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Abstract
I give an introduction to perturbative QCD. I illustrate itsapplications ine+e�
physics, deep-inelastic scattering, and hard production phenomena in hadron
collisions.

1 STRONG INTERACTIONS

Strong interactions are characterized at moderate energies by the presence of a single dimensionful scale,
of the order of few hundred MeV, a scale that we will call in thefollowing �S . No hint to the presence
of a small parameter, in which to develop a perturbative expansion, is present in the strong interaction
world. Thus, typical cross sections are of the order of 10 millibarns (corresponding roughly to1=�2S),
the width of hadronic resonances is of order�S, and the size of a baryon is typically of the order of1=�S . This is very much different from the case of electromagnetism and of weak interaction, where all
reactions can be viewed as originating from a weakly coupledpoint-like vertex, the fermion–fermion–
photon vertex in electrodynamics, and the four fermion vertex in weak interactions. The development
of a model of strong interactions has therefore followed a rather intricate path. Aside from what can be
inferred from symmetry properties, S-Matrix models were developed in the 60’s, since the general feeling
prevailed that it was impossible to describe strong interactions using a field theoretical framework similar
to the one used for QED. Dual models, which eventually gave origin to string theories, were discovered
precisely in this context, but failed to give a consistent explanation of strong interaction dynamics.

2 MOTIVATIONS FOR QCD

Today we have a satisfactory model of the strong interaction, which is given in terms of a non–Abelian
gauge theory. The main motivations for this model are essentially the following.

2.1 Hadron Spectrum

The hadron spectrum can be completely classified from the following assumptions

1. Hadrons are made up of spin12 quarks. The charge and masses of the known quarks are given in
table 1. One usually refers tou, d, s, , b andt as “flavours”, and commonly refers tou, d ands as
the light flavours, and, b andt as heavy flavours.

Electric Charge= 23e up charm topm = few MeV � 1:5 GeV �170 GeV
Electric Charge= �13e down strange bottomm = few MeV few hundred MeV � 5 GeV

Table 1: Known quarks

2. Each quark flavour comes in 3 colours. Therefore, quark fields are spinors, and carry a flavour and
a colour index: (f) avouri olour .

3. The SU(3) symmetry acting on colour is an exact symmetry.



4. Observable hadrons are neutral in colour, in the sense that they are colour singlets under the SU(3)
colour group (“singlet” means invariant under the action ofthe group).

The SU(3) group is the group of3� 3 complex unitary matricesU with unit determinantU yU = 1 ; detU = 1 : (1)

Invariants can be easily formed out of quark–antiquark statesXi  �i  i !Xijk U�ij �j Uik k =Xkj  Xi U yjiUik! �j k =Xk  �k k ; (2)

which gives us the possibility of forming integer spin colorsinglet states with a quark and an antiquark.
We can form colour singlet also from three-quark statesXijk �ijk i j k ! Xijk;i0j0k0 �ijkUii0Ujj0Ukk0 i0 j0 k0 = Xi0j0k0 �i0j0k0 i0 j0 k0 (3)

where the last equality is a consequence of the identityXijk �ijkUii0Ujj0Ukk0 = detU �i0j0k0 (4)

anddetU = 1 for SU(3) matrices. Therefore we have the possibility of forming colour neutral, semi–
integer spin hadrons formed of three quarks. The most important hadron multiplets are displayed in
fig. 1. Multiplets are classified according their transformation properties under the flavour group. Each
multiplet contains particles with similar properties. Observe that we need colour if we want a particle
like the�++, which is made of three up quark with the same flavours and samespin, to have similar
properties to the�0, which has three different flavours. In fact, if we didn’t have colour, because of
the Pauli principle, the spatial wave function of the�++ should be antisymmetric, while that of the�0
could very well be symmetric. With colour, instead, the colour wave-function itself is antisymmetric, and
so there is no problem to have the particle of the multiplet all in a symmetric spin, flavour, and spatial
wave-function.

It can be shown that in order to form an SU(3) singlet in a system withnq quarks andn�q antiquark,
we have the constraint nq � n�q = n� 3 (5)

with n integer. It is a simple exercise to show that because of this condition observable hadrons must
have integer charges.

2.2 Scaling

Scaling was first observed in deep inelastic scattering experiments at SLAC (Stanford Linear Accelerator
Center, Stanford, California), around 1968. The deep inelastic scattering process, depicted in fig. 2, is
the collision of a lepton (an electron in the SLAC case) with anucleon target, which fragments into a
high multiplicity, massive final state. The scattering process kinematics can be defined by the following
dimensionless variables xBj = Q22 p � q y = q � pk � p : (6)

whereQ2 = �q2. The valuexBj = 1 corresponds to elastic scattering. In factM2X = (q + p)2 = �Q2 +m2p + 2� = 2�(1� xBj) +m2p: (7)
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Fig. 1: Hadron spectrum.

Fig. 2: Deep inelastic scattering.

Scaling means that the differential cross section, when expressed in terms of these dimensionless param-
eters, in the limit of high energy withx andy fixed, scales like the energy in the process, according to its
canonical dimension d�dx dy / 1Q2 : (8)

This property is quite remarkable, since the right hand sidedoes not depend upon�S , like most moderate
energy cross sections, and it looks more like the behaviour one may find in a renormalizable field theory
with a dimensionless coupling, like electrodynamics. Evenmore spectacular scaling phenomena are
observed ine+e� annihilation, where the total hadron production cross section becomes proportional to
the muon pair cross section at high energies.
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The discovery of scaling phenomena in deep inelastic scattering and ine+e� annihilation, has
given a strong evidence that if a field theory was to describe strong interactions, it had to be weakly
coupled at high energies, that is to say, it had to be “asymptotically free”. The only known asymptotically
free four–dimensional field theories are the non–Abelian gauge theories. It becomes therefore natural to
attempt to describe the hadronic forces by using an SU(3) non–Abelian gauge theory, coupled to the
colour quantum number. This is also hinted by the fact that the condition of colour neutrality of the
hadron spectrum must have a dynamical origin.

2.3 The QCD Lagrangian

The QCD Lagrangian readsL = �14F ��a F a�� +Xf � (f)i �(i=� �mf )Æij � gStaij =Aa� (f)jF a�� = ��Aa� � ��Aa� � gSXb; fabAb�A� : (9)

Sum over repeated Lorentz and colour indices is always assumed. The sum over different flavours is
explicitly indicated. The symbolstaij are theSU(3) generators and thefab are the structure constant of
theSU(3) algebra. The matricesta form a complete basis of traceless3 � 3 matrices. There are 8 such
matrices, and therefore there are 8 gluons. The basis is chosen in such a way thatTr�tatb� = 12Æab (10)

The symbolsf are then defined by (square brackets indicate the commutator)[ta; tb℄ = ifabt (11)

I also give the important property (which follows from completeness, tracelessness and relation (10))Xa taijtakl = 12 �ÆilÆkj � 13ÆijÆkl� : (12)

The colour structure of the Lagrangian may seem complicatedat first sight. One simple way to look
at it, is to think of quarks as objects having 3 colour states.The gluon can be thought as carrying the
combination of a colour and an anticolour, except that out ofthe nine possible combinations the “neutral”
one, formed by the sum of all equal colour-anticolour pairs is subtracted away. Figure 3 shows how to
compute colour factors by using this intuitive point of view. The Feynman rules for the QCD Lagrangian
are given in fig. 4.

The QCD Lagrangian is very similar to the QED Lagrangian. TheFeynman rules are also very
similar. The most apparent difference is due to the fact thatthe fermions carry a new quantum number,
the color (the indicesi; j = 1; 2; 3 in eq. (9)). Also the gluons carry a colour related quantum number.
Unlike the case of QED, therefore, the gluons are charged, and can emit other gluons.

As in the case of electrodynamics, one defines the strong coupling constant�S = g2S4� : (13)

As we will see in the following, this coupling constant has a strength that depends upon the energy scale
of the process in which enters. In leading order�S = 1b0 log �2�2 (14)
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fermion

gluon1p2 0BB� � 13 1CCA Fermion-Gluon Vertex(ta)1p2 0B� � 1CA 3-Gluon Vertex (fab)
! = 3! 1p2 � � 13 � = 0! 12  � 13 � 13 + 19 ! = 4

Fig. 3: Colour Feynman rules for QCD

where b0 = 11CA � 4TF nf12� : (15)

whereTF = 1=2 andCA = N for SU(N) (3 for SU(3)) andnf is the number of flavours. Thus� is the
parameter that characterizes the QCD coupling constant.

2.4 Symmetries

We know that the strong interaction world has a very good symmetry property, the isospin symmetry.
Particles in the same isospin multiplet, like the proton andthe neutron, or the charged and neutral pions,
have nearly the same mass. Furthermore, the Wigner-Eckart theorem can be used to relate decay and
scattering processes which are connected by isospin transformations. This symmetry properties must be
present in some way in the fundamental QCD Lagrangian, whosefermionic sector is given byLF =Xf;ij � (f)i �(i=� �mf )Æij � gtaij =Aa� (f)j : (16)

An isospin transformation acts on the quark field as a unitarymatrix (f) !Xf 0 Uff 0 (f 0) (17)
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= Æab ��g�� + (1� �) p�p�p2 + i�� ip2 + i�= Æab ip2 + i�= Æik i=p�m+ i� ����mn= �gSfab hg��(p� q) + g�(q � r)� + g�(r � p)�i
= �ig2Sfxafxbd �g��gÆ � g�Æg���ig2Sfxadfxb �g��gÆ � g�g�Æ��ig2Sfxabfxd �g�g�Æ � g�Æg��
= gSfab q�
= �igStaki �mn

Fig. 4: Feynman rules for QCD
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wheref andf 0 are restricted to the up and down flavours, andU is a unitary two dimensional matrix.
By a simple exercise, one can verify that, in order for the fermionic Lagrangian to be invariant under
the isospin transformation, we must have eithermu = md ormu;md ! 0. The distinction of the two
possibilities is a physical one. It can be phrased as follows: if the up and down masses are of the order
of the QCD scale� or larger, then they must be nearly equal in order for the isospin symmetry to work.
Alternatively, the up and down masses must be much smaller than�, for the isospin symmetry to work.
The first possibility is not very appealing from a theoretical point of view. From what we know from
the theory of weak interactions, particles belonging to different families have different masses. It would
be very hard to justify the fact that two quark flavours have equal masses while all the others are very
different. In fact, there is a large body of evidence that favours the second possibility, that is to say, that
the up and down quark masses are very small. This fact has a fewremarkable consequences, due to the
fact that, for small masses, the QCD fermionic Lagrangian has a much larger symmetry than isospin
alone. In order to see this fact, let us define left and right-handed field components L = 12(1� 5) ;  R = 12(1 + 5) (18)

and substituting =  L +  R in the fermionic Lagrangian we have (suppressing colour indices)LF = Xf n � (f)L (=� � gta =Aa) (f)L + � (f)R (=� � gta =Aa) (f)R o�Xf mf � � (f)R  (f)L + � (f)L  (f)R � : (19)

Terms that mix left and right components in the kinetic energy, and terms diagonal in the left and right
component of the mass terms are absent because of the following elementary identities L = 12(1� 5)  L  R = 12(1 + 5)  R (20)� L = � L 12(1 + 5) � R = � R 12(1� 5) (21)

and from the fact that5 anticommutes with�. If we could neglect the fermion masses the Lagrangian
would have the large symmetrySUL(N)� SUR(N)�UL(1)�UR(1) (22)

whereN is the number of flavours. In fact, the transformation (f)L ! ei�LXf 0 Uff 0L  (f 0)L (f)R ! ei�RXf 0 Uff 0R  (f 0)L (23)

whereUL andUR are (independent) matrices ofSU(N), leaves the Lagrangian invariant. The phase fac-
tors constitute the twoU(1) groups. The isospin symmetry group is a subgroup of the above, also called
the vector subgroup, characterized by equal transformation matrices for the left and right components.
Besides the isospin transformations, there are other independent symmetry transformations, in which the
left and right-handed component transform with matrices that are the inverse of each other. These are
called axial transformations (they do not form a subgroup bythemselves). In the following, I will only
state what happens of all these symmetries, without giving detailed explanations� The vector SU(N) subgroup is realized in the spectrum. It is the observed isospin symmetry. The

U(1) vector subgroup is a phase symmetry related to baryon number conservation.
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� The axial U(1) symmetry does not survive quantization, because of the so-called triangle anomaly.
This symmetry is simply not there in the full theory.� The remaining axial transformations are broken symmetries. The Goldstone bosons of these bro-
ken symmetries are the pion fields.

Goldstone bosons are massless particles, while the pions are not. This is a consequence of the fact that
the axial symmetries are only approximate, due to the fact that the quark masses are not strictly zero.

Thus, by assuming that the up and down quark masses are small,we explain the presence of isospin
symmetry, as well as the lightness of the pions. Other dynamical predictions follow, like relations among
the low energy scattering properties of the pions and the pion decay constant. The interested reader can
find many good references where to study this subject [1].

2.5 Summary

In summary, by accepting QCD as the fundamental theory of strong interactions we can� Explain the low energy symmetry properties, and give a justification of the observed spectrum.� Explain scaling phenomena at high energies.� Leave Weak interactions in peace. The QCD colour group commutes with the electroweak group
SU(2)�U(1). Since the electroweak interactions are less symmetric (they break parity and CP),
this guarantees that there is no mixing between electroweakand strong interactions that enhances
the parity–violating effects (giving rise, for example, toparity violating interactions of size�ew�S
instead of�ew=M2W ) or flavour changing neutral current effects.� Give a description of the hadronic forces which is similar toelectroweak forces, thus opening the
possibility of a uniform description of the forces in naturein terms of gauge theories (unification).

There are two common points of view among physicists, with regard to QCD.

Many believe that QCD is an extremely well established theory, much better established than the
Electro-Weak theory. In fact, the Lagrangian is fully specified in term of a single parameter. Remember,
in fact, that quark masses have electroweak origin, and are related to the Yukawa coupling and to the
electroweak symmetry breaking. In Electroweak theories, on the other hand, we have lots of parameters
and quite a few alternatives are possible for the symmetry breaking sector.

Others believe that Electro-Weak theories are much better established. In fact, we can compute
every accessible phenomenon we like with great accuracy, and seek accurate comparisons with experi-
mental results. On the other hand, in QCD, we are unable to explain rigorously even basic phenomena
like colour confinement, and perturbative calculations rely upon unproven assumptions.

The first point of view can be stated by simply saying that QCD must be right because we cannot
think of anything else that is even plausible as a theory of strong interaction. The second point of view is
more humble, and assumes that in order to establish a physical theory one must make testable predictions,
and compare them with experiments.

Thus, we find that essentially no viable alternative to QCD have been formulated so far, and yet
there is a huge ongoing effort in theoretical and experimental physics aimed at testing the predictions of
QCD.

At low energy, QCD is a strongly interacting theory. Besidesthe phenomenological results that
follow from its symmetry properties, the only known way to perform calculations in this regime is by
computer simulation of QCD on a lattice, that is to say on a finite and discretized model of space-time.
This approach is bound to improve as time goes by, since people become more and more clever, and
computers become more and more powerful.
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At high energy, in many cases, standard perturbative methods can be applied. In these lectures I
will deal mostly with the perturbative applications of QCD.We will see that, even at high energy, the
application of perturbative techniques is not straightforward. In fact, we will be able to perform calcula-
tions only when the long distance (low energy) part of the process we examine has no or little influence
upon the quantity we want to compute. In the following, I willillustrate the basics of perturbative QCD
by examining the process of hadrons production via the annihilation of ane+e� pair at high energy. This
process is particularly simple, since no strongly interacting particles appear in the initial state.

3 AN ILLUSTRATION OF ASYMPTOTIC FREEDOM IN THE PROCESS e+e� ! HADRONS

We will now introduce the basic features of QCD via the simplest process in which it can be applied, that
is to say the production of hadrons ine+e� annihilation. By studying this process we will illustrate the
remarkable property of asymptotic freedom, and its physical implications.

We are considering the process depicted in fig. 5. The production of hadrons takes place via the

Fig. 5: Electron–positron annihilation into hadrons.

production of a virtual photon, or of a real or virtualZ boson. From the point of view of QCD, the
decay of a virtual photon, or of aW or Z boson, are very similar, and in fact strong corrections to these
processes are given by essentially the same formulae. For simplicity, however, we can always think
about the decay of a virtual photon. We will begin by attempting to compute the total cross section for
the decay of a virtual photon, with a virtuality (q2) much larger then typical hadronic scales. Our attempt
will be extremely crude. We will simply use the QCD Lagrangian and the corresponding Feynman rules,
and try to compute the cross section order by order in the strong coupling constant. The prediction at
zeroth order in the strong coupling comes simply from diagram a of fig. 6. It is usually expressed in

Fig. 6: Diagrams for the QCD calculation ofR(e+e� ! Had:) up to the order�S.
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terms of the ratio of the hadronic cross section divided by the cross section for the production of a�+��
pair. It is given by R0 = �(� ! hadrons)�(� ! �+��) = 3Xf 2f (24)

wheref runs over the quark flavour species, andf is the electric charge of the quark of flavourf in
units of the electron charge. The factor of 3 accounts for thefact that there are three colours for each
quark. The sum extends to all the flavours that can be producedat the given energy. The formula is valid
in all cases when we can neglect quark masses. Near the threshold for heavy quark production one must
include a correction factor, which in the general case of a vector boson decay is given byR0 = 3Xf s1� 4m2fs  1 + 2m2fs ! 2f (25)

Corrections of order�S to R can be computed in a straightforward way. The relevant contributions
come from the interference of the virtual diagramb with diagrama, plus the square of the real emission
graphs + d. There are also diagrams with self–energy on the fermion lines, not shown in the figure,
that should be included with the appropriate weight. The result turns out to be completely finite. All
ultraviolet divergences that arise in intermediate steps of the calculation cancel among each other. This
is a consequence of the fact that the electromagnetic current is a conserved current, and therefore it is
not renormalized by strong interactions. Other kind of singularities arise in intermediate steps of the
calculation, namely soft and collinear singularities. They all cancel in the total. Their meaning will be
discussed further on. The corrected value of R becomesR = R0 �1 + �S� � : (26)

If we go on, and compute the corrections of order�2S something new happens. We find ultraviolet
divergences that do not cancel, and the result isR = R0�1 + �S� + �+ �b0 logM2Q2 ���S� �2� (27)

whereM is the ultraviolet cutoff (for those who are familiar with dimensional regularization, the cutoff
scale ind = 4� 2� dimensions isM = � exp 1� ), andb0 = 33� 2nf12� (28)

andnf is the number of light flavours. The divergence is dealt with the usual prescription of renormal-
ization. We define a renormalized charge, function of an arbitrary scale�,�S(�) = �S + b0 logM2�2 �2S (29)

and express the result in terms of�S(�) instead of�S. We obtain thenR = R0 1 + �S(�)� + �+ �b0 log �2Q2 ���S(�� �2!+O ��S(�)3� : (30)

The formula forR is now finite. The theory of renormalization guarantees thatwith this procedure we
can remove the divergences from all physical quantities. This implies that the one loop divergence of
any physical quantity which in lowest order has the valueA�nS must have the formnAb0 logM2�n+1S .
Observe that, as a consequence of this procedure, we end up expressing our results in terms of a coupling
constant which is function of a scale.
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3.1 Renormalization group and asymptotic freedom

I will now give a more general and abstract description of therenormalization group and asymptotic
freedom. From the following discussion it should be clear that the existence of the renormalization group
follows from the property of renormalizability of field theory, and that asymptotic freedom is a possible
consequence of the renormalization group. I will not give any technical details on the computation of
the renormalization group flow (i.e. of the so called� function), which can be found in many good
textbooks.

In field theories we encounter ultraviolet divergences, which in renormalizable theories can be
removed by a suitable redefinition of the coupling constantsand the fields. In the simplest case of a
theory characterized by a single coupling constant, renormalizability can be stated in the following way.
A physical quantityG will be given in such a theory as a power expansion in the coupling � (which we
will assume to be dimensionless), with possibly UV divergent coefficients. We will write:G = G(�;M; s1 : : : sn) ; (31)

that is to say,G depends upon the coupling, the ultraviolet cutoffM , and some invariantss1 : : : sn
constructed out of the momenta and masses involved in the process in question. Renormalizability means
that I can define a renormalized coupling�ren�ren = �+ 1�2 + 2�2 + : : : (32)

with i = i(M=�) (33)

in such a way that G(�;M; s1 : : : sn) = ~G(�ren; �; s1 : : : sn) : (34)

So, the physical quantity can be expressed in term of the renormalized coupling, the finite scale� and the
invariants, in terms of a finite function. In other words, allthe divergences have been reabsorbed in the
renormalized coupling. The finite scale� has to be introduced in order for the dimensionless coefficientsi to depend upon the dimensional quantityM . We will also write�ren = �ren(�;M=�) ; � = �(�ren;M=�) : (35)

and G(�(�ren;M=�);M; s1 : : : sn) = ~G(�ren; �; s1 : : : sn) : (36)

Therefore, renormalizability means that by a redefinition of the coupling of the form (35), eq. (36) holds
for all physical quantities. Thesameredefinition of� makesall physical quantities independent of the
cutoff.

In the redefinition of eq. (35) we are forced to introduce a scale �. If we change� and�ren by
keeping� andM fixed, the physics remain invariant, because physical quantities, to begin with, are
functions of� andM only. Let us study the infinitesimal transformationd�ren d�2 that leaves the
physics invariant. This will lead us to the introduction of the renormalization group. In order ford�ren,d�2 to leave the physics invariant, we must have��(�ren;M=�)��ren d�ren + ��(�ren;M=�)��2 d�2 = 0 (37)

which implies � ~G(�ren; �; p1 : : : pn)��ren d�ren + � ~G(�ren; �; p1 : : : pn)��2 d�2 = 0 : (38)
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From equations (37) and (38) we get�2 d�rend�2 = ��2 ���2�(�ren;M=�)���ren�(�ren;M=�) = ��2 ���2 ~G(�ren; �; s1 : : : sn)���ren ~G(�ren; �; s1 : : : sn) (39)

from which it follows that �2 d�rend�2 = �(�ren) (40)

where� does not depend upons1 : : : sn, M or �. Observe that� does not depend uponM , becauseM
does not appear on the right hand side of the second equality of (39), it cannot depend upons1 : : : sn
because they do not occur on the right hand side of the first equality. Finally, it could only depend upon�. But� is dimensionful, while� is obviously dimensionless, and so it cannot even depend upon �.

Using the expression�(�ren;M=�) = �ren + 1(M=�)�2ren + : : : (41)

we find �(�ren) = �2ren �2 ���2 1(M=�) + : : : (42)

Comparing this equation with eq. (29), we immediately get�(�ren) = �b0 �2ren + : : : : (43)

and therefore dd log �2�S(�) = �b0 �2ren + : : : (44)

which characterizes the evolution of the coupling constantas a function of the scale�. Equation (44) can
be also written, at the lowest relevant orderdd log �2 1�S(�) = b0 (45)

which can be easily solved to give 1�S(�) = b0 log �2�20 + 1�S(�0) : (46)

Without loss of generality, the solution can be written1�S(�) = b0 log �2�2 ) �S(�) = 1b0 log �2=�2 (47)

where� plays the role of an integration constant. In QCD,b0 is positive, and eq. (47) makes sense only
for � > �. One is tempted to infer that� is the value of� at which the coupling constant becomes
infinite. In fact, this identification is superficial. When the coupling constant starts to be large, we can
no longer trust the perturbative expansion, and the above equation has been derived only at the lowest
order in perturbation theory. It is better therefore to think of � as the scale parameter of the theory which
defines the value of�S at large scales. In other words,� is defined only through the formula for�S(�),
and this formula has a meaning only for large�.

QED is very similar to QCD in many respects, and one may wanderwhy we never talk about a�QED analogous to the� in QCD. In fact, the basic difference between QED and QCD is the value ofb0. We have bQED0 = �4nf12� ; (48)
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a negative value. The expression for the running coupling inQED is then1�QED(�) = bQED0 log �2�2QED : (49)

The expression in eq. (49) makes sense only for�� � (so that the right hand side is positive), while the
expression in eq. (47) makes sense only if� � �. In other words, QCD is a weakly coupled theory at
high energy, while QED is weakly coupled at low energy. This is the content of the statement that QCD
is asymptotically free, while QED is not. The scale at which QED becomes strongly coupled is obtained
by solving the equation 1�QED(me) = bQED0 log m2e�2QED : (50)

which gives �QED = me exp�� bQED0�QED(me)� : (51)

This formula is valid only if all charged fermions have the same mass, equal tome, and the same charge.
However, even if one does a more accurate job, the basic result is that�QED is an astronomic scale,
and this is the reason why we never talk about it. Notice that this fact indicates that QED cannot be a
fundamental theory. The existence of a high scale at which the theory becomes strongly coupled makes
it impossible to measure the basic vertex of QED at short distance, which is somewhat of a contradiction,
since we assume that we know the local Lagrangian of the theory.

We have now discussed the evolution of the coupling constantat the leading order level. The
content of the theory of renormalization is much deeper. It states that up to any order in perturbation
theory, we can remove all ultraviolet divergences from a physical quantity just by a redefinition of the
coupling constant. Furthermore, it states that equation (44) generalizes to all order of perturbation theory,
and the right hand side of the equation is free of ultravioletdivergences. In other wordsd�S(�)d log �2 = �b0�2S(�)� b1�3S(�)� b2�4S(�) + : : : : (52)

whereb0, b1, b2, etc., are ultraviolet-finite.

From eq. (29), we see that�S = �S(M), that is to say that the original bare�S was in fact the
running coupling evaluated at the cutoff scale. It is not useful to try to express physical quantities in
terms of�S evaluated at a scale which differs widely from the scales involved in the physical quantities
under consideration. In fact, in this case, large logarithms of the ratio of the physical scale to� arise in
the perturbative expansion, as one cannot trust the truncated (fixed order) result. In order to get a reliable
result, one should instead use� � Q, so that no big logarithms appear in the perturbative expansion. Of
course, we do not know the precise value of� we should use. We can use� = Q, � = 2Q, � = Q=2,
without the possibility of arguing what is the best choice. In practice, a difference in the value of the
scale used makes a difference in the result, but this difference is of the order of the neglected terms in
the perturbative expansion. This can be easily verified fromformula (30) (students are encouraged to try
this).

It is now tempting to formulate the first prediction of our theory. From the expression of the
running coupling, eq. (47), we see that the strong coupling constant is of order 1 when the scale�
approaches�. It is tempting to set� = 300 MeV, the typical hadronic scale, and then predict thatR(MZ) = R0(MZ)�1 + �S(MZ)� � = R0(MZ)(1 + 0:046) (53)

in reasonable agreement with the LEP value. Of course, this example is very sloppy, does not take
into account the heavy flavour thresholds, higher order effects, and other important facts. It is however
important to remark that, had we foundR=R0 = 1 + 0:08 at LEP, this would have implied� = 5GeV,
an absolutely unacceptable value.
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3.2 Relation among the couplings with different number of light flavours

Now I will spend a few words concerning the number of light flavours. In order to make the discussion
clearer, let us assume that there is a top quark of 100 GeV, andthat all the other quarks are massless.
Intuitively, we should then be able to describe the effects of QCD, for scales much below 100 GeV, but
still much above�, in a perturbative fashion, forgetting about the existenceof the top quark. The formula
for e+e� ! hadrons contains thenb0 evaluated withnf = 5. On the other hand, if the heavy top is
really there, the true description of our phenomenon shouldbe given in terms of the theory with top.
While up to the order�S a top loop never enters our Feynman graphs, at two loops we do have a top loop
contribution, represented in the graphs of fig. 7. In spite ofthe fact that there is not enough energy to

Fig. 7: Top loop contribution toe+e� ! hadrons.

produce the top, these graphs do contribute. They are alwaysassociated to a propagator corrections, so
that their effect is simply to multiply�S by a factor1��S=(6�)(d+log(M2=m2t )), whered is a number
which depends upon the particular renormalization scheme one uses. This result can also be guessed on
the basis of the fact that the UV divergence coming from the top loop must have the same form as the
UV divergence coming from any light fermion. We have thenR = R0 1 + �0S� + �+ �b0 log M2Q2 � 16 �d+ log M2m2t ����0S� �2! : (54)

With �0S we indicated the true (bare) coupling, of the theory in whichthe heavy quark is taken into
account properly, instead of the “fake” theory in which the heavy quark is ignored. The renormalization
procedure for the theory including the top requires now the substitution�0S(�) = �0S + b00 log M2�2 �0S2 (55)

whereb00 = (33 � 2(nf + 1))=(12�), and the renormalized formula forR becomesR = R0 1 + �0S(�)� + �+ �b0 log �2Q2 � 16 �d+ log �2m2t ����0S(�)� �2!+O ��S(�)3� : (56)

Equation (30) and (56) must be completely equivalent, at least up the order�2S. It turns out that in the
commonly usedMS renormalization scheme, we haved = 0. In this scheme, the equivalence of the two
formulas imply that �S(�) = �0S(�) for � = mt: (57)
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Therefore, in theMS scheme the relation between coupling constants defined by ignoring a heavy flavour,
and the coupling with the heavy flavour included, is simply stated by saying that the two running cou-
plings should coincide for� = mh, wheremh is the mass of the heavy flavour. In practice, we have three
useful definitions of the coupling constants. One that ignores the charm quark (and heavier flavours),
which has three light flavours, and may be indicated with�(3)S , one that ignores bottom (�(4)S ) and one
that ignores top (�(5)S ).

A plot of the ratios of�(3)S =�(5)S and�(4)S =�(5)S is given in fig. 8. The couplings are correctly

Fig. 8: Ratios of the coupling defined for different values ofnf .

matched at the heavy flavour thresholds according to theMS prescription. From the plot, it appears
that the couplings for four and five flavours are not very different. This is indeed the case. One should
however be careful, because the corresponding value of� is in fact very different. The values used in
the figure have�3 = 310MeV, �4 = 260MeV and�5 = 170MeV. A common error is, for example, to
use values of�4 where�5 should be used. One should never forget that� is nothing but a parameter in
the formula for�S. If we change the formula (going for example from one to two loops) the value of�
should be changed. Similarly, if we plug in the same value of� in the expression for�(3)S and�(4)S , their
value would be very different, even for� = mb, while if we use the appropriate value of�3 and�4 in
the corresponding formulas, their value will be identical at that scale.

3.3 State of the art in the beta function and R

The expression of the beta function known today has the form��S� log�2 = �b0�2S � b1�3S � b2�4S � b3�5S (58)

where the termb2 has been computed in ref. [2], and the termb3 has been very recently computed in
ref. [3]. Here I report below only the values ofb0 andb1, and the corresponding solution of the renor-
malization group equation at the two loop level. This is whatis commonly used in most applications.�(nf )S (�) = 1b0 log ��nf 241� b1b20 log log �2�25log �2�25 35 (59)
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b0 = 33� 2nf12� (60)b1 = 153 � 19nf24�2 : (61)

The reader can verify that the above formula satisfies equation (58) up to terms of order�3S.

The radiative corrections toR have been computed up to the order�3S in ref. [4], a rather remark-
able achievement. The result fornf = 5, expressed in theMS scheme readsR = R0 n1 + �S� �1 + 0:448�S � 1:30�2S�o (62)

where�S = �(5)S (Q), Q is the annihilation energy. Besides finding applications ine+e� annihilation
physics, this formula has found recently a very interestingapplication to the determination of�S from
the hadronic decay of the� lepton [5]. After what we have learned in this section about the ratioR, it
should be easy for us to compute the ratio between the hadronic and the leptonic branching ratios of the� , at zeroth order in the strong coupling constant. This is depicted symbolically in fig. 9. From the figure,

Fig. 9: The ratio between the� hadronic and leptonic width.

it is clear that the top and bottom processes only differ by the number of possible final states. Thus, the
top graph has a factor of 3, because of the three colours. Onlyan up-anti-down, or up-antistrange pair
can be produced, since phase space forbids the production ofcharmed final states. Neglecting the mass
difference between the down and the strange, one can see thatthe Cabibbo angle is irrelevant in this
case. Thus, the ratio of the hadronic width to the (for example) electron width is 3 at zeroth order in the
coupling constant. As in the case of R, this ratio will receive strong corrections, and the displacement of
this ratio from 3 can be used to attempt a determination of thestrong coupling constant from� decays.
Observe that the value of�S at the scale of the� mass is quite large, around 0.35. At LEP1 energy this
value is around 0.12. In table 2 (taken from ref. [6]) the experimental determinations of�S coming fromR below theZ peak,R on theZ peak, and tau decays, are reported. All determinations are performed
at the relevant scale of the process (thus, for example, the� determination is performed in terms of�S(M� )), and then evolved at theZ mass for comparison. Notice the rather remarkable agreements
among the different determinations.

4 JETS IN e+e� ANNIHILATION

The computation of the total hadronic cross section ine+e� annihilation presented in the previous
sections has left open a few important questions, that I willresume in three points.
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Measurements �s(mZ)R� 0.122� 0.006 (Th)Re+e�(ps < 62 GeV) 0.124� 0.021 (Exp)Z line shape (Assuming SM) 0.120� 0.004 (Exp)

Table 2: The determinations of�S from inclusive hadronic decays. The error is either theory dominated (Th) or experiment

dominated (Exp).

1. How can we identify a cross section for producing quarks and gluons with a cross section for
producing hadrons?

2. Given the fact that free quarks are not observed, why is thecomputed Born cross section so good?

3. Are there any other calculable quantities besides the total cross section?

We will see in the following that question 1 and 2, although unanswerable in QCD, imply no contradic-
tion. We will also see that, under the same assumptions that make 1 and 2 work, also question 3 has an
affirmative answer.

Looking at the lowest order formula, we immediately wonder how a formula describing the pro-
duction of quarks in the final state should also be able to describe the production of hadrons, since we
never observe free quarks in the final state. The structure ofthe perturbative expansion by itself give us
a hint of how this may happen. Consider in fact the corrections of order�S to the total cross section.
They are given by diagrams in which a real gluon is emitted into the final state, and diagrams in which a
virtual gluon is exchanged (interfered with a Born graph) asdepicted in fig. 10. In the previous section I

Fig. 10: Soft gluon emission ine+e� annihilation

have just stated that the total of the corrections of order�S is finite, and equals�S=�. I will now show
that the individual real contributions (those with a gluon in the final state) and the virtual ones (which
have only the quark-antiquark pair in the final state) are individually infinite, and only the total is sensible
and finite. Let us therefore compute the diagram of fig. 10. We will perform the calculation under the
simplifying assumption that the gluon energy is much smaller than the total available energy. It turns
out that in this approximation the computation will requirevery little effort, and the approximation itself
contains all the interesting features of the result. It is easy to convince oneself that the colour factors for
all contributing diagrams (after squaring and taking the colour traces) are one factor ofCF (which equals
4/3) relative to the Born term (which has a factor of 3, equal to the number of colours that can flow in the
loop), a result wich is illustrated in the last equality of fig. 3. The amplitude for the Born process isM = u(k)���v(k0) (63)
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where� is the virtual photon polarization,q is the incoming four momentum,k is the momentum of the
outgoing fermion andk0 = q � k is the momentum of the outgoing antifermion. DefiningN = ���v(k0) (64)

we have M = u(k)N : (65)

Consider now the diagram of fig. 10, in which the gluon is emitted from the outgoing fermion. The
amplitude is given by M1 = u(k)(�i)�i =k + =l(k + l)2N : (66)

Actually we should have also substitutedk0 = q � k � l in N , but we are assuming thatl is small.
Fermion masses are also being neglected, since we assume we are considering a high energy process.
Neglectingl in the numerator, and using the identityu(k)=k = 0, and expanding the denominator (recall
that l2 = 0, k2 = 0) we obtainM1 = u(k)�=k + =k�(k + l)2 N = u(k) 2k�2k � lN = k�k � lM: (67)

Analogously, for the amplitude with the gluon emitted from the outgoing antiquark, we obtainM2 = � k0�k0 � lM (68)

and the total is Mqqg =M1 +M2 = � k�k � l � k0�k0 � l�M (69)

which vanishes when contracted withl�, as gauge invariance requires. Taking the square (with the extra
minus for the gluon projector) M2qqg = 2 k � k0(k � l)(k0 � l)M2: (70)

From the amplitude square we turn to the cross section by supplying the phase space factor for the gluon�qqg = CF g2S�Bornqq :Z d3l2l0(2�)3 2 k � k0(k � l)(k0 � l) : (71)

At this stage I have also included the coupling constant and the appropriate colour factor. Let us now
consider the process in the rest frame of the incoming virtual photon, withq = (q0; 0; 0; 0), and~k = �~k0.
Let us call� the angle that the gluon makes with the fermion direction. Wehave then2 k � k0(k � l)(k0 � l) = 4l02(1� os �)(1 + os �) (72)

so that (using�S = g2S=(4�))�qqg = CF �S2��Bornqq Z d os �dl0l0 4(1� os �)(1 + os �) : (73)

The cross section for producing an extra gluon is therefore divergent in three regions:� when the emitted gluon is in the direction of the outgoing quark (� = 0)� when the emitted gluon is in the direction of the outgoing antiquark (� = �)
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� when the emitted gluon is soft (l0 ! 0).

The first two kind of divergences are called collinear divergences, while the last one is called a soft
divergence. Both divergences are of infrared (IR from now on) type, that is to say, they involve long
distances. In fact, because of the indeterminacy principle, we need an infinite time in order to specify
accurately the particle momenta, and therefore their directions. Unlike UV divergences, there is nothing
like renormalization for the IR divergences. Their meaningis the following: the cross section is sensitive
to the long distance effects, like the fermion masses, the hadronization mechanisms, and so on. In fact, if
we give a fictitious mass to the gluon, the result becomes convergent, but it will be sensitive to the value
of the gluon mass.

It was stated in the previous lecture that the total of the corrections of order�S to the production
of hadrons ine+e� annihilation is finite, and equals�S� . The way this happens is due to the fact that also
the virtual corrections have the same kind of infinities, which are negative. If we cutoff these divergences
with some method (like dimensional regularization, or by giving a mass to the gluon), and then sum up
real and virtual contributions, the divergences cancel, and the left-over is finite and equal to�S=� times
the Born cross section, independent of the method we used to regularize the diagrams. This cancellation
is a consequence of the Kinoshita-Lee-Nauenberg theorem. Roughly speaking, this theorem deals with
divergences that arise because of degeneracy in the final state. For example, the final state with an extra
soft gluon is nearly degenerate with the state with no gluonsat all, and the state with a quark split up into
a quark plus a gluon, with parallel momenta, is degenerate with the state with no radiation at all. The
theorem states that the cross section obtained by summing upover degenerate states are not divergent.

We are now ready to show, as promised, that point 1 and 2 imply no contradiction. We have in fact
shown that if we attempt to compute the cross section for the production of a pair of quark–antiquark
alone, while the zeroth order term (the Born term) is finite, the term of order�S is infinite, being collinear
and soft divergent. This means that a perturbative expansion for this quantity does not work, since the
coefficients of the expansion are large (actually infinite).Therefore, even the Born term alone, cannot
represent the cross section for producing a quark–antiquark pair. Thus, the fact that a final state with a
quark–antiquark pair and nothing else is not observed is notin contradiction with perturbation theory,
since we have shown that there is no valid perturbative expansion for this quantity. On the contrary, the
cross section for producing strongly interacting particles (no matter how many quarks or gluons) remains
finite even after perturbative corrections are added. One can show that in fact it remains finite order by
order in perturbation theory. Its lowest order approximation is in fact the Born cross section. So, the
Born cross section is the lowest order term in a well defined perturbative expansion with infrared finite
coefficients, which is just the cross section for producing strongly interacting particles (no matter how
many and which types). This is why the Born cross section represents quite accurately the total hadronic
cross section. We are now also in the position to answer the third question. We will show that there are
quantities which characterize the hadronic final state, which are infrared finite in perturbation theory, and
therefore, with the same right as the total cross section, should be calculable in perturbative QCD.

4.1 Sterman–Weinberg jets

Sterman and Weinberg [7] first realized that one can define a cross section which is calculable and finite
in perturbation theory, and characterizes in some way the hadronic final state. The definition goes as
follows.

We define the production of a pair of Sterman–Weinberg jets, depending on the parameters� andÆ, in the following way. An event contributes to the Sterman–Weinberg jets cross section if we can find
two cones of opening angleÆ that contain all of the energy of the event, excluding at mosta fraction� of
the total. The jet event is depicted in fig. 11. We will now showthat the computation of the cross section
for the production of Sterman–Weinberg jets, in the approximation introduced in the previous chapter, is
infrared finite. The various contributions to the cross section (illustrated in fig. 12) are as follows
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Fig. 11: Sterman–Weinberg jets.� All the Born cross section contributes to the Sterman–Weinberg cross section, irrespective of the
value of� andÆ (fig. 12a).� All the virtual cross section contributes to the Sterman–Weinberg cross section, irrespective of the
value of� andÆ (fig. 12b).� The real cross section, with one gluon emission, when the energy of the emitted gluonl0 is limited
by l0 < �E (fig. 12c), contributes to the Sterman–Weinberg cross section.� The real cross section, whenl0 > �E, when the emission angle with respect to the quark (or
antiquark) is less thanÆ (fig. 12d), contributes to the Sterman–Weinberg cross section.

The various divergent contributions are given formally by

Born = �0 (74)

Virtual = ��0 4�SCF2� Z E0 dl0l0 Z ��=0 d os �1� os2 � (75)

Real (c)= �0 4�SCF2� Z �E0 dl0l0 Z ��=0 d os �1� os2 � (76)

Real (d)= �0 4�SCF2� Z E�E dl0l0 �Z Æ�=0 d os �1� os2 � + Z ��=��Æ d os �1� os2 �� : (77)

Observe that the expression of the virtual term is fixed by thefact that it has to cancel the total of the real
contribution. Since we are looking only at divergent terms,and since the virtual term is independent ofÆ and�, the expression (75) is fully adequate for our purposes. Summing all terms we get

Born+ Virtual + Real (a)+ Real (b)= �0 � �0 4�SCF2� Z E�E dl0l0 Z ��Æ�=Æ d os �1� os2 �= �0�1� 4�SCF2� log � log Æ2� (78)

which is finite, as long as� andÆ are finite. Furthermore, as long as� andÆ are not too small, we find
that the fraction of events with two Sterman-Weinberg jets is 1, up to a correction of order�S.
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Fig. 12: Contributions to the Sterman–Weinberg cross–section. Born: (a), virtual: (b), real emission: (c) and (d).

Now we are ready to perform a qualitative step: we interpret the Sterman-Weinberg cross section,
computed using the language of quarks and gluons, as a cross section for producing hadrons. Thanks to
this qualitative step, we make the following prediction: athigh energy, most events have a large fraction
of the energy contained in opposite cones, that is to saymost events are two jet events. As the energy
becomes larger�S becomes smaller. Therefore we can use smaller values of� andÆ to define our jets.
Thus, at higher energies jets become thinner.

It should be clear now to the reader that, by the same reasoning followed so far, the angular
distribution of the jets will be very close, at high energy, to the angular distribution one computes using
the Born cross section, that is to say, the typical1 + os2 � distribution. These predictions have been
verified experimentally since a long time.

4.2 A comparison with QED

The alert reader will have probably realized that the discussion given in this section could have been
given as well with respect to electrodynamics. In fact, the Feynman diagrams we have considered are
present also in electrodynamic processes, likee+e� ! �+��, and they differ from the QCD graphs
only by the color factor. Thus, from the previous discussion, we would infer that Sterman-Weinberg
jets in electrodynamic processes at high energy do not depend upon long distance features of the theory.
For example, they become independent from the� mass whenE � �. Also in electrodynamics, the
cross section for producing a�+�� pair plus a photon is divergent, as is divergent the cross section for
producing the pair without any photon. In many books on quantum electrodynamics these divergences
are discussed, and it is shown that a resolution parameter for the minimum energy of a photon is needed
in order to have finite cross section order by order in perturbation theory. In electrodynamics, we can
go even farther, and prove that by resumming the whole tower of divergent graphs, the infinite negative
virtual correction to the production of a�+�� pair with no photons exponentiates, and gives a zero cross
section. In other words, as it is well known, it is impossibleto produce charged pairs without producing
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arbitrarily soft photons. What is then the difference with QCD? Why is that we cannot prove similar
results in QCD? The answer is asymptotic freedom, and its contrary, that is to say, the strengthening of
the coupling constant for soft processes. Thus it is not so much the technical problem of resumming
divergent classes of graphs that is more difficult to approach in QCD, but the fact that when the scale of
an emission process approaches a few hundred MeV the coupling constant becomes of order one, and
perturbation theory becomes inapplicable. It is in this sense that perturbative QCD is an incomplete theo-
retical framework. In order to make predictions we need to assume that the soft phenomena characterized
by scales of the order of few hundred MeV do not spoil completely the computation of the high energy
part of the process. This assumption is consistent with perturbation theory; it is however an assumption,
and it cannot be proved using perturbation theory alone.

4.3 Shower Montecarlo programs

Perturbation theory can be used to compute radiation processes as long as the energies involved are
safely above the typical hadronic scales. It is then possible to construct event generator programs that
implement the properties of QCD Feynman diagrams for the splitting of partons into more partons, as
long as the splitting is energetic, and then use some plausible model for last step of the splitting process,
in which the partons become hadrons. These programs are generally called shower Montecarlo event
generators [8, 9, 10], and are an invaluable tool for experimental physicists. They essentially sum a large
class of Feynman graphs, precisely the most collinear and (in some cases) soft-singular ones. In the
attempt to describe the full final state, they give up the accuracy that can be obtained in perturbation
theory. They are (until now) compatible with QCD only at the leading order in the strong coupling.
While the QCD part is quite similar in all of them, for the laststep of the final state formation, that is to
say the hadronization, they differ widely, since they have to rely on models, like the so called Lund string
model or the Herwig cluster model. Hadronization models aretuned to data. Nevertheless, one should
not forget that there is very little predictivity in these models, since they are only qualitatively based
upon the theory. One can expect in general that the hadronization properties for which the Montecarlo
has been tuned for will be well reproduced by it, but not much more than this.

4.4 More jet definitions and shape variables

The key property of the Sterman-Weinberg jets, that makes them calculable in perturbation theory, is the
insensitivity of the jet definition to radiation of soft particles, and to the collinear splitting of an particle
into two particles that share its momentum. This insensitivity is necessary to guarantee the cancellation
of effects that depend strongly upon long distance phenomena, that is to say, those effects that have
infrared divergences when computed in perturbation theory.

After the paper of Sterman and Weinberg, it was soon realizedthat it is not difficult to build a
whole class of final state observables that do have the same property of soft and collinear insensitivity,
and can thus be computed in perturbation theory, and compared with experimental measurements: thrust,
oblateness, the C parameter, clusters, the mass of the heaviest hemispheres, etc.. The important thing
which is assumed in these definitions is thatthe same definition must be applied to the final state hadrons
by the experimenter that measures this quantity, and by the theorist that computes this quantity in terms
of quark and gluons. Only if this condition is satisfied, one can assume that in the high energy limit
the computed quantity will agree with the measured one, up tocorrections that are suppressed by some
inverse power of the energy.

One of the first of these infrared safe shape variables is thrust. It is defined by the equationt = max~v Pi j~pi � ~vjPi j~pij : (79)

In words, one takes an arbitrary vector (in the centre-of-mass frame of the colliding electron-positron
pair) and sums the absolute values of the projection of the momenta of all final state particles into that
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vector, normalized to the sum of all absolute values of the hadron momenta. The vector is rotated until a
maximum is found. The maximum direction is called the thrustaxis, and the value at the maximum the
thrust of the event. The maximum value of thrust is one, for a final state of two massless particles in the
back-to-back direction. It is easy to check that thrust is aninfrared safe shape variables. In fact, a soft
emission does not alter the thrust abruptly, since all emitted particles enter weighted by their momenta.
Also collinear splitting does not alter the thrust of an event, as one can easily verify. An example of a
quantity which is not infrared safe is the total number of particles in the final state, which changes by
one unit in case of soft emission. Examples of a quantities which are sensitive to collinear splitting are
the axis of the tensor Sij =Xl pilpjl (80)

which were actually used in the past to classify the “jettiness” of an event.

A modern, and very clever way to define jets is by clustering [11]. For a given events, one forms
the invariant mass of all pairs of particles in the final state. The pair with the smallest mass is merged into
a single pseudoparticles, and then the procedure is continued with the pseudoparticles, and it is stopped
when the smallest mass of a pair exceeds a given cutoffy � S. One ends up with a definite number of
clusters, and one can thus define the cross section for producing two, three, four or more clusters for a
giveny cut. It is easy to convince oneself that these cross section definitions are infrared safe.

Since the computation of these cross sections performed using partons should in first approxima-
tion give the correct answer, we see that in perturbative QCDwe roughly expect (for not too extreme
values ofy) that most events will be made up by two clusters, a fraction of order�S will be made up by
three clusters, and a fraction of order�2S will be made by four clusters.

Analogously, we expect thrust to be near one in average, and its departure from one to be of order�S. Also, we expect that a fraction of events of order�S will have thrust well below one.

Because of the obvious interest in the determination of�S from jet shape variables, a lot of effort
has gone in the study of jet and shape variables that are directly proportional to�S, which we may call
“three-jet sensitive”, like the thrust distribution, and the fraction of events with three clusters. There are
tens of variables of these kind that have been studied ate+e� machines.

The present state of the art for the determination of�S from jets in e+e� annihilation is the
following. Three-jet sensitive shape variables can be computed up to the next-to-leading level, that is
to say at order�2S, thanks to the results of ref. [12]. Various computer programs for the computations
of these quantities are available, and many of these quantities have been tabulated [13]. Effects due to
the mass of the heavy quarks can be also computed at the same order [14]. These quantities have been
intensively studied ate+e� machines, The recent results of LEP1 and SLD have given a quite remarkable
contribution to the tests of QCD, and considerably reinforced our confidence in perturbative QCD. Four-
jets sensitive quantities (like, for example, the fractionof events with four clusters for a giveny cut) have
been known only at the leading order (that is to say at order�2S) for a long time, and only recently a
next-to-leading order calculation has been completed [15]. The corresponding experimental studies are
somewhat less developed.

4.5 Thrust as an example

Let us focus upon the case of thrust as an example. The thrust distribution has the perturbative expansion1�0 d�dt = Æ(1 � t) + �S(�)2� A(t) +��S(�)2� �2 �A(t) 2� b0 log �2Q2 + B(t)�+O ��3S� : (81)

The first term, proportional to a delta function, is the Born contribution, which corresponds to the pro-
duction of two back-to-back massless partons. The functionsA(t) andB(t) can be computed using the
machinery of the [12] calculation, see for example ref. [13]. The renormalization scale� is explicitly
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indicated in the formula. As in the total cross section formula, the explicit scale dependence of the term
of order�2S is related to the coefficient of the term of order�S. Again, using the renormalization group
equation at 1 loop (i.e.,��S=� log�2 = �b0�2S), one can prove that the scale dependence of the above
equation cancels up to the order�2S. Of course, if the whole perturbative expansion was included in
the right hand side, no scale dependence would survive, since the left hand side is scale independent.
However, only terms up to the order�2S are included, and thus one expects a residual scale dependence
at order�3S.

Radiative corrections are generally quite large. For exampleh1� ti = 1:05� �S(Q)(1 + 3�S)hoi = 1:29�S(Q)(1� 4:3�S)hM2D;ti = 1:05� �S(Q)(1� 0:025�S) (82)

where the second quantity is oblateness (for a precise definition, see ref. [13]), and the third quantity is
the difference of the square of the masses of the heavy hemisphere with respect to the light hemisphere,
with the hemisphere defined according to the thrust axis. Thus, corrections can be as large as 40% even
at LEP1 energies. Because of this, it is mandatory that corrections of even higher orders (�3S and higher)
should be at least estimated and given as a theoretical error. There is no universal rule to estimate the
theoretical error in this case. A commonly used method is to look at the scale dependence of the result.
Since the remaining terms of the perturbative expansion should compensate the scale dependence, they
must be at least as large as the scale variation of the truncated result. The scale should be varied in a
range around the typical scale of the process. It should not be chosen neither much higher of this typical
scale, nor much smaller, since in these cases the perturbative expansion is not well behaved. A common
choice ismZ=4 < � < mZ, which accounts for the fact that the typical scale of the process is somewhat
below theZ mass.

Hadronization effects should also be estimated, and included in the theoretical error. A naive
estimate can be made for the observableh1� ti in the following way. Let us assume that the emission of
an extra soft pion is a process that takes place with a probability of order one in the formation of the final
state. This emission takes away from the thrust a value of fewhundred MeV (the transverse mass of a
soft pion) divided by the total available energy. To fix the numbers, let us say thatÆt = 0:5=90 � 0:0055,
assuming a 500 MeV average transverse mass for the pion. The perturbative value ofh1 � ti is roughly�S=� � :04, increased by the�2S correction to roughly 0.055. ThusÆt=h1 � ti = 0:1. This means that
we can expect that hadronization effects may have a 10% effect in the determination of�S from h1� ti.

An instructive example of a QCD study at LEP can be found in ref. [16]. There it can be seen
how a hadronization correction of the order of 10% needs to beapplied to the data in order to get a
good fit. Experiments typically estimate the hadronizationcorrection by running a shower Montecarlo
with or without the hadronization stage. The corrections are determined by looking at the difference
between the two runs, and are then applied to the data. The error on the hadronization corrections are
estimated by using different Montecarlo programs with different hadronization models. It is quite clear
that this procedure is perhaps a bit risky. The QCD stage is infact similar in all shower Montecarlo. The
hadronization step is different, but it is in all cases tunedto fit the data. This means roughly that there is
a bias towards determining the same value of�S used in the Montecarlo. On the other hand, the size of
the radiative correction is reported in the [16] paper, and thus, the pessimistic reader may use the whole
hadronization correction as an error on the determination,if he wishes to do so. Even assuming this
most pessimistic attitude, one must recognize that LEP results do show a remarkable consistency with
perturbative QCD results. I find figure 13 most instructive. There, a determination of�S was performed
for several shape variables. The determination was performed first using a leading order formula (left
plot), and then the fullO(�2S) formula. No hadronization correction was applied to the data. Three
values of the renormalization scale were chosen for each variable: � = mZ=4, mZ=2, andmZ. In the
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Fig. 13: Bin-by-bin determination of�S for several different shape variables.

figure, parallel bands correspond to these three choices. The errors on the various point are experimental
errors. If we had a perfect QCD calculation, e.g. all orders in perturbation theory, and hadronization
corrections were truly negligible, we should expect all experimental point to lie (within errors) on a
constant line. If we only have a leading order calculation, we expect instead large differences among the
various points, that should become smaller and smaller as weinclude higher order corrections. In the
plot, of course, we can only represent the leading and next-to-leading result, since anO(�3S) calculation
has never been performed. It is quite striking to see how, by including the next-to-leading corrections,
the various determinations become much closer to each other. It is left to our fantasy to imagine what
would happen if we could include theO(as3) effects. Table 3 summarizes the determinations of�S from
event shape variables.

5 PROCESSES WITH HADRONS IN THE INITIAL STATE

We will now turn to describe the application of perturbativeQCD to processes in which hadrons are
present also in the initial state, like Deep-Inelastic Scattering (DIS), or the production of some objects
of high invariant mass in hadronic collisions. It turns out that cross sections for these processes can be
computed and related to each other. In general the cross section for the production of some final state
with high invariant mass (which could be made of a heavy weak vector boson, a lepton-antilepton pair,
heavy quarks, jets, and the like) will be expressed by the so called improved parton model formula�H1;H2(p1; p2) =Xi;j Z dx1 dx2 f (H1)i (x1; �) f (H2)j (x2; �) �̂ij(x1p1; x2p2; �S(�); �) ; (83)

whose meaning is depicted in fig. 14.
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Table 3: A summary of measurements of�S from shape variables. The label “resum” refers to an improved next-to-leading cal-

culations, where terms that are logarithmically enhanced near the two jet region (analogous tolog � log Æ in Sterman-Weinberg

jets) are resummed to all order.

Q ��s(MZ0) Order of
Process [GeV] �s(Q) �s(MZ0 ) exp. theor. perturb.e+e� [ev. shapes] 22 0:161 + 0:016� 0:011 0:124 + 0:009� 0:006 0.005 + 0:008� 0:003 resum.e+e� [ev. shapes] 29 0:160 � 0:012 0:131 � 0:010 0.006 0.008 resum.e+e� [�had] 34.0 0:146 + 0:031� 0:026 0:124 + 0:021� 0:019 + 0:021� 0:019 – NLOe+e� [ev. shapes] 35.0 0:143 + 0:011� 0:007 0:122 + 0:008� 0:006 0.002 + 0:008� 0:005 resum.e+e� [ev. shapes] 44.0 0:137 + 0:010� 0:007 0:122 + 0:008� 0:006 0.003 + 0:007� 0:005 resum.e+e� [ev. shapes] 58.0 0:132 � 0:008 0:123 � 0:007 0.003 0.007 resum.Z0 [ev. shapes] 91.2 0:122 � 0:006 0:122 � 0:006 0:001 0:006 resum.e+e� [ev. shapes] 133 0:111 � 0:007 0:117 � 0:008 0.004 0.007 resum.e+e� [ev. shapes] 161 0:106 � 0:007 0:115 � 0:008 0.004 0.007 resum.e+e� [ev. shapes] 172 0:103 � 0:007 0:112 � 0:008 0.004 0.007 resum.

Fig. 14: A graphic representation of the improved parton model formula.

The description of processes with a single incoming hadron is even simpler. For example, in DIS�H(p) =Xi Z dxf (H)i (x1; �) �̂i(x; �) ; (84)

Formulae (83) and (84) are applicable for inclusive processes with large momentum transfer. By inclu-

Fig. 15: The improved parton model formula for DIS.
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sive, we mean that no detailed question on the distribution of the final state hadrons is asked in order to
measure the cross section. The generic concept of a process with large momentum transfer is better illus-
trated via examples. We may, for example, require that a verylarge invariant-mass lepton-antilepton pair
(the so called Drell-Yan process) is present in the final state. Or that jets (for example, of the Sterman-
Weinberg kind) with large transverse momentum are observed. In the case of DIS, we simply requirejq2j to be very large.

The recipe for the improved parton model formulae can be summarized in the following points:� An incoming beam made of hadrons of typeH is equivalent to a beam of constituents (also called
partons), that is to say of quark and gluons, with a longitudinal momentum distribution character-
ize by the parton density functions (pdfs from now on)f (H)i (x; �). More specifically, the proba-

bility to find the partoni with momentum betweenxp and(x + dx)p is preciselydx f (H)i (x; �).
The pdfs are universal, that is to say, they do not depend uponthe particular process considered.� The short distance cross section�̂ is calculable as a perturbative expansion in�S�̂ij(x1p1; x2p2; �S(�); �) =Xl �̂(l)ij (x1p1; x2p2; �)�lS(�) : (85)

The lowest order term of this expansion is precisely the cross section one would compute naively
at lowest order. For the computation of higher order, a more complex prescription is specified.� The pdfs have a mild dependence upon the scale�, determined by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi equation [17]�� log�2 f (H)i (x; �) = Z 1x dzz Xj Pij(�S(�); z)f (H)j (x=z; �) : (86)

Using the above equations, given the pdfs at a specified valueof �, we can compute them at any
other value. The functionsP are called splitting function, and have a perturbative expansion in
powers of�S(�)Pij(�S(�); z) = �S(�)2� P (0)ij (z) +��S(�)2� �2 P (1)ij (z) +O(�3S) : (87)

The functionsP (0) are given in [17], and the functionsP (1) are given in [18]. The scale� is
arbitrary. The� dependence in the pdfs is compensate by the� dependence in the short distance
cross section. As in the case ofe+e� ! hadrons, the scale� is taken to be of the order of the
typical scales in the process, in order to avoid the appearance of large logarithms to all orders in
the short distance cross section. In this way, a truncated expression for the short distance cross
section may be used safely.

The approach described above gives the cross section in terms of a power expansion in�S(�). Since�S(�) � 1= log �=�, this means that by increasing the perturbative order at which the computation is
performed, one adds corrections which are suppressed by onemore inverse power oflog �=�. Correc-
tions which are suppressed by powers of�=� are not included in this approach. Thus, for example, the
pdfs describe the longitudinal momentum distribution of the partons. Since the partons are confined in
a hadron, one knows that they must also have a transverse momentum of the order of the inverse of a
typical hadron size, that is to say1=�. This transverse momentum is neglected, since it would giverise
to power suppressed corrections.

In the following I will try to illustrate and justify the improved parton model approach. I will do
this in three steps.

27



I will first give arguments to show that one would naively expect a somewhat simplified version
formula like eq. (83) to work. The simplifications consist inthe absence of the scale� in the pdfs and
in �̂. Such a simplified formula can be called a parton model formula (i.e., not yet improved). It can be
used to compute, for example, DIS cross section, or Drell-Yan pair production cross section. The parton
model formula predicts correctly the existence of scaling in DIS.

The second step will be to try to compute QCD corrections in the context of the parton model
formulae. I will show that this approach does not survive when radiative corrections are included.

The third step will consist in finding a way out of the problem found at the second step. The
solution of the problem will have as a consequence the appearance of a scale in the pdfs, and the existence
of scaling violations in DIS.

5.1 The parton model formula

The basic parton model ideas are based upon a very commonly used intuitive picture of inclusive high
energy scattering of composite systems, when we require a very large momentum transfer. Suppose, for
example, that we collide to hydrogen beams, and require thatin the final state we find a pair of electrons
with large transverse momenta. It is clear that the most likely mechanism for producing such an event is
the collision of two electron from the two incoming hydrogenatoms. If the transverse momenta of the
electrons are much higher than the hydrogen binding energy,we may think that, to a good approximation,
the cross section may be computed from the elementary electron-electron cross section, applied to a beam
of incoming free electron. The fact that we want to observe a high transverse momentum scattering
implies that the binding of the electrons to the nuclei cannot have an important effect in this case. In
other words, the electrons behave as free particles in the collision. Observe that the inclusive character of
the reaction, and the presence of high momentum transfer, are both necessary conditions for this approach
to be valid. Inclusiveness is needed, because after the two electron collide, the remaining constituent of
the original atoms (i.e., the protons in the case of hydrogen) are also found in the final state. The high
momentum transfer is instead needed for the reaction to takeplace in a very short transverse distance. If
this was not the case, like, for example, in the case when we look for small angle scattering, the atoms
may interact coherently. Or, more simply, if the momentum transfer was of the same size as the typical
momentum of the electron in the atom, the binding propertiesof the system could no longer be neglected.

Assuming now that we have ultra-relativistic monochromatic beams of hydrogen atoms of energyE, in order to compute the above cross section we would assume that these beams are equivalent to
electron beams with energyEe = E � me=mp. In reality, even if the atom beams were perfectly
monochromatic, the electron beam would not be perfectly monochromatic. The electrons are moving
inside the atom, with a typical velocity of the order of the electromagnetic couplingv � �em. A simple
exercise in relativistic transformations would show that its energy spread would be of the ordervEe. In
fact, the electron energy could be characterized by a pdffe(x), peaked around the valuex = me=mp,
and a width of ordervx. Also the transverse momentum of the electron would be of ordervme. However,
while the transverse momentum remains invariant under boost, and thus becomes truly negligible at high
energy, the spread in longitudinal momentum is amplified by the boost, and it thus scales with the energy.
This discussion applies to a boosted, non-relativistic system. We can now try to guess what happens for
a relativistic system, in which all constituents have velocities of order1, and comparable energies. This
transverse momenta will still remain fixed at high energies.Their pdfs, however, will no longer be peaked
around a particular value. Their spread would be of order 1.

Knowing that the basic building blocks of our hadronic worldare quarks and gluons, we thus
expect that for a proton projectile, we will have structure functions for quarks, antiquarks and gluons.
We also naively expect the momentum sum ruleZ 10 dxXi x f (p)i (x) = 1 ; (88)
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because the total momentum of the incoming projectile must be conserved. We also expect that the
proton flavour is conserved. Thus, for exampleZ 10 dx�f (p)u (x)� f (p)�u (x)� = 2 : (89)

Since we know that the proton is a relativistic system, we expect that a good fraction of its energy should
be carried by the binding force, that is to say, by the gluons.Thus, the gluon pdf should be sizeable.

Based upon these assumptions, we can now compute various high energy processes involving
hadrons in the initial state. The rules are simple: compute the cross section you are considering for
colliding partons, and then assume that your hadron beam is abeam of partons, with momenta distributed
according to the pdfs. Always neglect the transverse momenta of the partons, and their masses.

Let us now apply this model to Deep-Inelastic electron scattering. There we collide an electron
with a proton. The kinematical variables of the process are usually defined asq = k � k0 ; Q2 = �q2 ; S = (k + p)2 ; xBj = Q22p � q ; y = p � qk � p : (90)

Experimentally, one measuresS, y andxBj. One only needs to observe the outgoing electron to obtain
these quantities. The process is an inclusive one, that is tosay, no conditions are imposed on the hadronic
final state. The variabley has a simple interpretation in the laboratory frame of fixed target experiments,
where it is the fractional energy loss of the electron.

The corresponding partonic process is the scattering of a charged parton, that is to say a quark
or an antiquark, with the electron. The cross section for this process is easily computed, by using the

Fig. 16: DIS in the parton model.

standard Feynman rules of electrodynamicsd�̂ldŷ = 2l ŝQ4 2��2em �1 + (1� ŷ)2� (91)

wherel runs over all quarks and antiquarks, andl is the corresponding electric charge. The kinematics
is given by p̂ = xp ŝ = (k + p̂)2 = 2k � p̂ ; ŷ = p̂ � qk � p̂ ; (p̂+ q)2 = 2p̂ � q �Q2 = 0 : (92)

Observe that eq. 91 is a full cross section, properly normalized, divided by the appropriate flux factors.
Now we write, according to the parton model, the hadronic cross sectiond�dŷ = Z dxXl fl(x)d�̂ldŷ : (93)
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We now observe that y = p � qk � p = p̂ � qk � p̂ = ŷ ; xBj = Q22p � q = x Q22p̂ � q = x ; (94)

and thus we haved�dy dxBj =Xl fl(x)d�̂ldŷ = 2��2emSxBjQ4 �1 + (1� y)2�Xl 2l fl(xBj) : (95)

Observe thaty has a simple interpretation also in the centre-of-mass of the electron-quark system, where
it is given byy = (1� os �el)=2, and�el is the scattering angle of the electron in this frame.

In its simplicity, the parton model makes rather striking predictions. First of all, it shows that the
DIS cross section scales with energy at fixedxBj andy. Furthermore, they dependence of the cross
section is fully predicted. As we will discuss further on, this y dependence is characteristic of vector
interaction with fermions, and is thus direct evidence of the fact that charged partons are fermions (this
is formally expressed by the so called Callan-Gross relation, as we will see in subsequent chapters).

The same type of reasoning can be applied also to other processes. For example, in a collision
of two hadrons, a quark from one hadron may annihilate with anantiquark from the other hadron, and
produce a lepton-antilepton pair, provided there are enough antiquarks in the projectile, like in pion-
nucleon collisions, or in proton-antiproton collisions. This is the so-called Drell-Yan process. Its parton

Fig. 17: Drell-Yan pair production in the parton model.

model interpretation is illustrated in fig. 17. There, as before, we definep̂1 = x1 p1 ; p̂2 = x2 p2 ; S = (p1 + p2)2 = 2 p1 p2 ; Q2 = q2 = 2x1 x2S : (96)

The partonic cross section is given by �̂(DY)l = 2l 4��em9Q2 ; (97)

which is very similar to the cross section fore+e� ! �+��, except for en extra factor of1=3. This
comes from the colour average for the initial state quark. Its physical meaning is that, in the average,
the probability for the colour of the initial quark to match that of the antiquark is1=3. According to the
parton model interpretation, the hadronic cross section is�(DY) =Xl Z dx1 dx2 �f (H1)l (x1) f (H2)�l (x2) + (l $ �l)�Xl 2l 4��em9Q2 ; (98)

for Q2 = ŝ = x1 x2 S. The validity of the above formula is restricted to the rangewhereQ2 is large. It
is therefore usually written asd�(DY)dQ2 =Xl Z dx1 dx2 �f (H1)l (x1) f (H2)�l (x2) + (l $ �l)� Æ(x1x2S �Q2)Xl 2l 4��em9Q2 : (99)

30



Pushing further our parton model interpretation of hard scattering processes, we can go on and compute
the cross section for producing high transverse momentum jets (ignoring for the moment the problems
related to the jet definition), of heavyb�b pairs, oft�t pairs, and so on. In these processes, also gluons
could enter in the initial state.

Not all hadronic processes can be computed in this way. For example, Drell-Yan cross sections,
for Q2 approaching typical hadronic scales, cannot be computed. The rule of thumb for deciding if a
process is a hard process or not, in the context of the parton model, is to ask whether it is insensitive
to the initial transverse momentum of the partons, which is of the order of typical hadronic scales. The
parton densities do not carry any information about this quantity.

5.2 Does the Parton Model survive radiative corrections?

We will now try to add perturbative QCD corrections to the Parton Model. As in the case ofe+e� !
hadrons, we will find soft and collinear singularities associated to radiation of gluons from final state
partons, which we expect to cancel for appropriately definedfinal states. For example, in fully inclusive
hadronic final states, like in DIS or in Drell-Yan pair production. Or, for appropriately defined jets, like
in the case of the Sterman-Weinberg jets.

A new element that can arise in the case of reactions initiated by hadrons, is the appearance of
initial state soft and collinear singularities. We will show that initial state collinear singularities cannot
possibly cancel, and thus spoil the Parton Model interpretation of hard processes. Let us thus consider a
generic hard process initiated by a hadron, and its parton cross section, which we assume for simplicity
to be initiated by a quark =M(p̂)u(p̂) : (100)

HereM indicates the amplitude for the process, andu is the Dirac spinor. All the complexity of the
process is hidden inM, and we don’t care about it for the moment. The cross section is obtained by
squaring the amplitude, averaging over the initial state spin and colors, and dividing by the appropriate
flux factors �(0)(p̂) = N̂p0M(p̂)12X u(p̂)�u(p̂)My(p̂) = N̂p0M(p̂) =̂p2My(p̂) (101)

whereN is whatever normalization factor arises from the rest of theamplitude.

We want to focus upon the initial state corrections

= gsM(p̂� l) =̂p� =l(p̂� l)2�u(p̂) ��(l) ; (102)

where��(l) is the polarization vector of the final gluon. We also observethat this may not be the only
correction of order�S. One may also have a process in which an initial gluon splits into a quark-antiquark
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pair, and the generated quark gives rise to the reaction

:
We will assume that this complication does not occur. For example, we may assume that the hard cross
section measures some effect due to the difference of the quark content for two different flavours. Since
the gluon produces equal number of quarks for all flavours, itcould not contribute in this case. In
these cases, one says that the cross section is only sensitive to thenon-singletcomponent of the parton
densities. We thus concentrate on the non-singlet case now.Further on we will describe how to treat the
general case.

Experience with thee+e� case tells us that asl becomes parallel tôp we will have a collinear
singularity. It is convenient thus to writel in the following wayl = (1� z)p̂+ l? + �� (103)

where� is an arbitrary vector such that�2 = 0 and� � p̂ 6= 0. For example, in the centre-of-mass frame
of the collision process we can choosep̂ = (p̂0; 0?; p̂0) ; � = (1; 0?; �1) : (104)

The phase space for the emission of the gluon isd3l2 l0 (2�)3 = d4l(2�)4 2� Æ(l2) = 2 p̂ � � d� dz d2l?(2�)3 Æ �2 p̂ � � (1� z)� � ��l2?���= d2l?2 (2�)3 dz1� z : (105)

which yields, from the on-shell condition for the gluon,� = ��l2?��2 p̂ � � (1� z) and (p̂� l)2 = � ��l2?��1� z : (106)

The most singular part of this cross section can be obtained similarly with what was done in the case
of e+e� annihilation. It does not make much sense, in this case, to assume thatl is small, and thus
the derivation is a little bit more involved. It is nevertheless instructive, so I will report it in the next
subsection. People who are willing to accept the result without discussion, can skip it.

5.3 Derivation of the singular part of the cross section

The amplitude in eq. (102), using our kinematic definitions,can be written asgsM(p̂� l) =̂p� =l� ��l2?�� =(1 � z)�u(p̂)��(l) : (107)

When squared, it seems to give rise to terms of order1=l4?. We will see that these terms, however,

cancel. The trick is to make careful use the relationl��(i)� (l) = 0. The singular region is the one whenl
is collinear top̂, that is to say whenl? vanishes. In this regionl � (1� z)p, and thusp � l=(1 � z), up
to small corrections. Inserting this expression forp in eq. (107) will lead to simple Dirac algebra, since
by anticommutingl with � we getl�, which vanishes when dotted into the polarization. We thus writep = l � l? � ��1� z (108)
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and replace it in eq. (107). The term in� kills the singularity, and we drop it, since we are only interested
in the singular part. We obtain gsM(p̂� l)z=l � =l ?� ��l2?�� �u(p̂)��(l) ; (109)

which becomes gsM(p̂� l)�z�=l � =l ?�� ��l2?�� u(p̂)��(l)= gsM(p̂� l)�z� [(1� z)=p+ =l ?℄� =l ?�� ��l2?�� u(p̂)��(l) (110)= gsM(p̂� l)�z�=l ? � =l ?�� ��l2?�� u(p̂)��(l) ;= gsM(p̂� l)�2zl�? � (1� z)=l ?�� ��l2?�� u(p̂)��(l) ; (111)

where the first step is obtained by anticommuting=l and�, which we can do as explained before. Then
we rewritel in terms ofp. Next, we drop the=p term, since it is in front of the spinoru(p̂), and thus gives
zero, according to the Dirac equation. Finally, we use the anticommutation relation�=l ? = �=l ?�+2l?�
In this last form, the singularity appears to be at most of order 1= jl?j, so that the amplitude squared will
give at most a1=l2? singularity. The rest is simple algebra. We square eq. (111), replace the gluon spin
sum with the transverse projector�g?�� , replace the fermion spin averaged productu(p̂)�u(p̂) with p̂=2,
and obtaing2s 1l4?M(p̂� l) ��2zl�? � (1� z)=l ?�� =̂p2 (�2zl�? � (1� z)�=l ?) (�g?��)My(p̂� l)= g2s 1l4?M(p̂� l) =̂p2 �4z2 ��l2?��+ 4z(1 � z) ��l2?��+ 2(1� z)2 ��l2?���My(p̂� l)= g2s 2��l2?�� �1 + z2�M(p̂� l) =̂p2My(p̂� l) : (112)

To get the cross section, we should multiply the above expression byN=p̂2, and integrate over the phase
space. We obtain �(1) = �SCF2� Z �(0)(zp)1 + z21� z dl2?l2? dz : (113)

where �(0)(zp) = NM(p̂� l) =̂p� =l2(p̂� l)0 My(p̂� l) = NM(p̂� l) =̂p2(p̂)0 My(p̂� l) : (114)

where we have made use of the relationg2s = 4��S. The factorCF = 4=3 arises from the colour algebra.
It can be obtained according to the colour Feynman rules of fig. 3, as illustrated in the graphic equation: (115)

There we see a factor of 3 arising in the first term, because of the sum over the colour entering the Born
amplitude, and a factor of 3 in the second because of the colour loop, the net effect being(3 + 1=3)=2 =4=3.

The result obtained so far arises from the real emission of a gluon. Virtual corrections are also
present, i.e. a gluon can be emitted and reabsorbed by the same line.
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5.4 Effects due to the emission of a collinear gluon

The final result is �(1) = �SCF2� Z h�(0)(zp̂)� �(0)(p̂)i 1 + z21� z dl2?l2? dz ; (116)

where the second term in squared parenthesis is due to the virtual corrections. We see that there is a
singularity atz = 1 which cancels between real and virtual corrections. The region z ! 1 corresponds
to soft gluon emission. Thus, soft singularities cancel. There are also collinear singularities, associated
to the smalll? region. These do not cancel.

We first make the following remark. In the initial amplitudes, the presence of a denominator of
the form1=l2? may seem to give rise to divergences liked2l?=l4?. The singularity we find at the end is
instead weaker, of orderd2l?=l2?, because of anl2? we find from the numerator algebra. We can easily
convince ourselves that this is a consequence of angular momentum conservation. Vector interaction,
in fact, do not change the helicity of a particle. Thus the helicity of the incoming quark must be equal
to the that of the outgoing quark. On the other hand, physicalgluons have�1 helicity. Thus, in the
collinear limit, the total angular momentum contributed byspin is not conserved. This gives rise to the
extral2? suppression in the cross section. Also, by dimensional analysis, we see that we cannot expect
divergences stronger thand2l?=l2? in theories with dimensionless coupling constants.

In the case ofe+e� ! hadrons, we made the approximation thatz � 1, for simplicity. If we had
been more careful, instead of formula (71), we would have obtained a formula similar to eq. (116). There
would be, however, a very important difference: in the Born cross section for the real emission, under
the integral sign, we would have�(0)(p̂) instead of�(0)(zp̂). This property is characteristic of splitting
processes taking place in the final state, rather than in the initial state. Figure 18 illustrate this fact. This

Fig. 18: Collinear processes in the final and in the initial state.

is the reason why collinear singularities cancel in thee+e� !hadrons case, and do not cancel in this
case.

Equation (116) exhibit a rather intuitive property of collinear emission. Since the singularities are
due to the fact that the intermediate propagator goes near its mass shell, the intermediate particle travels
for a relatively long time and distance. Thus, when it initiates the interaction, behaves essentially like an
on-shell particle, and the phenomenon can be described in probabilistic terms. In other words, the total
amplitude squared for the splitting process and the hard scattering, becomes the product of the square
of the amplitude for the splitting process, times the squareof the amplitude for the hard scattering (i.e.,
the cross section). Thel2? integral is divergent in the lower limit. Its upper limit is instead some scale,
of the order of the typical momenta involved in the hard process, which we now callQ. Equation (116)
can then be interpreted intuitively in the following way. Ina hard process, taking place in a time of order1=Q (by the Heisenberg indeterminacy principle), an incoming parton is also probed for a time of order1=Q. In a short period of time, a quantum state may fluctuate into states to which it couples, even if they
have energies that differ by an amount of orderQ or less. This is what happens to our incoming quark.
This also explain why the larger isQ, the more likely is the splitting to take place.
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5.5 Failure of the parton model

The presence of collinear divergences tells us that there must be something wrong with the parton model.
Of course, we know that divergences, in the real physical world, are never there. In our case, for example,
if we introduce the mass of the quark, the divergence goes away. Or, we may use the known fact that
at low scale confinement effects take place, and thus put a lower cutoff of order� in the transverse
momentum integral. Or again, we may remember that the partonis off-shell in the incoming nucleon,
by an amount of order�. This also would act as a cut-off. However, neither of these remedies would
really solve the problem. Our cross section becomes strongly dependent upon low energy details, like
the quark mass, the off-shellness in the nucleon, or confinement effects, while the Parton Model assumes
that these details do not count. Furthermore, the physics ofthese details is low scale physics, and is thus
uncalculable in perturbative QCD.

We will now show that, in spite of the collinear divergences,the Parton Model can be rescued,
provided we accept some modifications to make to the originalconcept. In fact, these modifications are
interesting testable features of QCD.

We begin by introducing some notation. First of all we defineP (0)qq (z) = CF�1 + z21� z �+ (117)

where the notation with the+ suffix is called theplus prescription. It specifies that the expression in
parenthesis is to be interpreted as a distribution, and its integral against a smooth functionf(z) is given
by Z 10 �1 + z21� z � f(z) dz = Z 10 1 + z21� z (f(z)� f(1)) : (118)

Next we introduce the notationZ dx1 : : : dxn f1(x1)f1(x2) : : : fn(xn)�(x1 : : : xnp) = f1 
 f2 
 : : : 
 fn �(p) : (119)

In the above notation, we defineI = Æ(1 � x), so thatI �(p) = �(p). The operator
 is called a
convolution. It has many properties of the multiplication.In particular, it is commutative. It is easy to
show that, if f = f1 
 f2 
 : : : 
 fn (120)

then f(x) = Z f1(x1)f2(x2) : : : fn(xn) Æ(x � x1 x2 : : : xn) dx1 dx2 : : : dxn : (121)

Observe that the order of thef1 : : : fn is irrelevant in the
 product.

Now we can rewrite eq. (116) as�q(p̂) = �(0)(p̂) + �(1)(p̂) = �I+ �S2� log Q2�2 P (0)qq � �(0)(p̂) (122)

where the indexq is to remind us that this is a quark cross section. We have performed thel? integral,
with an infrared cutoff�. We always assume now that we keep only the singular terms of order �S
relatively to the Born term. We now rewrite this equation as�q(p̂) = �(0)(p̂) + �(1)(p̂) = �I+ �S2� log �2�2P (0)qq �
�I+ �S2� log Q2�2 P (0)qq � �(0)(p̂) : (123)

The above equation is easily verified by expanding the product of the terms in parenthesis, throwing away
the term of order�2S, and combining the logarithms according tolog�2=�2 + logQ2=�2 = logQ2=�2.
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We now remember that the above parton cross section should beconvoluted with parton densities. Ac-
cording to our new notation, the parton model formula is written as�(p) = f �q(p) : (124)

Thus, using eq. (123), we immediately obtain�(p) = f(�) �̂(p; �) (125)

where we have definedf(�) = f 
�I+ �S2� log �2�2P (0)qq � and �̂(p; �) = �I+ �S2� log Q2�2 P (0)qq � �(0)(p̂) : (126)

Equation (125) is known as the QCD-improved parton model formula, and it forms the basis for the
application of perturbative QCD to phenomena initiated by hadrons. A considerable difference with the
“naive” Parton Model formula is the appearance of a scale� in the parton densities. Let us know try
to understand in words what we have done. We have attempted tocompute radiative corrections to a
parton process. We have found that part of these correctionsare large, and depends upon unknown low
scale dynamics, which is represented here by the cutoff�. However, we have found that these large
corrections can be absorbed into a redefinition of the partondensities. The parton densities redefinition
does not depend upon the hard process in question: it is universal. The physical cross section can then
be defined in terms of these new parton densities. Instead of the partonic cross section, in the QCD-
improved parton model formula we have a so calledshort distancecross section̂�. This is obtained
by subtracting the infrared sensitive (orlong distance) part from the partonic cross section. Thus, the
short-distance cross section is controlled by high momenta, and is thus calculable in perturbation theory.
It is important to choose the scale� of the order of the scaleQ of the hard process, in order to avoid the
appearance of large logarithms in the perturbative expansion.

Of course, our argument was only carried out at leading orderin perturbation theory. There is a
variety of more complex arguments that show that formula (125) actually holds to all order in perturbation
theory. This is called theFactorization Theorem[19]. We will comment later on its present status. For
now, we will assume that the procedure outlined above can in fact be carried out to all orders in the
coupling constant. Thus, the short-distance cross sectioncan be given as a power expansion in�S. If
the scale at which�S is evaluated is near the typical scale of the hard process, nolarge logarithms can
appear in the coefficients of the expansion, since all the scales entering in the coefficients are of the same
order. Thus, one can improve the accuracy of the short distance cross section by computing higher and
higher orders in perturbation theory. The scale� introduced in this context is called the factorization
scale. The scale at which�S is evaluated is the renormalization scale, and should be of the same order as
the factorization scale. In principle, they can be taken to be different. Here, for simplicity, I will always
assume that the renormalization and factorization scales are taken equal.

The new pdff(�) contains uncalculable long distance effects. It has to be measured, by using
formula (125) with some reference hard process, which is typically chosen to be DIS. One then extractsf(�) at a given scale�. Its � dependence is however calculable. In fact, the left hand side of (125)
is � independent, and the short distance cross section�̂ is calculable in perturbative QCD, due to its
short-distance nature, and thus also its scale dependence is calculable. Thus, the� dependence off(�)
must also be calculable. We have�2 ���2�(p) = 0 = ��2 ���2 f(�)� �̂(p; �) + f(�) ��2 ���2 �̂(p; �)� ; (127)

and thus ��2 ���2 f(�)� �̂(p; �) = �f(�) ��2 ���2 �̂(p; �)� ; (128)
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and using the expression for�̂ given in equation (126) we obtain in leading order��2 ���2 f(�)� �(0)(p) = �S(�)2� f(�)
 P (0)qq �(0)(p) ; (129)

and since the hard process is arbitrary, we get�2 ���2 f(�) = �S(�)2� f(�)
 P (0)qq (130)

The above equation can be written in standard notation�2 ���2 f(x; �) = �S2� Z dy dz P (0)qq (y) f(z; �) Æ(x � zy) =�S2� Z 1x dyy P (0)qq (y)f(x=y; �) : (131)

This is the Altarelli–Parisi equation (or Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equation) for the
non-singlet case. It allows us to compute the (non-singlet)parton densities at any scale, once we have
measured them at an initial scale.

5.6 The evolution equations in the general case

In general, the Altarelli-Parisi equations can be written in our symbolic notation�2 ���2 fi(�) =Xj Pij 
 fj(�) ; (132)

or, more extensively �2 ���2 fi(x; �) = Z 1x dyy Xj Pij(y)fj(x=y; �) (133)

where Pij(y) = �S(�)2� P (0)ij (y) +��S(�)2� �2 P (1)ij (y) + : : : (134)

where theP (0)ij (y) are given in ref. [17], and theP (1)ij (y) in [18]. We report below the formulae for theP (0)ij (y). Its only non-vanishing components areP (0)qq (x) = P (0)�q�q (x) = CF�1 + x21� x �+ ; (135)P (0)qg (x) = P (0)�qg (x) = Tf �x2 + (1� x)2� ; (136)P (0)gq (x) = P (0)g�q (x) = CF 1 + (1� x)2x ; (137)P (0)gg (x) = 2CA �z� 11� z�+ + 1� zz + z(1� z) +�1112 � nf2CA� Æ(1 � x)� (138)

We do not report here the higher orderP (1)ij (y) functions. Observe, however, that at higher orders the
componentsPqiqj for i 6= j andPqi�qj (for any i and j) do arise. Here we limit our discussion, for
simplicity, to leading order evolution only.
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We begin by taking the difference of eq. (132) with itself, for two different quark or antiquark
flavour labelsi andj. We find�2 ���2 (fi(�)� fj(�)) =Xk (Pik 
 fk(�)� Pjk 
 fk(�)) : (139)

As discussed earlier, ifi is a quark (or antiquark), thenk can only be the same quark (or antiquark) or a
gluon. The gluon contribution cancels among the two terms inparenthesis, and one gets�2 ���2 (fi(�)� fj(�)) = Pqq 
 (fi(�)� fj(�)) : (140)

Thus, if we havenf light flavours, there are2nf � 1 independent combinations of the parton densities
that evolve independently from each others. They are callednon-singlet components. Next, we take the
sum of eq. (132) for all quark flavours and antiflavours. We getXi 6=g ���2 fi(�) =Xi 6=g Pik 
 fk(�) =Xi 6=gXk 6=gPik 
 fk(�) +Xi 6=g Pig 
 fg(�)= Pqq 
Xi 6=g fi(�) + 2nf Pig 
 fg(�) : (141)

On the other hand, eq. (132) for the gluon reads���2 fg(�) =Xi Pgi 
 fi(�) =Xi 6=g Pgi 
 fi(�) + Pgg 
 fg(�) : (142)

Thus, defining S(�) =Xi 6=g fi(�) ; (143)

we get the system of equations�2 ���2 fg(�) = Pgq 
 S(�) + Pgg 
 fg(�)�2 ���2S(�) = Pqq 
 S(�) + 2nf Pig 
 fg(�) ; (144)

which define the evolution of the so calledsingletcomponentS and the gluon. Thus, while the non-
singlet components evolve independently, the singlet component mixes with the gluon density in its
evolution.

5.7 Sum rules

We said earlier that we expect sum rules from our parton densities. Thus, for exampleZ dx hf (p)u (x)� f (p)�u (x)i = 2 : (145)

We must make sure that evolution equations do not spoil the sum rules. Since the difference of the quark
and antiquark parton densities is a non-singlet component,we have�2 ���2 Z dx hf (p)u (x)� f (p)�u (x)i = Z dx�S2�Pqq(y) hf (p)u (z)� f (p)�u (z)i Æ(x� yz) dy dz= �S2� �Z Pqq(y)dy� Z dz hf (p)u (z)� f (p)�u (z)i = 0 (146)

because
R Pqq(y)dy = 0. Similarly, one can show that the momentum sum rule is also preserved by

evolution.
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5.8 Scheme dependence

There is some ambiguity in the way one defines the parton densities, the first of eqs. (126). This ambi-
guity is best seen as an ambiguity in the type of infrared cutoff one uses. For example, one could give a
mass to the quark, or assume it is slightly off-shell. By doing this, the large logarithm does not change,
but different finite pieces can arise in the calculation. In the present context we have only looked at
the divergent parts. When doing next-to-leading QCD calculation, however, one would like to compute
precisely the finite pieces. The reader can find interesting examples in [20] and [21]. There the same
processes are computed (the Deep-Inelastic and the Drell-Yan cross section), but with different infrared
cutoffs. Thus, the finite terms in the various cross sectionsturn out to be different. However, when
expressing the DY cross section in terms of the DI cross section, both approaches get the same formula.
Thus, to some extent, the definition of the parton density is amatter of convention, like the definition of�S. It has to be specified together with a procedure for the computation of short distance cross section.
Fortunately, today, the so calledMS scheme is widely used, and most parton densities are given intheMS scheme.

5.9 Summary

We summarize what we have learned in this chapter.

First of all, by intuitive reasoning, we derived cross sections for high energy inclusive processes,
assuming that the transverse momentum of constituents in hadrons was limited to typical hadronic scales.

We tried to compute radiative corrections to these formulae, and we found inconsistencies, i.e.
uncancelling collinear divergences.

With a procedure very similar to renormalization, we showedthat the collinear divergences could
have been reabsorbed into the parton densities.

Let us discuss how is the procedure of factorization similarto renormalization. In renormalization,
we reabsorb our ignorance of UV effects into a redefinition ofthe strong coupling constant. Here, we
reabsorb our inability to compute IR effects into a redefinition of the parton densities.

As a result of this procedure, we find that the parton densities are actually scale dependent. We may
think of a hard process as a probe of transverse dimensions oforder1=Q. When we probe a constituent
at higher and higher values ofQ, that is to say at smaller and smaller distances, we may find itin states
in which it has split into more constituents. This is why parton densities evolve with the scale at which
they are measured.

The original assumption of limited transverse momenta fails in the parton model. We have seen,
in fact, that because of initial state radiation, integralsof the formd2l?=l2? arise. Roughly, we expecthl2?i � �S Z d2l?l2? l2? � �SQ2 : (147)

Thus the transverse momentum is not limited, but it is “perturbatively” small, i.e. it is suppressed by a
coupling constant factor.

5.10 How solid is the Factorization Theorem?

The argument given in this chapter does not certainly pretend to be fully convincing. Thus, we would
like to have a more solid proof of this theorem.

In the case of the DIS process, such proof exists. It relies upon a clever analytic continuation
property of the DIS cross section, that can be used to apply the powerful language of the operator-product
expansion (O.P.E.) to the problem.

For production processes in hadronic collisions, things are much more difficult. Even in the sim-
plest case, the Drell-Yan process, the factorization theorem has a long controversial history, which was
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finally settled by a calculation performed by [22]. All-order arguments for factorization have been given
in [23]. Thus, today, the factorization theorem is widely accepted in the physics community.

6 DEEP INELASTIC SCATTERING

Deep-Inelastic Scattering (DIS) is the next-to-simplest QCD process aftere+e� annihilation into hadrons.
It is experimentally quite simple, since in order to define the DIS cross section one does not need to in-
troduce jet definitions, and in general, it is enough to measure the momentum of the outgoing lepton in
order to measure the cross section.

The Deep-Inelastic cross section is also the best place where to measure structure functions, as can
be seen from eq. (95). Thus, many QCD prediction for hadroniccollisions rely upon the experimental
determination of structure functions performed at DIS experiments.

From a theoretical point of view, DIS has also a privileged status. There are in fact good reasons
to believe that power corrections in DIS processes behave like 1=Q2. This is unlike, for example, jets ine+e� annihilation, where one expects corrections of the order of1=Q. Thus, DIS is a good place where
to measure�S.

The most general form of the DIS cross section for electromagnetic processes is given byd�dx dy = 4��2em(S �M)2Q4 ��1� y � xyM2S �M2� F2(x;Q2) + y2 xF1(x;Q2)� ; (148)

whereF2 andF1 are called the structure functions for DIS,y corresponds to the variables defined previ-
ously,M is the mass of the target nucleon andx = xBj. I will not illustrate the derivation of this formula,
which is found in many textbooks. It is a simple consequence of electrodynamics at the lowest order
in �em, and of Lorentz invariance. It does not, therefore, containany dynamical consequence of strong
interactions, aside from its symmetry properties. From formula (95), and after what we have said in
the previous chapter with regard to the factorization theorem, we can now write down the leading order,
QCD-improved parton model formula for DISd�dy dx = 2��2emSxBjQ4 �1 + (1� y)2�Xl 2l fl(x;Q) : (149)

In this leading order formula, it is sufficient to choose� � Q. For simplicity, I have chosen� = Q.
From eqs. (148) and (149), neglecting mass effects, we findF2(x;Q) = 2xF1(x;Q) ; (150)

which is the so-called Callan-Gross relation, andF2(x;Q) = xXl 2l fl(x;Q) : (151)

The Callan–Gross relation is a prediction of the parton model, and it is a consequence of the fact that
the only charged partons are fermions. It is however only a leading order prediction. When radiative
corrections are included, it is violated. One definesFL = F2 � 2xF1.

It is useful to focus now upon they dependence of the parton model formula. We havey = p̂ � qp̂ � k = 1� p̂ � k0p̂ � k = 1� os �2 ; (152)

and thusy is related to the electron scattering angle� in the CM frame of the electron-parton collision
(sometimes called the partonic CM frame).
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The scattering of the lepton on a quark of the same helicity, gives rise to ay dependence propor-
tional to 1, while in the case of a quark of different helicity, they dependence is(1�y)2. Thus, in the case
of spin-averaged cross sections in electromagnetism, they dependence is1 + (1 � y)2. The verification
of these properties is a simple exercise with Feynman graphs. In fact, the vanishing of the cross section
in the backward limit (i.e.y = 1) for the quarks and lepton with opposite helicity is easily explained.
The spins of the lepton and the quark are aligned, since theirhelicities are opposite, and their momenta
are opposite. Thus, they have a total angular momentum 1 in the collision direction. Vector interactions
conserve helicities. Thus, the quark and lepton will have the same helicity after the interaction. In the
case of backward scattering, however, they have opposite momentum, and thus they have opposite total
spin. Thus, conservation of angular momentum imposes the vanishing of the backward cross section,
which is in fact what the(1� y)2 dependence predicts.

Parity violating processes contribute anti-symmetrically in the exchange of the helicity of the
incoming lepton. We expect a(1� (1 � y)2) = 2(y � y2=2) dependence to be present in case of parity
violating processes. Thus, a third structure function appears in these cases. For example, in neutrino
charged current DIS (i.e.��N ! ��X or ���N ! �+X) we haved�dx dy = G2F(S �M2)2� M2W(Q2 +M2W)2"�1� y � xyM2S �M2� F 2 (x;Q2)+y2 xF 1 (x;Q2)� (y � y2=2)xF 3 # ; (153)

where the sign in front ofF3 is chosen positive for�, and negative for�� interactions. The parton cross
section is given by d�dy = G2Fŝ� M2W(Q2 +M2W)2 � 1 same helicities(1� y)2 opposite helicities

: (154)

The neutrino is left handed, and charged current interactions involve left-handed quarks and their antipar-
ticles, which are right-handed. Thus, when the neutrino scatters off quarks, we get the 1y dependence;
when it scatters off antiquarks, we get the(1 � y)2. Because of charge conservation (i.e., the neutrino
goes into an electron, and thus gives one unit of positive charge to the quark) only negatively charged
quarks or antiquarks can be involved. Thus, for example, for��p! ��X, neglecting for the moment a
possible charm or bottom parton density in the protond�dx dy = G2FSx� M2W(Q2 +M2W)2 �(d(x;Q) + s(x;Q)) + (1� y)2 �u(x;Q)� ; (155)

Here we introduce the common notationu(x;Q) = f (p)u (x;Q) ; d(x;Q) = f (p)d (x;Q) ; etc. (156)

for the quark densities in the proton. The corresponding densities in the neutron are obtain from isospin
symmetry f (n)u (x;Q) = d(x;Q) ; f (n)d (x;Q) = u(x;Q) ; etc.: (157)

Thus F 2 (x;Q) = 2xF 1 (x;Q) = 2x(d(x;Q) + s(x;Q) + �u(x;Q)) (158)F 3 (x;Q) = 2(d(x;Q) + s(x;Q)� �u(x;Q)) : (159)

Similarly, for ��p! e+X F 2 (x;Q) = 2(u(x;Q) + s(x;Q) + �d(x;Q)) (160)F 3 (x;Q) = 2(� �d(x;Q)� �s(x;Q) + u(x;Q)) : (161)
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One gets the sum ruleZ 10 dx �F ��p3 (x;Q) + F �p3 (x;Q)� = (162)2 Z 10 dx �u(x;Q) � �u(x;Q) + d(x;Q)� �d(x;Q) + s(x;Q)� �s(x;Q) + : : :� = 6
which is called Gross–Lewellyn Smith sum rule, and expresses the fact that there are three quarks in a
proton.

The phenomenology of DIS scattering is quite complex, and itis really impossible to review it in a
satisfactory way in the context of these lectures. Several complications of experimental nature arise, and
have to be dealt with properly. When extracting the structure functionsF1 or F2 from data, it is usually
assumed thatF1 andF2 are related on the basis of the Callan–Gross relation2xF1(x;Q) = F2(x;Q)� 1 + 4M2x2=Q21 +R(x;Q2) (163)

where, if the Callan–Gross relation was satisfied exactly, one would haveR = 0. Different experiments
are performed on different targets. The structure functions for a nucleon embedded in a nucleus are
distorted (EMC effect). Finally, the size of power suppressed effects (the so calledhigher twist effects)
should be assessed, especially for lowQ2 experiments. In the present context I will not try to explain
how to deal with these complications. I will instead try to give a rough idea of how the strong coupling
constant and the parton densities are extracted from data.

The strong coupling constant can be extracted from DIS data using sum rules, like the Gross–
Lewellyn Smith sum rule. Sum rules are in fact calculable in perturbative QCD, and the difference from
their parton model value can be used to extract�S. For the Gross–Lewellyn Smith sum ruleZ 10 dx �F ��p3 (x;Q) + F �p3 (x;Q)� =6 �1� �S� ��1 + 3:58�S� + 19��S� �2�+O(�4S)��HT� : (164)

A CCFR determination [24] obtains�S(1:76GeV ) = 0:260+0:041�0:046 ! �S(MZ) = 0:110+0:06�0:09 : (165)

These determinations have the advantage that these quantities have been computed at very high order in
perturbation theory [25] , and thus the theoretical error are reduced. Since, however, they are performed
at a rather low scale, some estimate of higher twist effects (the�HT) are necessary.

The standard method to measure�S in DIS is however the study of the evolution of the parton
densities. It is convenient to use a non-singlet structure function, in order to avoid uncertainties due to
the poor knowledge of the gluon density. Thus, for example, one can useF3 in neutrino scattering [26].
Alternatively, one can use structure functions at very largex. Since gluons are not valence particles, they
are quite soft. In general, there is little gluon content in the hadrons forx > 0:2. Using this fact, one can
also use muon data to determine�S. A summary of�S measurements from DIS is reported in table 4.

Neutrino scattering allows independent access to the quarkand antiquark content of nucleons. It
is generally carried out on heavy, approximately isosinglet targets.F2 measurements in electromagnetic
and charged current experiments give access to the combinations reported in the table 6. In principle,
strange and antistrange content could be extracted from neutrino and antineutrino data on isosinglet
targets. Or, assumings = �s, we can use the combination5=6F �d2 �3F �d2 = x2s. In practice, the strange
content is better constrained by looking at charm production in neutrino DIS. The corresponding signal,
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Q ��S(MZ) Order of
Process [GeV] �s(Q) �S(MZ) exp. theor. perturb.

GLS sr 1.73 0:32 � 0:05 0:115 � 0:006 0:005 0:003 NNLO
DIS [polar.] 2.11 0:31 + 0:08� 0:06 0:120 + 0:010� 0:008 + 0:004� 0:005 + 0:009� 0:006 NLO
DIS [ HERAF2] 4.5 0:23 � 0:04 0:120 � 0:010 0.005 0.009 NLO
DIS [�] 5.0 0:215 � 0:016 0:119 � 0:005 0.002 0.004 NLO
DIS [�] 7.1 0:180 � 0:014 0:113 � 0:005 0:003 0:004 NLO

Table 4: A summary of measurements of�S from DIS. In the first row is the measurement from the Gross–Lewellyn Smit sum

rule. The second row refers to polarized DIS, not discussed in this lectures.F ep2 =x 49 (u+ �u) + 19(d+ �d+ s+ �s)F ed2 =x 59 (u+ �u+ d+ �d) + 29 (s+ �s)F �d2 2(u+ �u+ d+ �d+ 2s)F ��d2 2(u+ �u+ d+ �d+ 2�s)F �d3 2(u� �u+ d� �d+ 2s)F ��d3 2(u� �u+ d� �d� 2�s)
Table 5:F2 in various experimental configurations of interest.

in the case of�� scattering, is given by an unlike sign muon pair, one arisingfrom the charged current
scattering, and the other from charm decay.

Assuming that we have measured the strange content, we have access to the combinationsu+ �u,d + �d, u + d and�u + �d. These quantities are not independent, since the sum of the first two equals the
sum of the last two. Thus, one more input is needed. It is usually assumed that�u = �d. This assumption,
supplemented with sum-rule restrictions, is however in conflict with data. In fact, using the flavour sum
rules Z dx [u(x;Q)� �u(x;Q)℄ = 2 ; Z dx �d(x;Q)� �d(x;Q)� = 1 ; ; (166)

we obtain Z 10 dxx hF (p)2 (x;Q)� F (n)2 (x;Q)i= Z 10 dx 13 �u(x;Q) + �u(x;Q)� d(x;Q)� �d(x;Q)�= 13 + 23 Z 10 dx ��u(x;Q)� �d(x;Q)� (167)

which, if �u = �d gives the so called Gottfried sum rule. Experimental measurements of the sum favour a
negative contribution from the�u� �d difference.

In order to access the�u � �d difference as a function ofx, one has to use different experiments.
Drell-Yan pair production in proton-proton collisions is one example.

Thex integrals ofF2 are proportional to a combination of the momentum fraction carried by the
quarks and antiquarks. In particular, for example, the integral ofF �d2 gives the total momentum fraction
carried by quarks. This quantity is measured to be roughly 0.5. Thus, one expects that a large fraction
of the hadron momentum is carried by gluons. This poses a valuable constraint on the gluon densityg(x;Q). From DIS, the traditional way to determineg(x;Q) is from its influence upon the evolution of
the singlet structure functions. This is viable at relatively small values ofx, where the gluon density is
not small. At largex, however, one needs to rely upon direct methods, since the gluon density is too
small there to influence evolution. Direct photon production is one such process.
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Today’s tendency for structure function studies is to perform global fits to a large variety of data
samples. One recent description of structure functions fitsis given in ref. [27], where many aspects are
discussed in detail. The result of these fits is shown in fig. 19.
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Fig. 19: Parton distributions by the MRST group.

7 QCD IN HADRONIC COLLISIONS

Perturbative QCD applications in hadronic collisions is extremely important, due to the impact it has had
in the recent past for the discovery of new particles, and theimpact it is going to have in the future for
the search of new physics at the LHC. Thus there are essentially two main points of study for QCD at
hadron colliders, and they clearly go hand in hand� QCD tests in hard processes� Modeling of particle production processes (computing cross sections for top, higgs, etc.) and

computing backgrounds.

Unlike the case ofe+e� annihilation into hadrons, where each event is a hard process, in hadronic
collisions most events are soft, even if the CM energy is veryhigh. This is because, even if the colliding
energy is high, the momentum transfer involved is not large.However, in the production of very massive
particles, or in processes in which particles at high transverse momentum appear, hard momenta are
actually present, and we can apply perturbative QCD. As a rule of thumb, when we try to compute a
process using the parton model formula, and find that it is dominated by small momenta, this means that
we can no longer neglect low energy details, like the off-shellness of the partons inside the colliding
hadrons, or their mass. In this case, the process is controlled by long distance dynamics, and cannot be
computed using perturbative QCD.
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7.1 The kinematic variables for hadronic collisions

Given the two colliding hadron beams, one defines the kinematical variables of any outgoing particles
according to the figure below :
Thus, the transverse momentumk? is the projection of the particle momentum into the transverse plane
(the plane orthogonal to the collision axis). The azimuthalangle� is defined with respect to the collision
axis. One usually defines

Transverse energy= ET = sin �E
Transverse mass= mT =pk2T +m2

Rapidity = y = 12 log k0 + kkk0 � kk :
The rapidity has the nice property that under a longitudinalboost it is simply translated by the boost
angle: y ! y + log . The transverse momentum, and thus the transverse mass, aresimply invariant
under longitudinal boosts. Thus, these variables are particularly useful to study hard processes, since in
general the parton centre-of-mass system for the process will be translated with respect to the hadron
CM. For particles of small mass, we havey � 12 log 1 + os �1� os � = � log tan �2 ; (168)

and thus one defines the pseudorapidity� = � log tan �2 : (169)

It is useful to remember the following formula for the singleparticle phase spaced3k2k0(2�)3 = 12(2�)3 d2kTdy : (170)

Thus, the single particle phase space is uniform in transverse momentum and rapidity.

7.2 Total cross section

The total hadronic cross section is in the range of several 10mb range, and it grows logarithmically with S.
This is roughly the inverse of few hundred MeV squared, the characteristic scale of strong interactions.
We cannot compute the total cross section using perturbative QCD. Phenomenological models based
upon Regge theory are usually employed to describe the data.

If we attempted to estimate the total cross section using parton model concept, we would end up
computing a parton production cross section integrated over the transverse momentum of the parton. On
dimensional ground, this cross section would be divergent at small transverse momentad�dk2T � 1k4T ) � � Z dk2Tk4T � 1�2 (171)

where the last step follows from the fact that some non-perturbative hadronic scale (for example, the
off-shellness of the incoming partons) should act as a lowercutoff of the integral. Thus, perturbation
theory, although incapable to give a definite answer, fails precisely at the point when the cross section
becomes of the order of the total cross section.
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7.3 Typical inelastic processes

The typical inelastic events in hadronic collisions are quite complex. Several hadrons are produced, the
average charged multiplicityhnhi being typically of the order of 30 to 40 per event forEm = 600
to 1800 GeV, and it grows logarithmically with energy. Fluctuations in multiplicity are large, of the
order of 100%, a typical feature of cascade processes. The transverse momentum distribution of the
produced hadrons are characterized by an average transverse mass of the order of few hundred MeV,
growing slowly with energy. The produced particles are distributed uniformly in rapidity, the distribution
dropping smoothly to zero when approaching the maximum rapidity.

7.4 Looking for hard processes in hadronic collisions

Hadron collider physics is complicated by the fact that interesting events are rare with respect to the
common lowpT inelastic events. This is immediately understood if we estimate the cross section for
the production of a 100 GeV object to be of the order of10�4 GeV�2, while the typical inelastic cross
section is of the order of10�4 MeV�2. We expect roughly 1 hard event every 106 soft ones, and this
estimate ignores eventual suppression due to the coupling constant.

Furthermore, soft events may look like hard ones, because offluctuations. Thus, with a multiplicity
of 30 and an averagepT of few hundred MeV, the average total transverse energy can very well be of the
order of tens of GeV. Fluctuations may favour occasionally even larger transverse momenta.

7.5 Jets at Hadron Colliders

Thus, unlike thee+e� case, where above a certain energy all events look like jet events, in hadronic
collisions establishing the existence of jets has requiredthe use of an appropriate trigger. In fact, one
has to look only at events with a large total transverse energy. If the total transverse energy is larger than
the typical value for a soft event, the events show the presence of jets. This was the method followed by
the UA2 and UA1 experiments at the CERN Sp�pS collider, to establish the existence of jets in hadronic
collisions. It was found there that requiring a transverse energy larger than 70 GeV, most events look like
jet events.

The description of jet production in QCD follows the lines ofthe QCD-improved parton model.
At the leading order level, in order to compute jet cross section we only need the Born cross sections for
parton parton scattering, reported in table 6. The 2-jet inclusive cross section can then be obtained from

Process d�̂d�2qq0 ! qq0 12ŝ 49 ŝ2+û2t̂2qq! qq 12 12ŝ h49 � ŝ2+û2t̂2 + ŝ2+t̂2û2 �� 827 ŝ2̂ut̂iq�q! q0�q0 12ŝ 49 t̂2+û2ŝ2q�q! q�q 12ŝ h49 � ŝ2+û2t̂2 + t̂2+û2ŝ2 �� 827 û2̂st̂ iq�q ! gg 12 12ŝ h3227 t̂2+û2t̂û � 83 t̂2+û2ŝ2 igg ! q�q 12ŝ h16 t̂2+û2t̂û � 38 t̂2+û2ŝ2 igq ! gq 12ŝ h�49 ŝ2+û2ŝû + û2+ŝ2t̂2 igg ! gg 12 12ŝ 92 �3� t̂û̂s2 � ŝû̂t2 � ŝt̂û2�
Table 6: Cross sections for light parton scattering. The notation isp1 p2 ! k l, ŝ = (p1 + p2)2, t̂ = (p1� k)2, û = (p1 � l)2.
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the formula d� =Xijkl dx1 dx2 f (H1)i (x1; �) f (H2)j (x2; �) d�̂ij!k+ld�2 d�2 (172)

that has to be expressed in term of the rapidity and transverse momentum of the quarks (or jets), in order
to make contact with physical reality. The two particle phase space is given byd�2 = d3k2k0(2�)3 2� Æ((p1 + p2 � k)2) ; (173)

and using eq. (170), in the CM of the colliding partons, we getd�2 = 12(2�)2 d2kT dy 2 Æ(ŝ� 4(k0)2 ) : (174)

Herey is the rapidity of the produced parton in the parton CM frame.It is given byy = y1 � y22 (175)

wherey1 andy2 are the rapidities of the produced partons in the laboratoryframe (in fact, in any frame).
One also introduces y0 = y1 + y22 = 12 log x1x2 ; � = ŝs = x1 x2 : (176)

We have dx1 dx2 = dy0 d� : (177)

We obtain d� =Xijkl dy0 1s f (H1)i (x1; �) f (H2)j (x2; �) d�̂ij!k+ld�2 12(2�)2 2 dy d2kT (178)

which can also be written asd�dy1 dy2 d2kT = 1s 2(2�)2 Xijkl f (H1)i (x1; �) f (H2)j (x2; �) d�̂ij!k+ld�2 : (179)

The variablesx1, x2 can be obtained fromy1, y2 andpT from the equationsy0 = y1 + y22 (180)y = y1 � y22 (181)xT = 2pTps (182)x1 = xT ey0 osh y (183)x2 = xT e�y0 osh y : (184)

For the partonic variables, we needŝ = s x1 x2 and the scattering angle in the parton CM frame�, sincet = �s2 (1� os �) ; u = �s2 (1 + os �) : (185)

Since we are neglecting parton masses, rapidity and pseudorapidity are identical, so that the equationy = � log tan �2 (186)
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gives us�.
The Born cross section formulae given here predict the production of back-to-back jets, with op-

posite transverse momenta. Details of the jet distributions depend upon the knowledge of the structure
functions. However, it has been observed that, to a good approximation, scattering processes with gluon
exchange in thet channel dominate, and that they are roughly proportional toeach other. More specif-
ically, thegg ! gg, qg ! qg andqq0 ! qq0 processes are in the ratio3 � 3, 3 � 4=3 and4=3 � 4=3
respectively. This property is exact in the small angle scattering limit, but holds to a good approximation
also at large angles. It can be obtained from Table 6, by keeping only the most enhanced terms whent ! 0 (andu ! �s) or whenu ! 0 (and t ! �s). The processes with identical particles in the
final state have an extra factor of1=2, but on he other hand have enhanced terms whent! 0 and whenu! 0, while those with different particles in the final state haveonly thet singularity. Thus, at the end,
theqq ! qq process at small angle gives the same contribution as theqq0 ! qq0 process.

Using this property the jet cross section simplifiesd�dy1 dy2 d2kT � 1s 2(2�)2 F (H1)(x1; �)F (H2)(x2; �) d�̂gg!ggd�2 : (187)

with F (H)(x; �) = f (H)g (x; �) + 49Xi 6=g f (H)i (x; �) : (188)

Equation (187) gives a definite prediction for the angular dependence of jet production. It can also be
written, more explicitly, in terms ofx1, x2 andos �, where� is the scattering angle in the rest frame of
the partons. d�dx1 dx2 d os � = F (H1)(x1; �)F (H2)(x2; �) d�̂gg!ggd os � : (189)

Early studies of the UA1 and UA2 experiments have confirmed this behaviour [28].

Modern studies of jet physics at colliders are performed at the next-to-leading level in QCD.
Calculations of jets cross sections at next-to-leading level have been available for quite a long time.
Comparisons between data and calculation require agreement on a jet definition to be used. Such a
definition should be of the Sterman-Weinberg type, that is tosay, it should be infrared and collinear safe.
Several algorithms have been proposed to define jets. For thepurpose of this lectures, it will be enough
to know that the most commonly used definitions make use of a circle of a given radiusR in the�� plane.
The circle is moved in the plane until one finds a maximum of thetransverse energy deposition inside
the circle, and a jet of the given�� andET values is associated with this point. The single inclusive
distribution of jets found in this way, as a function ofET, is compared with QCD NLO calculation. An
example of this is shown in fig. 20, taken from ref. [29] (similar studies were performed previously by
the UA1 and UA2 experiments). The analogous plot with CDF data shows instead a discrepancy of the
QCD calculation with data at very highET. This is shown in fig. 21. Even if D0 does not have evidence
of a discrepancy, systematic errors are smaller in the CDF case, and thus the above studies have been
taken as a hint of signal for new physics. At this time, it has become clear that the very highET region
probes a previously unexplored region for the structure functions, and that it is possible to modify parton
density fits to account for the CDF data. It is however interesting to point out the value of studies of
this kind. Since the QCD jets parton cross sections drop witha the square of the transverse energy, a
contact, 4-fermion interaction (similar, therefore, to weak interactions at low energies) would stick out
at sufficiently highET. In particular, a 4-fermion interaction with a coupling constantG, would give
rise to corrections to the cross section due to the interference terms with the standard QCD amplitude.
On purely dimensional ground, such corrections would be of orderG, and would thus overcome the
strong interaction at someET. Thus, high transverse momentum jets studies can be used to put bounds
on these kind of interactions. Sometimes, these bounds are called, somewhat improperly, compositeness
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bounds, since these kinds of 4-fermion interactions would naturally arise in composite models, due to
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the exchange of heavy composite particles.

Point interaction would also lead to a different angular distributions for the dijet cross sections. The
dominance of the1=t̂ contribution gives rise to an angular dependence of the form1=t̂2 = 1=(1�os �)2.
Defining the variable� = (1 + os �)=(1 � os �), we would expectd�=d� to be roughly flat in this
case. This is illustrated in fig. 22. Also in this case, the contribution of a contact interaction would be

Fig. 22: Dijet angular distributions.

suppressed for large�, and it would show up as a deviation of the data from the QCD prediction at low� (see for example ref. [30]).

7.6 Production ofW , Z, and Drell-Yan pairs

From the point of view of perturbative QCD, the production ofW ,Z and Drell-Yan pairs are very similar
processes. Some graphs contributing at leading, next-to-leading, and next-to-next-to-leading order in the
strong coupling are shown in fig. 23. The corrections of order�S have been given a long time ago in

Fig. 23: Some graphs contributing to the Drell-Yan partoniccross section in QCD.
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refs. [20, 21], while the�2S corrections have been computed in ref. [31]. In order to get acquainted with
the kinematics, let us compute the parton cross section for the production of a hypothetic massive vector
meson. The amplitude is M = g �v(p2) �u(p1) (190)

and the partonic cross section is�̂ = 12ŝ 14 19 Z d�1 Xspin;ol: jMj2 ; (191)

where we have included a factor of1=4 for the initial spin average,1=9 for the initial colour average,1=2ŝ to go from an amplitude squared to a cross section, and the one-particle phase spaced�1. We haveXspin;ol: jMj2 = 3g2 Tr[ =p1�(� =p2)�℄ = 12g2ŝ ; (192)

and d�1 = Z d3q2q0(2�)3 (2�)4 Æ4(p1 + p2 � q) = 2� Æ((p1 + p2)2 �M2V ) (193)

so that at the end we get �̂ = 4�23 � Æ(ŝ�M2V ) ; (194)

with � = g2=(4�). ForW� production, the coupling isg = gem=(p2 sin �W), and only left handed
quarks, and right handed antiquarks, can contribute. We get�̂W = �2 �em3 sin�2 �W Æ(ŝ�M2W ) : (195)

The full hadronic cross section is then�W = Z dx1 dx2 h�f (H1)u (x1) f (H2)�d (x2) + f (H1)�d (x1) f (H2)u (x2)� os2 �C + : : :i� �2�em3 sin2 �W Æ(s x1 x2 �M2W ) (196)

where one should not forget the appropriate CKM factors. Cross section studies forW=Z production are
resumed in fig. 24, which is taken from ref. [32]. The agreement of the data with the theoretical prediction
is quite satisfactory, especially in view of the theoretical accuracy one reaches in these calculations.
However, this is not the only reason why the perturbative calculation is useful in this case. From the
measured ratio R = �W �B(W ! e�)�Z �B(Z ! ee) ; (197)

assuming that the ratio of the production cross section is accurately calculable, one can extractB(W !e��), and from it�W , �W = �(W ! e��)B(W ! e��) ; (198)

assuming that thee� width is correctly given by the standard model. This width measurement is sensitive
to non-standard decays of theW .
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7.7 Heavy Flavour production

The production of heavy flavour in hadronic collisions involves strong interactions directly. Furthermore,
in many cases of interest, the gluon densities play an important role. This is unlike the case ofW=Z
production, in which the main production mechanism does notinvolve the strong coupling constant. The
search and discovery of the top quark has therefore relied onthe whole machinery of perturbative QCD,
factorization, and structure function physics.

The leading order process is proportional to the square of the strong coupling constant. Next-to-
leading (order�3S) calculations for the production of heavy flavour production have been available for a
long time. Furthermore, a large amount of work has been performed on resummation of effects enhanced
in particular kinematic regions [33].

Since the top is very heavy, one expects that perturbative QCD should work well in this case.
In fig. 25, taken from ref. [34], I show a comparison of theoretical predictions with the CDF and D0
measurements.

CDF data for bottom production has always shown a tendency tobe higher than the theoretical
predictions, as one can see from fig. 26, a problem that is being actively investigated. A large body of
data is available for charm production. Theoretical calculations are, however, not very reliable in these
cases, since the charm mass is only moderately heavy, and thus one cannot safely rely upon perturbation
theory. Some results are shown in fig. 27. A recent review of heavy flavour production is given in [33].
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Fig. 25: Top production cross section versus the mass, compared to CDF and D0 measurements. The dashed band correspond

to anO(�3S) calculation, while the solid band includes also soft gluon resummation effects to the subleading logarithmic level.

Fig. 26: Comparison of bottom cross section calculations versus CDF measurement.

8 CONCLUSIONS

In these lectures I have given an overview of perturbative QCD. As we have seen, the application of
perturbation theory in strong interactions is not straightforward, unlike the case of weak interactions and
electrodynamics. Nevertheless, a consistent and testableframework for the application of perturbation
theory in strong interactions can be defined. This frameworkhas been severely tested ine+e�, ep, and
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Fig. 27: Charm and bottom production cross sections in proton-proton collisions at fixed target energies

hadron-collision physics. It is perhaps true that, after the very extensive work performed at LEP1 and
at the SLD, our confidence in perturbative QCD has become quite solid. Testing QCD remains however
an important activity, due to the large number of applications that heavily depend upon it. The near
future in particle physics research is in hadron collider physics, where the application of QCD is more
complex. We should not forget, for example, that Higgs production at hadronic colliders is essentially
a stong-interaction phenomenon, driven by gluons. Thus, itis important to build more confidence upon
our ability to compute hadronic processes.

REFERENCES

[1] M. Peskin, SLAC-PUB-3021 (1982), Les Houches 1982;
H. Leutwyler, BUTP-91/26, lectures given at the Avanced Teoretical Study Institute in Elementary
Particle Physics, Boulder, Colorado (1991);
G. Ecker, CERN-TH.6660/92, Cargese lectures (1992).

[2] O.V. Tarasov, A.A. Vladimirov and A.Yu. Zharkov,Phys. Lett.B93(1980)429.

[3] T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin,Phys. Lett. B400(1997)379,hep-ph/9701390.

[4] S.G. Gorishnii, A.L. Kataev and S.A. Larin,Phys. Lett.B259(1991)144.

[5] E. Braaten, S. Narison and A. Pich,Nucl. Phys.B373(1992)581.

[6] S. Catani, preprint CERN-TH/97-371,hep-ph/9712442, Talk given at the XVIII International
Symposium on Lepton Photon Interactions LP97, Hamburg, Germany, July 28th - August 1st,
1997.

[7] G. Sterman and S. Weinberg,Phys. Rev. Lett.39(1977)1436.
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