbluding the next-to-leading corrections,
the various determinations become much closer to each. dthisrleft to our fantasy to imagine what
would happen if we could include ti@®(as?) effects. Table 3 summarizes the determinations.ofrom
event shape variables.

5 PROCESSES WITH HADRONS IN THE INITIAL STATE

We will now turn to describe the application of perturbat®€D to processes in which hadrons are
present also in the initial state, like Deep-Inelastic t&eatg (DIS), or the production of some objects
of high invariant mass in hadronic collisions. It turns duattcross sections for these processes can be
computed and related to each other. In general the crogsrséat the production of some final state
with high invariant mass (which could be made of a heavy wesdtor boson, a lepton-antilepton pair,
heavy quarks, jets, and the like) will be expressed by theaedimproved parton model formula

Oy, Hy (P15 P2) Z/dwl dry £ (@1, ) £ (w2, 1) G3(@1p1, mapa,as (), ), (83)
’]

whose meaning is depicted in fig. 14.
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Table 3: A summary of measurementsxaf from shape variables. The label “resum” refers to an impalawext-to-leading cal-
culations, where terms that are logarithmically enhanest the two jet region (analogousltsg e log § in Sterman-Weinberg
jets) are resummed to all order.

Q Aas(Myo) Order of
Process [GeV] | as(Q) as(Myo) exp. theor. | perturb.
ete  [ev.shapes]] 22 [0.1617007°% | 0.124 7000 0.005  T500% | resum.
ete” [ev. shapes]| 29 0.160 +£0.012 | 0.131 £0.010 0.006 0.008 | resum.
ete” [Ohadl 34.0 | 0.146 T 393L | 0.124 F0:02L | +0.02 - NLO
eTe™ [ev. shapes]| 35.0 | 0.143 3000 | 0.122 +J:0%8 0.002 9% | resum.
eTe™ [ev. shapes]| 44.0 | 0.137 ¥ 3000 | 0.122 +J:0%8 0.003  t9%T | resum.
ete™ [ev. shapes]| 58.0 | 0.132+0.008 | 0.123 & 0.007 0.003 0.007 resum.
VA [ev. shapes] 91.2 | 0.122 £0.006 | 0.122 £ 0.006 0.001 0.006 resum.
ete™ [ev. shapes]| 133 | 0.111 £0.007 | 0.117 £ 0.008 0.004 0.007 | resum.
ete™ [ev. shapes]| 161 | 0.106 £ 0.007 | 0.115 & 0.008 0.004 0.007 resum.
ete™ [ev. shapes]| 172 | 0.103 £0.007 | 0.112 £ 0.008 0.004 0.007 resum.

Fig. 14: A graphic representation of the improved parton ehémrmula.

The description of processes with a single incoming hadsaven simpler. For example, in DIS
on) =3 [ dofarm) siton) (84)

i
Formulae (83) and (84) are applicable for inclusive proegseith large momentum transfer. By inclu-

/ g% >> A?

o

P
H, p

Fig. 15: The improved parton model formula for DIS.
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sive, we mean that no detailed question on the distributfidheofinal state hadrons is asked in order to
measure the cross section. The generic concept of a progbdange momentum transfer is better illus-
trated via examples. We may, for example, require that aleegg invariant-mass lepton-antilepton pair
(the so called Drell-Yan process) is present in the finakst@r that jets (for example, of the Sterman-
Weinberg kind) with large transverse momentum are obseriredhe case of DIS, we simply require

|¢?| to be very large.

The recipe for the improved parton model formulae can be samzed in the following points:

e Anincoming beam made of hadrons of tyfeis equivalent to a beam of constituents (also called
partong, that is to say of quark and gluons, with a longitudinal mataen distribution character-
ize by the parton density functions (pdfs from now gfgﬁf{) (x, ). More specifically, the proba-

bility to find the parton; with momentum betweenp and (z + dx)p is preciselydx fi(H) (z, ).
The pdfs are universal, that is to say, they do not depend tgoparticular process considered.

e The short distance cross sectidiis calculable as a perturbative expansiomin

. (1
65 (w191, w2, s (1), 1) = Y 619 (w1p1, wapa, ) o (1) - (85)
!
The lowest order term of this expansion is precisely thescgegstion one would compute naively
at lowest order. For the computation of higher order, a morepiex prescription is specified.

e The pdfs have a mild dependence upon the secateetermined by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi equation [17]

0 14
8log,u2fi(H)(x"u) :/ ?Z ZBJ(QS(M)az)fJ(H)(x/Z,u) . (86)
v j

Using the above equations, given the pdfs at a specified wdluewe can compute them at any
other value. The function® are called splitting function, and have a perturbative aspm in
powers ofas (1)

2
Pt = S0 + (S) PP + 0 1)
T 27
The functionsP(©) are given in [17], and the functionB(!) are given in [18]. The scalg is
arbitrary. Theu dependence in the pdfs is compensate by tldependence in the short distance
cross section. As in the case ©fe~ — hadrons, the scalg is taken to be of the order of the
typical scales in the process, in order to avoid the appearahlarge logarithms to all orders in
the short distance cross section. In this way, a truncatpdession for the short distance cross
section may be used safely.

The approach described above gives the cross section iis t&fria power expansion iag(x). Since
as(pu) = 1/log /A, this means that by increasing the perturbative order atiwtiie computation is
performed, one adds corrections which are suppressed bsnoreeinverse power dbg n/A. Correc-
tions which are suppressed by powers\gf: are not included in this approach. Thus, for example, the
pdfs describe the longitudinal momentum distribution @& gartons. Since the partons are confined in
a hadron, one knows that they must also have a transverse momef the order of the inverse of a
typical hadron size, that is to sdyA. This transverse momentum is neglected, since it would rigee

to power suppressed corrections.

In the following | will try to illustrate and justify the immved parton model approach. | will do
this in three steps.
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I will first give arguments to show that one would naively esipe@ somewhat simplified version
formula like eq. (83) to work. The simplifications consisttire absence of the scalein the pdfs and
in 6. Such a simplified formula can be called a parton model foan(iut., not yet improved). It can be
used to compute, for example, DIS cross section, or Drefl{x@r production cross section. The parton
model formula predicts correctly the existence of scalm®IS.

The second step will be to try to compute QCD corrections édbntext of the parton model
formulae. | will show that this approach does not survive whaiative corrections are included.

The third step will consist in finding a way out of the probleoufid at the second step. The
solution of the problem will have as a consequence the appearof a scale in the pdfs, and the existence
of scaling violations in DIS.

5.1 The parton model formula

The basic parton model ideas are based upon a very commaatdyintsiitive picture of inclusive high
energy scattering of composite systems, when we requireydarge momentum transfer. Suppose, for
example, that we collide to hydrogen beams, and requirdrilibe final state we find a pair of electrons
with large transverse momenta. It is clear that the moshylikeechanism for producing such an event is
the collision of two electron from the two incoming hydrogaioms. If the transverse momenta of the
electrons are much higher than the hydrogen binding enexgynay think that, to a good approximation,
the cross section may be computed from the elementary @feetectron cross section, applied to a beam
of incoming free electron. The fact that we want to observegh fransverse momentum scattering
implies that the binding of the electrons to the nuclei carirave an important effect in this case. In
other words, the electrons behave as free particles in flisien. Observe that the inclusive character of
the reaction, and the presence of high momentum transéeadin necessary conditions for this approach
to be valid. Inclusiveness is needed, because after theltgtr@n collide, the remaining constituent of
the original atoms (i.e., the protons in the case of hydrpges also found in the final state. The high
momentum transfer is instead needed for the reaction topiake in a very short transverse distance. If
this was not the case, like, for example, in the case when aleflr small angle scattering, the atoms
may interact coherently. Or, more simply, if the momentuamsfer was of the same size as the typical
momentum of the electron in the atom, the binding propedigke system could no longer be neglected.

Assuming now that we have ultra-relativistic monochrombagams of hydrogen atoms of energy
E, in order to compute the above cross section we would assbatdéhtese beams are equivalent to
electron beams with energf, = E x m./m,. In reality, even if the atom beams were perfectly
monochromatic, the electron beam would not be perfectlyonbromatic. The electrons are moving
inside the atom, with a typical velocity of the order of theatomagnetic coupling ~ aemn. A simple
exercise in relativistic transformations would show thatenergy spread would be of the ordes.. In
fact, the electron energy could be characterized by afpdf), peaked around the value= m./m,,
and a width of ordevz. Also the transverse momentum of the electron would be adrarch,.. However,
while the transverse momentum remains invariant undertpand thus becomes truly negligible at high
energy, the spread in longitudinal momentum is amplifiecheyoost, and it thus scales with the energy.
This discussion applies to a boosted, non-relativisti¢esgs We can now try to guess what happens for
a relativistic system, in which all constituents have viies of orderl, and comparable energies. This
transverse momenta will still remain fixed at high energideeir pdfs, however, will no longer be peaked
around a particular value. Their spread would be of order 1.

Knowing that the basic building blocks of our hadronic woalee quarks and gluons, we thus
expect that for a proton projectile, we will have structwedtions for quarks, antiquarks and gluons.
We also naively expect the momentum sum rule

/ldachfi(p)(x):l, (88)
0 -

)
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because the total momentum of the incoming projectile mastdnserved. We also expect that the
proton flavour is conserved. Thus, for example

1
/0 dr (P (@) — 1P (x)) = 2. (89)

Since we know that the proton is a relativistic system, weeekthat a good fraction of its energy should
be carried by the binding force, that is to say, by the gludimus, the gluon pdf should be sizeable.

Based upon these assumptions, we can now compute varionsehéygy processes involving
hadrons in the initial state. The rules are simple: complugecross section you are considering for
colliding partons, and then assume that your hadron beaipgama of partons, with momenta distributed
according to the pdfs. Always neglect the transverse maanafthe partons, and their masses.

Let us now apply this model to Deep-Inelastic electron scatyy. There we collide an electron
with a proton. The kinematical variables of the process atmlly defined as

2 )
q:k_kla QQZ_q27 S:(k+p)27 ij: Q ) y:M (90)
2p-q k-p
Experimentally, one measurés y andzg;. One only needs to observe the outgoing electron to obtain
these quantities. The process is an inclusive one, thasestamo conditions are imposed on the hadronic
final state. The variablg has a simple interpretation in the laboratory frame of fix@det experiments,

where it is the fractional energy loss of the electron.

The corresponding partonic process is the scattering ofaggeld parton, that is to say a quark
or an antiquark, with the electron. The cross section fa phocess is easily computed, by using the

e

Fig. 16: DIS in the parton model.

standard Feynman rules of electrodynamics
dO’Al 2 § 2 A\ 2
=c —2 1 1-— 91

wherel runs over all quarks and antiquarks, ands the corresponding electric charge. The kinematics
is given by

. . . . . D
p=ap &= (k+p)* =2k p, §=1
P

L=

P+q)?=2p-q—Q°=0. (92)

Observe that eq. 91 is a full cross section, properly nomedlidivided by the appropriate flux factors.
Now we write, according to the parton model, the hadronisgsection

do ds,
- / dx; Al (93)
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We now observe that

p-qg_P-qg__ Q? Q?
Y hp kp 0 T T opg  Topg T T (94)
and thus we have
do Z dé;  2mal, Sy ) )
dy dzg; ; filw) dy Q4 ( +( Y) ) E :Cl fi(ws;) (95)

l

Observe that has a simple interpretation also in the centre-of-masseoébictron-quark system, where
it is given byy = (1 — cos 61) /2, andé,, is the scattering angle of the electron in this frame.

In its simplicity, the parton model makes rather strikingdtictions. First of all, it shows that the
DIS cross section scales with energy at fixed andy. Furthermore, thg dependence of the cross
section is fully predicted. As we will discuss further onistl) dependence is characteristic of vector
interaction with fermions, and is thus direct evidence @fféct that charged partons are fermions (this
is formally expressed by the so called Callan-Gross relaas we will see in subsequent chapters).

The same type of reasoning can be applied also to other @@xesor example, in a collision
of two hadrons, a quark from one hadron may annihilate witlrmtiquark from the other hadron, and
produce a lepton-antilepton pair, provided there are emargiquarks in the projectile, like in pion-
nucleon collisions, or in proton-antiproton collisionshig is the so-called Drell-Yan process. Its parton

Fig. 17: Drell-Yan pair production in the parton model.

model interpretation is illustrated in fig. 17. There, asobef we define

pr=z1p1, Pr=w2p2, S=@1+p)’=2pip2, Q°=¢"=2z11,5. (96)
The partonic cross section is given by
~(DY) _ 9 4T ey
i a 9()2 )

which is very similar to the cross section fete™ — p*u~, except for en extra factor df/3. This
comes from the colour average for the initial state quark.pltysical meaning is that, in the average,
the probability for the colour of the initial quark to matdiat of the antiquark i$/3. According to the
parton model interpretation, the hadronic cross section is

O_(DY) — Z/ dzy dzy (fl(Hl)(xl) fl_(HZ)(.TQ) + (l & i)) ZC? 432382“1 , (98)
I [

for Q? = 5 = =1 z» S. The validity of the above formula is restricted to the ramgeereQ? is large. It
is therefore usually written as

(97)

94T aem

(DY) .
O =2 [ dovda (50 (@) 5" 2) + (0 D) S(oraS - Q) Y ©9
[

l
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Pushing further our parton model interpretation of hardtedag processes, we can go on and compute
the cross section for producing high transverse momenttsr(ignoring for the moment the problems
related to the jet definition), of heawp pairs, oftf pairs, and so on. In these processes, also gluons
could enter in the initial state.

Not all hadronic processes can be computed in this way. Fample, Drell-Yan cross sections,
for Q? approaching typical hadronic scales, cannot be computéeé. rile of thumb for deciding if a
process is a hard process or not, in the context of the partmteinis to ask whether it is insensitive
to the initial transverse momentum of the partons, which ihe order of typical hadronic scales. The
parton densities do not carry any information about thistjba

5.2 Does the Parton Model survive radiative corrections?

We will now try to add perturbative QCD corrections to thetBarModel. As in the case afte™ —
hadrons, we will find soft and collinear singularities asatexl to radiation of gluons from final state
partons, which we expect to cancel for appropriately deffiread states. For example, in fully inclusive
hadronic final states, like in DIS or in Drell-Yan pair protioa. Or, for appropriately defined jets, like
in the case of the Sterman-Weinberg jets.

A new element that can arise in the case of reactions initibtehadrons, is the appearance of
initial state soft and collinear singularities. We will sh¢hat initial state collinear singularities cannot
possibly cancel, and thus spoil the Parton Model interficetaf hard processes. Let us thus consider a
generic hard process initiated by a hadron, and its parss@ection, which we assume for simplicity
to be initiated by a quark

(100)

Here M indicates the amplitude for the process, ani$ the Dirac spinor. All the complexity of the
process is hidden im, and we don't care about it for the moment. The cross secti@biained by
squaring the amplitude, averaging over the initial state apd colors, and dividing by the appropriate

flux factors N ) N p
op) = S5 MB)5 D uBaEM () = ZME) M (B) (101)
whereN is whatever normalization factor arises from the rest ofatmplitude.
We want to focus upon the initial state corrections

(102)

wheree, (1) is the polarization vector of the final gluon. We also obseha this may not be the only
correction of ordetvs. One may also have a process in which an initial gluon spiitsa quark-antiquark
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pair, and the generated quark gives rise to the reaction

We will assume that this complication does not occur. Formgda, we may assume that the hard cross
section measures some effect due to the difference of th& goatent for two different flavours. Since
the gluon produces equal number of quarks for all flavourspitid not contribute in this case. In
these cases, one says that the cross section is only sersitivenon-singletcomponent of the parton
densities. We thus concentrate on the non-singlet casefuther on we will describe how to treat the
general case.

Experience with thete~ case tells us that dsbecomes parallel tg we will have a collinear
singularity. It is convenient thus to wrifan the following way

I=(1—2)p+1 +&n (103)

wheren is an arbitrary vector such that = 0 ands - p # 0. For example, in the centre-of-mass frame
of the collision process we can choose

ﬁ = (f)oa OJ_a ]30) y 1 = (17 OJ_a _1) . (104)
The phase space for the emission of the gluon is
d3l d*l 2p-ndédzd?l,
= 2 2p-n(1— —
200 (2m)3  (2m)" mi() = (2m)3 3 (200 (1 =28~ Ji1])
d’l,  dz
S 2(2m)3 11—z (105)
which yields, from the on-shell condition for the gluon,
12 12
€= B and (p—1)% = 1Al (106)

2p-n(l—2) 11—z

The most singular part of this cross section can be obtaimaithdy with what was done in the case
of eTe™ annihilation. It does not make much sense, in this case,sonas that is small, and thus
the derivation is a little bit more involved. It is nevertes$ instructive, so | will report it in the next
subsection. People who are willing to accept the resultauitlliscussion, can skip it.

5.3 Derivation of the singular part of the cross section
The amplitude in eq. (102), using our kinematic definiticzes be written as

9. M(p - >#

When squared, it seems to give rise to terms of oigét . We will see that these terms, however,
cancel. The trick is to make careful use the relaii'tnﬁf) (I) = 0. The singular region is the one whén
is collinear top, that is to say wheh, vanishes. In this regioh= (1 — z)p, and thup ~ /(1 — z), up

to small corrections. Inserting this expressiongon eq. (107) will lead to simple Dirac algebra, since
by anticommuting with v* we geti#, which vanishes when dotted into the polarization. We thritew

==&
1—2

Yru(p)eu(l) - (107)

(108)
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and replace itin eq. (107). The termgikills the singularity, and we drop it, since we are only ieted
in the singular part. We obtain

g M- @{ Eu), (109)

which becomes

0. Mip )= e

= g, Mip )2 P e ) (110)

= 0. M(p~1) _”’{jl ‘h%U(ﬁ)eu(l) ,
—2zl“ (1=2)] 17

:gsM(ﬁ_l) —‘l ‘

u(pleu(l) (111)

where the first step is obtained by anticommutfnand~*, which we can do as explained before. Then
we rewritel in terms ofp. Next, we drop the) term, since itis in front of the spinar(p), and thus gives
zero, according to the Dirac equation. Finally, we use titieammutation relatiory,/ | = —h7u+2l,f

In this last form, the singularity appears to be at most oéotd |/ |, so that the amplitude squared will
give at most al/l2 singularity. The rest is simple algebra. We square eq. (Itp)ace the gluon spin
sum with the transverse prolectergw, replace the fermion spin averaged produgt)u(p) with p/2,

and obtain

ggi D) (=220" — (1= 2)] 17" )7—;(—2zli—(l—z)v”h)(—gﬁ)MT(ﬁ—Z)
=g ;M(A )125 (42° |} | +42(1 = 2) |12 |+ 2(1 — 2)* |i7|) MT(B—1)
= 9y (142 MG - 1>’—§ M —1). (112)
€L

To get the cross section, we should multiply the above ezfesyN/p?, and integrate over the phase
space. We obtain

asCr 1+ 22 dl2
o) = o /0(0)(,2;0) T l2 L dz (113)
where
o0 (zp) = NMG— ) L M- = NmG -0 Lo M- . 14)

2(p —1)° 2(p)°
where we have made use of the relati@n= 4ra. The factorC, = 4/3 arises from the colour algebra.
It can be obtained according to the colour Feynman rules o8figs illustrated in the graphic equation

i
‘:S\ . (115)

There we see a factor of 3 arising in the first term, becauseec$wim over the colour entering the Born
amplitude, and a factor of 3 in the second because of the cldop, the net effect bein@ +1/3)/2 =
4/3.

o=

The result obtained so far arises from the real emission dfi@ng Virtual corrections are also
present, i.e. a gluon can be emitted and reabsorbed by theelg@m
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5.4 Effects due to the emission of a collinear gluon
The final result is

1) ascp 0 ~ 0 ~ ]. + 22 dli
o) = 5 /[o()(zp)—o()(p) 1_Zﬁdz, (116)
where the second term in squared parenthesis is due to thalwiorrections. We see that there is a
singularity atz = 1 which cancels between real and virtual corrections. Thmreg — 1 corresponds

to soft gluon emission. Thus, soft singularities canceleréhare also collinear singularities, associated
to the small; region. These do not cancel.

We first make the following remark. In the initial amplitudése presence of a denominator of
the form1/1% may seem to give rise to divergences liké, /i1 . The singularity we find at the end is
instead weaker, of ordef’l, /I, because of aﬁ’i we find from the numerator algebra. We can easily
convince ourselves that this is a consequence of angularemioim conservation. Vector interaction,
in fact, do not change the helicity of a particle. Thus theditgl of the incoming quark must be equal
to the that of the outgoing quark. On the other hand, phygitains havet1 helicity. Thus, in the
collinear limit, the total angular momentum contributeddpyn is not conserved. This gives rise to the
extral? suppression in the cross section. Also, by dimensionalyaisalwe see that we cannot expect
divergences stronger thalii, /2 in theories with dimensionless coupling constants.

In the case ot e~ — hadrons, we made the approximation tha¢ 1, for simplicity. If we had
been more careful, instead of formula (71), we would havaiabtl a formula similar to eq. (116). There
would be, however, a very important difference: in the Bamss section for the real emission, under
the integral sign, we would have?) (p) instead ofo(?) (zp). This property is characteristic of splitting
processes taking place in the final state, rather than imthalistate. Figure 18 illustrate this fact. This

O_{o)(ﬁ) ~ ~ A U(O)(Zﬁ)
o - p B
(7. - —

Fig. 18: Collinear processes in the final and in the initiatest

is the reason why collinear singularities cancel in ¢fie~ — hadrons case, and do not cancel in this
case.

Equation (116) exhibit a rather intuitive property of co#iar emission. Since the singularities are
due to the fact that the intermediate propagator goes rearass shell, the intermediate particle travels
for a relatively long time and distance. Thus, when it inég&the interaction, behaves essentially like an
on-shell particle, and the phenomenon can be describedbabilistic terms. In other words, the total
amplitude squared for the splitting process and the hardesitey, becomes the product of the square
of the amplitude for the splitting process, times the squdithe amplitude for the hard scattering (i.e.,
the cross section). Thé integral is divergent in the lower limit. Its upper limit isstead some scale,
of the order of the typical momenta involved in the hard pss¢evhich we now calf). Equation (116)
can then be interpreted intuitively in the following way.drnard process, taking place in a time of order
1/Q (by the Heisenberg indeterminacy principle), an incomiaggn is also probed for a time of order
1/@Q. In a short period of time, a quantum state may fluctuate itaties to which it couples, even if they
have energies that differ by an amount of ordeor less. This is what happens to our incoming quark.
This also explain why the larger 3, the more likely is the splitting to take place.
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5.5 Failure of the parton model

The presence of collinear divergences tells us that thest beusomething wrong with the parton model.
Of course, we know that divergences, in the real physicaldyare never there. In our case, for example,
if we introduce the mass of the quark, the divergence goey.a@g we may use the known fact that
at low scale confinement effects take place, and thus put arlowtoff of orderA in the transverse
momentum integral. Or again, we may remember that the pastofi-shell in the incoming nucleon,
by an amount of ordeA. This also would act as a cut-off. However, neither of theseadies would
really solve the problem. Our cross section becomes styagpendent upon low energy details, like
the quark mass, the off-shellness in the nucleon, or congnéeffects, while the Parton Model assumes
that these details do not count. Furthermore, the physitisese details is low scale physics, and is thus
uncalculable in perturbative QCD.

We will now show that, in spite of the collinear divergencte Parton Model can be rescued,
provided we accept some modifications to make to the origioatept. In fact, these modifications are
interesting testable features of QCD.

We begin by introducing some notation. First of all we define

1—=2

PO (z) = C; (1 - Z2> (117)
+

where the notation with the- suffix is called theplus prescription It specifies that the expression in
parenthesis is to be interpreted as a distribution, andtiégial against a smooth functigifz) is given

by
/()I(sz) f(z)dzzfol”z2 (F(=) — F(1) . (118)

1—2z 1—2z

Next we introduce the notation
/dml . dlEn fl(xl)fl(xg) . fn(xn)o(xl . xnp) = f1 & f2 R...Q fn O'(p) . (119)

In the above notation, we defifle= §(1 — x), so thatl o(p) = o(p). The operator is called a
convolution. It has many properties of the multiplicatidn.particular, it is commutative. It is easy to
show that, if

[=1®f®...0f (120)
then
F@) = [ Fia0folon) . fulien) 8o — 122 ..,) day o .. (121)

Observe that the order of thig . .. f,, is irrelevant in thex product.
Now we can rewrite eq. (116) as

2
o4(p) = o () + oV (p) = (H + 5= log %Péé”) o) (p) (122)

where the indey; is to remind us that this is a quark cross section. We havemeed thel | integral,
with an infrared cutoff\. We always assume now that we keep only the singular termsdef o
relatively to the Born term. We now rewrite this equation as

SO 4 D as 12 0 as @ L0\ 0
oq(p) =V (p)+0(p) = H—{—%logﬁpqq ® H—i—%logﬁpqq o (p). (123)

The above equation is easily verified by expanding the proofitbe terms in parenthesis, throwing away
the term of order?, and combining the logarithms accordingleg 112/ \? + log Q2 /u? = log Q?/ 2.
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We now remember that the above parton cross section shoudrveluted with parton densities. Ac-
cording to our new notation, the parton model formula istertas

o(p) = f oq(p) - (124)
Thus, using eq. (123), we immediately obtain
o(p) = f(p) 6(p, 1) (125)
where we have defined
« 2 R « 2 R
f) = (n + 2 10g %p;y) and 6(p, 1) = (]1 + 210 %p;y) O . (126)

Equation (125) is known as the QCD-improved parton modehtda, and it forms the basis for the
application of perturbative QCD to phenomena initiated agifons. A considerable difference with the
“naive” Parton Model formula is the appearance of a sgale the parton densities. Let us know try
to understand in words what we have done. We have attemptedimpute radiative corrections to a
parton process. We have found that part of these correctienkarge, and depends upon unknown low
scale dynamics, which is represented here by the cutofHowever, we have found that these large
corrections can be absorbed into a redefinition of the pattmsities. The parton densities redefinition
does not depend upon the hard process in question: it ismsaivelhe physical cross section can then
be defined in terms of these new parton densities. Instealdegbartonic cross section, in the QCD-
improved parton model formula we have a so calsbort distancecross sectioré. This is obtained
by subtracting the infrared sensitive (ong distancg part from the partonic cross section. Thus, the
short-distance cross section is controlled by high momemd is thus calculable in perturbation theory.
It is important to choose the scaleof the order of the scal@ of the hard process, in order to avoid the
appearance of large logarithms in the perturbative expansi

Of course, our argument was only carried out at leading drdperturbation theory. There is a
variety of more complex arguments that show that formul®&)&2tually holds to all order in perturbation
theory. This is called th€actorization Theorenil9]. We will comment later on its present status. For
now, we will assume that the procedure outlined above caadhlie carried out to all orders in the
coupling constant. Thus, the short-distance cross sectiarbe given as a power expansiomin If
the scale at whiclas is evaluated is near the typical scale of the hard proceskgrge logarithms can
appear in the coefficients of the expansion, since all thieseatering in the coefficients are of the same
order. Thus, one can improve the accuracy of the short distaross section by computing higher and
higher orders in perturbation theory. The scalentroduced in this context is called the factorization
scale. The scale at whiehy is evaluated is the renormalization scale, and should Heeasdame order as
the factorization scale. In principle, they can be takenedifferent. Here, for simplicity, | will always
assume that the renormalization and factorization scaéetken equal.

The new pdff(x) contains uncalculable long distance effects. It has to basored, by using
formula (125) with some reference hard process, which i@y chosen to be DIS. One then extracts
f(u) at a given scalg:. Its 1 dependence is however calculable. In fact, the left hanel afd125)
is ;4 independent, and the short distance cross seétiecalculable in perturbative QCD, due to its
short-distance nature, and thus also its scale dependecaéulable. Thus, the dependence of (1)
must also be calculable. We have

0 0 R o
/fa—uga(p):(): [uza—ﬁﬂ (u)] &(p,p) + (1) [uza—uzo(p,u)] : (127)
and thus 5 5
ot ) ot =1 [ et (12)



and using the expression férgiven in equation (126) we obtain in leading order

0 Q@
ot 0] o0 = 25 0 @ PP 1), (129)
and since the hard process is arbitrary, we get
0 @
W gl ) = ;ff L f(uy o P (130)

The above equation can be written in standard notation
g o) = 52 [ dyds P) £ oo = 20) =

2 [ P /). (131)

This is the Altarelli-Parisi equation (or Dokshitzer—Grit-Lipatov—Altarelli—Parisi equation) for the
non-singlet case. It allows us to compute the (non-singlatjon densities at any scale, once we have
measured them at an initial scale.

5.6 The evolution equations in the general case
In general, the Altarelli-Parisi equations can be writteiour symbolic notation

2 f@ Z Pij ® fi(p (132)
or, more extensively
0 Ld
u28—ugfz~(x,u) :/x ;y ;Pij(y)fj(w/y,u) (133)
where )
Pi(y) = a;SrM)IDi(]Q) (y) + (%—;’0) P y) +... (134)

where thePng) (y) are given in ref. [17], and thE’ig-l)(y) in [18]. We report below the formulae for the

PZ.(JQ) (y). Its only non-vanishing components are

PO (z) = P (z) = Cy (11t3;2>+ : (135)
PO (z) = P (x) = Tt (22 + (1 - 2)?) | (136)
P (2) = Pyg () = CF# , (137)
Pi(x) =20, [z (1 L Z>+ (-0 (% - 27(‘]1) 5(1 - x)] (138)

We do not report here the higher ordl&L ) functions. Observe, however, that at higher orders the

components,,. for i # j and P4 (for anyz and 7) do arise. Here we limit our discussion, for
simplicity, to leading order evolution only.
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We begin by taking the difference of eq. (132) with itselft fawo different quark or antiquark
flavour labels andj. We find

u? a 5 (filw) = Fi(w) = (Pir ® fr(p) — Pir ® fr(p)) - (139)

k

As discussed earlier, ifis a quark (or antiquark), thencan only be the same quark (or antiquark) or a
gluon. The gluon contribution cancels among the two ternpairenthesis, and one gets

T a 55 (filk) = fi(1) = Pyg ® (i) = fi(1)) - (140)

Thus, if we haver light flavours, there aréns — 1 independent combinations of the parton densities
that evolve independently from each others. They are calbedsinglet components. Next, we take the
sum of eq. (132) for all quark flavours and antiflavours. We get

> Msz =Y P @ fi() =YY P ® fulp) + Y Pig ® folu)

i#g i#g i#g k#g i#g
=Py ® ) filw) + 200 Py ® fy(u) - (141)
1£g
On the other hand, eq. (132) for the gluon reads

2 fg Z Py ® fin) =Y _ Py ® fi(i) + Pyg ® fy(p) - (142)
iZ£g
Thus, defining
=Y filw) (143)
i#£g

we get the system of equations
U EW ng( ) = qu®S(U)+ng®fg(N)

0
H28—M25(N) = qu@s(ﬂ)+2”f]3ig®fg(ﬂ) ) (144)

which define the evolution of the so callsthgletcomponentS and the gluon. Thus, while the non-

singlet components evolve independently, the singlet amapt mixes with the gluon density in its
evolution.

5.7 Sumrules
We said earlier that we expect sum rules from our parton tessiThus, for example

[z 19w - 1P @] =2 (145)

We must make sure that evolution equations do not spoil threrailes. Since the difference of the quark
and antiquark parton densities is a non-singlet compomenhave

M@i,ug/dx [fép)(x) — fép)(x)} /dw— Py(y) [fép)(z) _ fép)(z) 5(z — yz) dy dz

= 2 Pu)dy| [ dz [1P() - 1P ()] =0 (146)
o [ Pt [ | |

becausef P, (y)dy = 0. Similarly, one can show that the momentum sum rule is alssgwed by
evolution.
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5.8 Scheme dependence

There is some ambiguity in the way one defines the parton tiks)dihe first of egs. (126). This ambi-
guity is best seen as an ambiguity in the type of infraredftotee uses. For example, one could give a
mass to the quark, or assume it is slightly off-shell. By ddinis, the large logarithm does not change,
but different finite pieces can arise in the calculation. Ha present context we have only looked at
the divergent parts. When doing next-to-leading QCD calaoh, however, one would like to compute
precisely the finite pieces. The reader can find interestkagneles in [20] and [21]. There the same
processes are computed (the Deep-Inelastic and the Dagleioss section), but with different infrared
cutoffs. Thus, the finite terms in the various cross sections out to be different. However, when
expressing the DY cross section in terms of the DI cross@edtioth approaches get the same formula.
Thus, to some extent, the definition of the parton densitynstter of convention, like the definition of
as. It has to be specified together with a procedure for the ceoatipn of short distance cross section.
Fortunately, today, the so callédS scheme is widely used, and most parton densities are givéa@in
MS scheme.

5.9 Summary
We summarize what we have learned in this chapter.

First of all, by intuitive reasoning, we derived cross sausi for high energy inclusive processes,
assuming that the transverse momentum of constituentsinohswas limited to typical hadronic scales.

We tried to compute radiative corrections to these formutaml we found inconsistencies, i.e.
uncancelling collinear divergences.

With a procedure very similar to renormalization, we showed the collinear divergences could
have been reabsorbed into the parton densities.

Let us discuss how is the procedure of factorization sinbdaenormalization. In renormalization,
we reabsorb our ignorance of UV effects into a redefinitiothef strong coupling constant. Here, we
reabsorb our inability to compute IR effects into a redabnitof the parton densities.

As aresult of this procedure, we find that the parton dersstie actually scale dependent. We may
think of a hard process as a probe of transverse dimensiomslefl /). When we probe a constituent
at higher and higher values @, that is to say at smaller and smaller distances, we may fincsiates
in which it has split into more constituents. This is why partiensities evolve with the scale at which
they are measured.

The original assumption of limited transverse momenta fiailthe parton model. We have seen,
in fact, that because of initial state radiation, integadlthe formd?[ | /12L arise. Roughly, we expect

2l
(%) ~ as / lTHi ~ asQ? . (147)
1

Thus the transverse momentum is not limited, but it is “pbtively” small, i.e. it is suppressed by a
coupling constant factor.

5.10 How solid is the Factorization Theorem?

The argument given in this chapter does not certainly pdeterbe fully convincing. Thus, we would
like to have a more solid proof of this theorem.

In the case of the DIS process, such proof exists. It relieswpclever analytic continuation
property of the DIS cross section, that can be used to apelgdtverful language of the operator-product
expansion (O.P.E.) to the problem.

For production processes in hadronic collisions, thingsnanch more difficult. Even in the sim-
plest case, the Drell-Yan process, the factorization #rmdnas a long controversial history, which was
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finally settled by a calculation performed by [22]. All-ordguments for factorization have been given
in [23]. Thus, today, the factorization theorem is widelg@uted in the physics community.

6 DEEP INELASTIC SCATTERING

Deep-Inelastic Scattering (DIS) is the next-to-simple€Diprocess after™ e~ annihilation into hadrons.

It is experimentally quite simple, since in order to define IS cross section one does not need to in-
troduce jet definitions, and in general, it is enough to meatie momentum of the outgoing lepton in
order to measure the cross section.

The Deep-Inelastic cross section is also the best placeavib@neasure structure functions, as can
be seen from eq. (95). Thus, many QCD prediction for hadroallisions rely upon the experimental
determination of structure functions performed at DIS eixpents.

From a theoretical point of view, DIS has also a privilegeatist. There are in fact good reasons
to believe that power corrections in DIS processes behked JiQ2. This is unlike, for example, jets in
ete annihilation, where one expects corrections of the ordéy ¢f. Thus, DIS is a good place where
to measurevs.

The most general form of the DIS cross section for electroratig processes is given by

do 4ral (S — M)? [(1 Ty M?
_ —y—

LT $o) B @) e . s

whereF, and F; are called the structure functions for Diggorresponds to the variables defined previ-
ously, M is the mass of the target nucleon anek zg;. | will not illustrate the derivation of this formula,
which is found in many textbooks. It is a simple consequerfcelertrodynamics at the lowest order
in aem, and of Lorentz invariance. It does not, therefore, congaiyn dynamical consequence of strong
interactions, aside from its symmetry properties. Fronmiga (95), and after what we have said in
the previous chapter with regard to the factorization teegrwe can now write down the leading order,
QCD-improved parton model formula for DIS

2 S .
d;l(cjlx = QMZSZ (L4 (1-9)2) D il Q) (149)

l

In this leading order formula, it is sufficient to choogsex ). For simplicity, | have chosep = Q.
From egs. (148) and (149), neglecting mass effects, we find

FQ(xaQ) :2$F1($3Q)3 (150)

which is the so-called Callan-Gross relation, and

Py(x,Q) =z fi(z,Q) . (151)
l

The Callan—Gross relation is a prediction of the parton maa® it is a consequence of the fact that
the only charged partons are fermions. It is however onlyadifey order prediction. When radiative
corrections are included, it is violated. One defihgs= I, — 2z F).

It is useful to focus now upon thedependence of the parton model formula. We have

~

q p-k 1—cosf
y:/\ :1— N = y
p-k p-k 2

(152)

and thusy is related to the electron scattering an@lm the CM frame of the electron-parton collision
(sometimes called the partonic CM frame).
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The scattering of the lepton on a quark of the same helicigsise to ay dependence propor-
tional to 1, while in the case of a quark of different helicttyey dependence i —y)?. Thus, in the case
of spin-averaged cross sections in electromagnetismy tiependence is + (1 — y)2. The verification
of these properties is a simple exercise with Feynman grdpHact, the vanishing of the cross section
in the backward limit (i.e.y = 1) for the quarks and lepton with opposite helicity is easiyplained.
The spins of the lepton and the quark are aligned, since hiedities are opposite, and their momenta
are opposite. Thus, they have a total angular momentum EindHision direction. Vector interactions
conserve helicities. Thus, the quark and lepton will hawegame helicity after the interaction. In the
case of backward scattering, however, they have oppositeentum, and thus they have opposite total
spin. Thus, conservation of angular momentum imposes thishiag of the backward cross section,
which is in fact what thé1 — 5)? dependence predicts.

Parity violating processes contribute anti-symmetrjcatl the exchange of the helicity of the
incoming lepton. We expect@d — (1 — y)?) = 2(y — y?/2) dependence to be present in case of parity
violating processes. Thus, a third structure function appén these cases. For example, in neutrino
charged current DIS (i.e;,N — p~ X or 7, N — p+X) we have

cc 2
dxdy o 2w (Q2+Mv2v)2 S_M2> 2 (va )

: (153)

do Ga(S—M?) M2 [(1—34— Ty M?

+y? x Fi(z,Q%) £ (y — y*/2) a F5°

where the sign in front of3 is chosen positive for, and negative fop interactions. The parton cross
section is given by

do  G3i3 i { 1 same helicities (154)

dy 7w (Q2+ M2)% | (1—y)* opposite helicities
The neutrino is left handed, and charged current intenagfiovolve left-handed quarks and their antipar-
ticles, which are right-handed. Thus, when the neutrinttexsaoff quarks, we get thegldependence;
when it scatters off antiquarks, we get tfie— y)2. Because of charge conservation (i.e., the neutrino
goes into an electron, and thus gives one unit of positivegehto the quark) only negatively charged
quarks or antiquarks can be involved. Thus, for exampleyfpr— 1~ X, neglecting for the moment a
possible charm or bottom parton density in the proton
do  GiSuz M2,
dody —mo(Q2+ M)
Here we introduce the common notation

u(@, Q) = fP(z,Q), d(z,Q)=f(z,Q), et (156)

for the quark densities in the proton. The correspondingities in the neutron are obtain from isospin
symmetry

7 [(d(z,Q) + s(2,Q)) + (1 —y)*u(z,Q)] , (155)

F(,Q) = d(z,Q), f"(z,Q) =u(zQ), etc. (157)
Thus
Fy¢(z,Q) = 22F7°(2,Q) = 2z(d(z, Q) + s(z,Q) + u(z, Q) (158)
F5¢(7,Q) = 2(d(x, Q) + s(x, Q) — u(z,Q)) - (159)
Similarly, for vp — et X
F5(x,Q) = 2(u(z, Q) + s(z, Q) + d(z,Q)) (160)
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One gets the sum rule

1 —
/ dz [Féjp(x,Q) + F3?(z, Q)] = (162)

0
1
2/0 de [u(z, Q) — (e, Q) + d(, Q) — d(z,Q) + s(x. Q) — 52, Q) +...] = 6

which is called Gross—Lewellyn Smith sum rule, and expiesise fact that there are three quarks in a
proton.

The phenomenology of DIS scattering is quite complex, argréally impossible to review itin a
satisfactory way in the context of these lectures. Severaljptications of experimental nature arise, and
have to be dealt with properly. When extracting the strectunctionst; or F;, from data, it is usually
assumed thak}; and F5 are related on the basis of the Callan—Gross relation

1 +4M?z%/Q*
1+ R(z,Q?)

where, if the Callan—Gross relation was satisfied exactlg, would haveR = 0. Different experiments
are performed on different targets. The structure funetifor a nucleon embedded in a nucleus are
distorted (EMC effect). Finally, the size of power suppegseffects (the so callduigher twist effecis
should be assessed, especially for IQ#& experiments. In the present context | will not try to explain
how to deal with these complications. | will instead try tegya rough idea of how the strong coupling
constant and the parton densities are extracted from data.

20F (x,Q) = Fy(z,Q) X (163)

The strong coupling constant can be extracted from DIS dsitaguisum rules, like the Gross—
Lewellyn Smith sum rule. Sum rules are in fact calculableartgrbative QCD, and the difference from
their parton model value can be used to extractFor the Gross—Lewellyn Smith sum rule

1 _
/ dz [Fy" (2, Q) + F3"(z,Q)] =

0
2
6 [1 _ds (1 +3.5825 419 (ﬁ) > +0(ad) = Aur| - (164)
s ™ ™
A CCFR determination [24] obtains
as(L.76GeV) = 02607001 — as(Mg) = 0.1107005 . (165)

These determinations have the advantage that these igmhtive been computed at very high order in
perturbation theory [25] , and thus the theoretical errerraduced. Since, however, they are performed
at a rather low scale, some estimate of higher twist effébts/ ;) are necessary.

The standard method to measure in DIS is however the study of the evolution of the parton
densities. It is convenient to use a non-singlet structunetfon, in order to avoid uncertainties due to
the poor knowledge of the gluon density. Thus, for examphe, @an usd’ in neutrino scattering [26].
Alternatively, one can use structure functions at verydargSince gluons are not valence patrticles, they
are quite soft. In general, there is little gluon contentia hadrons fox > 0.2. Using this fact, one can
also use muon data to determimg. A summary ofas measurements from DIS is reported in table 4.

Neutrino scattering allows independent access to the cuaglantiquark content of nucleons. It
is generally carried out on heavy, approximately isosingleyets.F, measurements in electromagnetic
and charged current experiments give access to the conamsaeported in the table 6. In principle,
strange and antistrange content could be extracted fromrimewand antineutrino data on isosinglet
targets. Or, assuming= 5, we can use the combinatié6 £ — 3F2“d = z2s. In practice, the strange
content is better constrained by looking at charm prodadtimeutrino DIS. The corresponding signal,

42



Q Aas(My) Order of
Process [GeV] | as(Q) as(Mz) exp. theor. | perturb.
GLS sr 1.73 | 0.32£0.05 0.1154+0.006 | 0.005 0.003 | NNLO
DIS [polar.] 241 | 03173% | 0120199 | £9:00¢  +0009 | NLO
DIS [ HERA F3] 4.5 0.23 +0.04 0.120 £0.010 | 0.005  0.009 | NLO
DIS [v] 5.0 | 0.2154+0.016 | 0.119+£0.005 | 0.002  0.004| NLO
DIS [1] 7.1 | 0.180+0.014 | 0.113+£0.005 | 0.003  0.004 NLO

Table 4: A summary of measurementsagf from DIS. In the first row is the measurement from the Grossvellyn Smit sum
rule. The second row refers to polarized DIS, not discussékiis lectures.

FP /e | glut+u)+5(d+d+s+3)
F§z | s(u+u+d+d)+3(s+3)
Fyd 2(u+u+d+d+ 2s)
Frd 2(u +a@+d+d+ 23)
FYd 2(u — 4 +d—d+ 2s)
Frd 2(u—u+d—d—23)

Table 5: F; in various experimental configurations of interest.

in the case of/, scattering, is given by an unlike sign muon pair, one ari$iogy the charged current
scattering, and the other from charm decay.

Assuming that we have measured the strange content, we beessao the combinations+ ,
d +d,u + d and@ + d. These quantities are not independent, since the sum ofrshéwo equals the
sum of the last two. Thus, one more input is needed. It is ysaabumed that = d. This assumption,
supplemented with sum-rule restrictions, is however irfladrwith data. In fact, using the flavour sum
rules

/ dz [u(z, Q) — alz, Q)] = 2, / de [d(z, Q) — d(z,Q)] =1, (166)
we obtain
1
/ do PP (2,Q) - F{" (2, Q)]
0 e
1
= /0 dw% [u(x,Q) + a(z, Q) — d(z, Q) — d(z, Q)]
1
—3+3 ) do [0 ~ Q) (167)

which, if z = d gives the so called Gottfried sum rule. Experimental mezsents of the sum favour a
negative contribution from the — d difference.

In order to access the — d difference as a function of, one has to use different experiments.
Drell-Yan pair production in proton-proton collisions is@example.

The z integrals ofF;, are proportional to a combination of the momentum fractiamried by the
quarks and antiquarks. In particular, for example, thegireteof 27 gives the total momentum fraction
carried by quarks. This quantity is measured to be roughiy Thus, one expects that a large fraction
of the hadron momentum is carried by gluons. This poses abkdwconstraint on the gluon density
g(z, Q). From DIS, the traditional way to determigéx, @) is from its influence upon the evolution of
the singlet structure functions. This is viable at reldyivemall values ofz, where the gluon density is
not small. At largez, however, one needs to rely upon direct methods, since tl@nglensity is too
small there to influence evolution. Direct photon produti®one such process.
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Today'’s tendency for structure function studies is to penfglobal fits to a large variety of data
samples. One recent description of structure functionssfiggven in ref. [27], where many aspects are
discussed in detail. The result of these fits is shown in fig. 19

MRST partons A= 20 GeV

Lol Lol SRR I
10 10° 107 x 10" 1

Fig. 19: Parton distributions by the MRST group.

7 QCD IN HADRONIC COLLISIONS

Perturbative QCD applications in hadronic collisions is@mely important, due to the impact it has had
in the recent past for the discovery of new particles, andrttpact it is going to have in the future for
the search of new physics at the LHC. Thus there are esderitie main points of study for QCD at
hadron colliders, and they clearly go hand in hand

e QCD tests in hard processes

e Modeling of particle production processes (computing €resctions for top, higgs, etc.) and
computing backgrounds.

Unlike the case ok*e~ annihilation into hadrons, where each event is a hard pspdashadronic
collisions most events are soft, even if the CM energy is Wregh. This is because, even if the colliding
energy is high, the momentum transfer involved is not lakwever, in the production of very massive
particles, or in processes in which particles at high trars¥ momentum appear, hard momenta are
actually present, and we can apply perturbative QCD. Asa otithumb, when we try to compute a
process using the parton model formula, and find that it isidatad by small momenta, this means that
we can no longer neglect low energy details, like the offiabes of the partons inside the colliding
hadrons, or their mass. In this case, the process is caurbif long distance dynamics, and cannot be
computed using perturbative QCD.
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7.1 The kinematic variables for hadronic collisions

Given the two colliding hadron beams, one defines the kiniealatariables of any outgoing particles
according to the figure below

Thus, the transverse momentum is the projection of the particle momentum into the transegslane
(the plane orthogonal to the collision axis). The azimutirgdle¢ is defined with respect to the collision
axis. One usually defines

Transverse energy: Er = sinfF
Transverse mass mp = \/k2 + m?2

. 1. KO+l
Rapidity = y = 3 log oA
The rapidity has the nice property that under a longitudb@dst it is simply translated by the boost
angle:y — y + log~. The transverse momentum, and thus the transverse massmglg invariant
under longitudinal boosts. Thus, these variables arequdaitly useful to study hard processes, since in
general the parton centre-of-mass system for the procdksbeaniranslated with respect to the hadron
CM. For particles of small mass, we have

1 1+ cosf 0
yw§ Ogm——logtan§, (168)
and thus one defines the pseudorapidity
0
n = —log tan 3 (169)

It is useful to remember the following formula for the singlrticle phase space

|
2k0(2m)3  2(27)

=’ kpdy . (170)
Thus, the single particle phase space is uniform in trassweromentum and rapidity.

7.2 Total cross section

The total hadronic cross section is in the range of severablf@nge, and it grows logarithmically with S.
This is roughly the inverse of few hundred MeV squared, theratteristic scale of strong interactions.
We cannot compute the total cross section using pertueb&i€D. Phenomenological models based
upon Regge theory are usually employed to describe the data.

If we attempted to estimate the total cross section usingppanodel concept, we would end up
computing a parton production cross section integratedtbectransverse momentum of the parton. On
dimensional ground, this cross section would be divergesinall transverse momenta

do 1 dk2 1
— R =0 | & = 171
a2kt ° / KL A2 (171)

where the last step follows from the fact that some non-peative hadronic scale (for example, the
off-shellness of the incoming partons) should act as a lewéoff of the integral. Thus, perturbation
theory, although incapable to give a definite answer, faksigely at the point when the cross section
becomes of the order of the total cross section.
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7.3 Typical inelastic processes

The typical inelastic events in hadronic collisions araegomplex. Several hadrons are produced, the
average charged multiplicityn,) being typically of the order of 30 to 40 per event fBf,, = 600

to 1800 GeV, and it grows logarithmically with energy. Fluctuatoim multiplicity are large, of the
order of 100%, a typical feature of cascade processes. @hsevierse momentum distribution of the
produced hadrons are characterized by an average tramswass of the order of few hundred MeV,
growing slowly with energy. The produced patrticles arertigted uniformly in rapidity, the distribution
dropping smoothly to zero when approaching the maximundigpi

7.4 Looking for hard processes in hadronic collisions

Hadron collider physics is complicated by the fact thatrie¢éing events are rare with respect to the
common lowp.. inelastic events. This is immediately understood if weneste the cross section for
the production of a 100 GeV object to be of the ordei@f* GeV2, while the typical inelastic cross
section is of the order of0~* MeV~2. We expect roughly 1 hard event every’ Ibft ones, and this
estimate ignores eventual suppression due to the couptimgtant.

Furthermore, soft events may look like hard ones, becausgctdiations. Thus, with a multiplicity
of 30 and an average; of few hundred MeV, the average total transverse energy egnwell be of the
order of tens of GeV. Fluctuations may favour occasionalgndarger transverse momenta.

7.5 Jets at Hadron Colliders

Thus, unlike theeTe™ case, where above a certain energy all events look like jtteyin hadronic
collisions establishing the existence of jets has requineduse of an appropriate trigger. In fact, one
has to look only at events with a large total transverse gndirthe total transverse energy is larger than
the typical value for a soft event, the events show the presehjets. This was the method followed by
the UA2 and UA1 experiments at the CERNpSpcollider, to establish the existence of jets in hadronic
collisions. It was found there that requiring a transversergy larger than 70 GeV, most events look like
jet events.

The description of jet production in QCD follows the linestbé QCD-improved parton model.
At the leading order level, in order to compute jet crossisaatie only need the Born cross sections for
parton parton scattering, reported in table 6. The 2-jdtigiee cross section can then be obtained from

Process d‘go

qq' — qq' %gézz;ﬂz

0 4 HEE

97— q7 | % [% (szttw + 52';;12) _ %Z_Z]
qq — g9 %2_15 ;_?ﬁglﬁz_%tz;uz}

Table 6: Cross sections for light parton scattering. Thatimt ispy p2 — k1, § = (p1 +p2)%, = (p1 — k)%, @ = (p1 — )%
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the formula 55
H H. Oij—rk+l
do = dovda ™) (w1, ) £ (22,10 o (172)
ijkl
that has to be expressed in term of the rapidity and transwvemnentum of the quarks (or jets), in order
to make contact with physical reality. The two particle ghapace is given by

&k ,
d®y 5 2m6((p1 +p2 —k)7), (173)

~ 2K (2n)

and using eq. (170), in the CM of the colliding partons, we get

_ o A(10N2
A = g5 Phedy 206 — 4(K)°) (174)

Herey is the rapidity of the produced parton in the parton CM fraih&s given by

y = Y1 g Y2 (175)

wherey; andys are the rapidities of the produced partons in the labordtarye (in fact, in any frame).

One also introduces
_ ity 1w

Yo = —log , T = 5 T1 Ty . (176)
2 2 T s
We have
d$1 d$2 = dy() dr . (177)
We obtain . " )
o L (Hl) (Hz) Oij—k+l1 2
do = % dyo ~ fi" (w1, p) f7 (22, 1) i,  2(2r) 2dy dky (178)
which can also be written as
do 1 (H1) (H») dGij ki
_ ( ; R 179

ijkl

The variablessq, 5 can be obtained fromy, y2 andp, from the equations

Yo = Y1 ;y2 (180)
Yy1—Yy
y="5 (181)
2
oy = % (182)
21 = zr e’ coshy (183)
z9g = zre Y0 coshy . (184)

For the partonic variables, we negd-= s 21 2 and the scattering angle in the parton CM frafnsince
t:—g(l—cose), uz—%(l—{—cos@). (185)
Since we are neglecting parton masses, rapidity and psapiddy are identical, so that the equation

y = — log tan g (186)
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gives ud.

The Born cross section formulae given here predict the mrioolu of back-to-back jets, with op-
posite transverse momenta. Details of the jet distribstidepend upon the knowledge of the structure
functions. However, it has been observed that, to a goocajppation, scattering processes with gluon
exchange in theé channel dominate, and that they are roughly proportionabtth other. More specif-
ically, thegg — g9, qg — qg andqq’ — qq¢' processes are in the ratiox 3, 3 x 4/3 and4/3 x 4/3
respectively. This property is exact in the small angletedalg limit, but holds to a good approximation
also at large angles. It can be obtained from Table 6, by kgepinly the most enhanced terms when
t - 0 (@andu — —s) or whenu — 0 (andt — —s). The processes with identical particles in the
final state have an extra factor bf2, but on he other hand have enhanced terms when0 and when
u — 0, while those with different particles in the final state hawnty thet singularity. Thus, at the end,
the qqg — qq process at small angle gives the same contribution agthe: q¢' process.

Using this property the jet cross section simplifies

do 1 do
~ p(H) p(Hz) 279999 187
with A
FUD (, 0) = £ @) + 5 5 1 (@) (188)
i#g

Equation (187) gives a definite prediction for the angulgyesielence of jet production. It can also be
written, more explicitly, in terms of, 22 andcos 8, where# is the scattering angle in the rest frame of
the partons.

do do
— p(H1) p(H2) 2799799 189
dz, dzo dcos @ (1, 1) (w2, 1) dcos @ (189)

Early studies of the UAL and UA2 experiments have confirmegitt@haviour [28].

Modern studies of jet physics at colliders are performechatriext-to-leading level in QCD.
Calculations of jets cross sections at next-to-leadingll&ave been available for quite a long time.
Comparisons between data and calculation require agre¢emnea jet definition to be used. Such a
definition should be of the Sterman-Weinberg type, that salg it should be infrared and collinear safe.
Several algorithms have been proposed to define jets. Fautip@se of this lectures, it will be enough
to know that the most commonly used definitions make use otkeaf a given radius in the ¢ plane.
The circle is moved in the plane until one finds a maximum oftthasverse energy deposition inside
the circle, and a jet of the giveyy and E;. values is associated with this point. The single inclusive
distribution of jets found in this way, as a function Bf,, is compared with QCD NLO calculation. An
example of this is shown in fig. 20, taken from ref. [29] (s@niktudies were performed previously by
the UAL and UA2 experiments). The analogous plot with CDFR dfiows instead a discrepancy of the
QCD calculation with data at very highi,.. This is shown in fig. 21. Even if DO does not have evidence
of a discrepancy, systematic errors are smaller in the CBE,@nd thus the above studies have been
taken as a hint of signal for new physics. At this time, it hasdme clear that the very hidli; region
probes a previously unexplored region for the structuretfans, and that it is possible to modify parton
density fits to account for the CDF data. It is however intémgsto point out the value of studies of
this kind. Since the QCD jets parton cross sections drop aittie square of the transverse energy, a
contact, 4-fermion interaction (similar, therefore, toakénteractions at low energies) would stick out
at sufficiently highE. In particular, a 4-fermion interaction with a coupling etemtG, would give
rise to corrections to the cross section due to the interéeréerms with the standard QCD amplitude.
On purely dimensional ground, such corrections would berdénG, and would thus overcome the
strong interaction at som&;. Thus, high transverse momentum jets studies can be used bmpnds
on these kind of interactions. Sometimes, these boundsaieel csomewhat improperly, compositeness

48



=
o
~

=
o
w
LA LLLL B LA R AL B A R AL B R LI I R LLLL I R AL R R

DO Preliminary (93 pb™")

CTEQ3MU=Ey . f2
(JETRAD)

A Unsmeared Data

1anfd°ol(dE.dn) fb/GeV
5

102
10 A
Band shows systematic error
1 (6% luminosity error not shown)
-1
,0\10
S
« 50%
o
B O [
LLl e
m—50% s
U>)\ \\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
50 100 150 200 250 300 350 400 450 500
Jet E (GeV)
Fig. 20: Central inclusive jets cross section.
(DATA-THEORY)/THEORY
g %’) 150
Q [ - <
E 150 P Prefiminery g 125 CDF-Preliminan
?T — 100 Run-1B(87-pb")
£ 1p Theory: Jetrad (NLO) . with run 1A results overlayed
s | - - (N,
T MRSA U=Exman/ 2 N - NLOQCD CTEQ3M scale Et2 |
S osf o ‘ 50 #

.0 "-.,./;‘w\}\\‘ 2: Wmoo”%ﬁ% T %}

-0.51 : -25

- o (94-95) Data 93 pb g

[ 50 [

-1 r

[ Band shows systematic error 75 L

r (6% luminosity error not shown) [
-1.5L0 (I [,

0

ol b b b b b b b
50 100 150 200 250 300 350 400 450 5001 50 100 150 200 250 300 350 400 450
Jet & (GeV) Transverse Energy (Gev)
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bounds, since these kinds of 4-fermion interactions woalinally arise in composite models, due to
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the exchange of heavy composite particles.

Point interaction would also lead to a different angulatrdiations for the dijet cross sections. The
dominance of the /# contribution gives rise to an angular dependence of the fgifh= 1/(1—cos 6)?.
Defining the variableé = (1 + cos#)/(1 — cos#), we would expectlo /d¢ to be roughly flat in this
case. This is illustrated in fig. 22. Also in this case, thetdbution of a contact interaction would be
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¢ (see for example ref. [30]).

7.6 Production of W, Z, and Drell-Yan pairs

From the point of view of perturbative QCD, the productioriiof Z and Drell-Yan pairs are very similar
processes. Some graphs contributing at leading, nexatdirig, and next-to-next-to-leading order in the
strong coupling are shown in fig. 23. The corrections of ordehave been given a long time ago in

:>@ +>XX®W .. X b

o(1)

0(as)

0(o)

Fig. 23: Some graphs contributing to the Drell-Yan partamizss section in QCD.
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refs. [20, 21], while thex? corrections have been computed in ref. [31]. In order to ggtiainted with
the kinematics, let us compute the parton cross sectioméoptoduction of a hypothetic massive vector
meson. The amplitude is

M = g v(p2) 7*u(p1) (190)
and the partonic cross section is
. 111 2
0_2—§Z§/d<1>1 Z M|, (191)
spin,col.

where we have included a factor bf4 for the initial spin averagel /9 for the initial colour average,
1/25 to go from an amplitude squared to a cross section, and th@antiele phase spack&b;. We have

> IMP =3¢ Te[phy" (—p) vl = 126°5 (192)
spin,col.
and ,
d*q 4 ¢4 2 2
de, = / 20 (2n)} (2m)* 0% (p1 +p2 —q) =2md((p1 +p2)° — My) (193)
so that at the end we get
4 2
&= % ad(s — M2), (194)

with o = ¢%/(4x). For W+ production, the coupling i = gem/(v/2 sinfy), and only left handed
quarks, and right handed antiquarks, can contribute. We get

7'('2 Qlem

by = — sin™2 Oy 0(5 — M2) . (195)

The full hadronic cross section is then

ow = / dzy dzo [(fQEHl)(xl)fC%HZ)(xg) + deHl)(xl)fstQ)(fEQ)) cos? O + ...

7T2O[em

where one should not forget the appropriate CKM factors s€section studies fé#/Z production are
resumed in fig. 24, which is taken from ref. [32]. The agreenoéthe data with the theoretical prediction
is quite satisfactory, especially in view of the theordtigacuracy one reaches in these calculations.
However, this is not the only reason why the perturbativewtation is useful in this case. From the
measured ratio

R— ow - B(W — ev)
" 0,-B(Z = ee)’
assuming that the ratio of the production cross sectiondsrately calculable, one can extragtiv —
ev), and from itTy,,

(197)

(W — ev)
- B(W = evn)’
assuming that thev width is correctly given by the standard model. This widthasi@ement is sensitive
to non-standard decays of thié.

Ty (198)
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7.7 Heavy Flavour production

The production of heavy flavour in hadronic collisions irwed strong interactions directly. Furthermore,
in many cases of interest, the gluon densities play an irpbrole. This is unlike the case o /Z
production, in which the main production mechanism doesnvolve the strong coupling constant. The
search and discovery of the top quark has therefore religdeowhole machinery of perturbative QCD,
factorization, and structure function physics.

The leading order process is proportional to the squareeo$titong coupling constant. Next-to-
leading (order?) calculations for the production of heavy flavour producti@ave been available for a
long time. Furthermore, a large amount of work has been padd on resummation of effects enhanced
in particular kinematic regions [33].

Since the top is very heavy, one expects that perturbativ® Qauld work well in this case.
In fig. 25, taken from ref. [34], | show a comparison of theiwadt predictions with the CDF and DO
measurements.

CDF data for bottom production has always shown a tendentge teigher than the theoretical
predictions, as one can see from fig. 26, a problem that iglztively investigated. A large body of
data is available for charm production. Theoretical catahs are, however, not very reliable in these
cases, since the charm mass is only moderately heavy, andtieucannot safely rely upon perturbation
theory. Some results are shown in fig. 27. A recent review a¥ydavour production is given in [33].

52



40 ‘ ‘

30 P~ i
N VS=1.8 TeV, pp
20 A MRSR2 .

[N

o (pb)
SO NOOo

SRR NLO

NLO+NLL, A=2

2 1 1 ‘ 1 1 ‘ 1 1 ‘ 1 1 1>
120 140 160 180 200

m, (GeV)

Fig. 25: Top production cross section versus the mass, cadpa CDF and DO measurements. The dashed band correspond
to anO(«?) calculation, while the solid band includes also soft gluesummation effects to the subleading logarithmic level.

10° ¢ \ \ \ e
B Upper theory: ]
- m,=4.5 GeV, u=j,/2, MRS125 1
. 104 E Central theory: —
= i m,=4.75 GeV, u=u, MRSA' ]
L m B-J/¢K Lower theory: E
E 103 mg):t') GeV, u=2u, MRSA’ —
- C 2 2 B
o, r po=V(my+pr) ]
A i ]
£ 102 L -
5 107 ¢ -
10!l Data: CDF —
E pp - b+X, Vs=1.8 TeV, |yl<1 s

100 1 ‘ 1 1 ‘ 1 1 ‘ 1 1 ‘ 1 1
0 10 20 30 40 50

p" (GeV)

Fig. 26: Comparison of bottom cross section calculatiomsu&CDF measurement.

8 CONCLUSIONS

In these lectures | have given an overview of perturbativeDQ&s we have seen, the application of
perturbation theory in strong interactions is not strmftard, unlike the case of weak interactions and
electrodynamics. Nevertheless, a consistent and tedtalework for the application of perturbation
theory in strong interactions can be defined. This framevhakbeen severely testeddhe™, ep, and
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Fig. 27: Charm and bottom production cross sections in prptoton collisions at fixed target energies

hadron-collision physics. It is perhaps true that, afterybry extensive work performed at LEP1 and
at the SLD, our confidence in perturbative QCD has become guoitd. Testing QCD remains however
an important activity, due to the large number of applicaichat heavily depend upon it. The near
future in particle physics research is in hadron collideygits, where the application of QCD is more
complex. We should not forget, for example, that Higgs potida at hadronic colliders is essentially
a stong-interaction phenomenon, driven by gluons. Thus,important to build more confidence upon
our ability to compute hadronic processes.
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