QCD for the LHC A few illustrative figures...

Grégory Soyez

Brookhaven National Laboratory

• Measurements of jet cross-sections $\longrightarrow \alpha_s$

- DIS
 - Bjorken scaling, scaling violations, Global fits
- pp
 - Kinematics
 - PDF uncertainties and their impact
 - Jets: challenges, TEVATRON results

 e^+e^-

 $R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$ $= \sum_q N_c e_q^2 \left(1 + \frac{\alpha_s}{\pi} + \dots\right)$

- $u, d, s: 3\frac{4+1+1}{9} = 2$
- $+c: +3\frac{4}{9} \to = 10/3$
- $+b: +3\frac{4}{9} \rightarrow = 14/3$
- Note: threshold effects for $m \neq 0$

Fraction of jet multiplicities vs. y_{cut} OPAL collaboration, JADE algorithm

Evolution of the fraction of 3-jet events with colliding energy

Note $R_3 = C\alpha_s$ i.e. direct measurement of α_s (at LO)

Extraction of α_s from the k_t and Cambridge jets

Bjorken scaling

Measurements from BCDMS, SLAC, NMC, H1 and ZEUS

Scaling violations

HERA measurements (\approx 1993-2007) Note the $\log(x)$ scale A closer look at the Q^2 dependence for 3 bins in x

- decreasing at large x
- (strong) rise at small x

Remarkable agreement with DGLAP Global Fits

Here: prelim. HERA fit, prelim. HERA combined measurements

LO DGLAP anomalous dimensions

- Pole at j = 1for gq and gg
- $\log(j)$ at $j \gg 1$ for qq and gg

•
$$\gamma_{qq}(1) = 0$$

pp

Kinematics reached at the LHC

PDF uncertanities (here: prelim. MSTW & MRST 2006)

Typically a few %, larger at small and large x, especially the

Predictions for the *W* and *Z* cross-section: 1. Tevatron

Non-begligible effect Beyond the uncertainties contained in 1 PDF set

Predictions for the *W* and *Z* cross-section: 2. LHC

Non-begligible effect Beyond the uncertainties contained in 1 PDF set

Typical $e^+e^- \rightarrow \mu^+\mu^-$ event

Typical $e^+e^- \rightarrow 2$ jets event

Typical $e^+e^- \rightarrow 3$ jets event

Typical $e^+e^- \rightarrow 3$ jets event

Typical $pp \rightarrow jets$ event at the TEVATRON

 $\sim 300 - 400 particles$

Typical $pp \rightarrow jets$ event at the LHC

 $\sim 300 - 400 particles$

Typical $pp \rightarrow jets$ event with pileup

 $\sim 3000 particles$

D0 measurements of inclusive cross-section

good agreement with NLO QCD predictions Note that error(PDF) \approx error(data)

CDF measurements of dijet cross-section (prelim.)

good agreement with NLO QCD predictions

CDF measurements of *Z*+jets cross-section (prelim.)

D0 SUSY searches (prelim.)

If $m_0 < m_{1/2}$, $\tilde{q} \rightarrow q \chi_1^0$ i.e. for a pair production, at least 2 jets (not back-to-back) + missing E_T

Red: upper limit on the data Blue: theoretical expectations

Stable cones:

Midpoint:

{1,2} & {3}

{1,2} & {3} & {2,3}

Midpoint: {1,2} & {3} {1,2,3}

Stable cones:

Midpoint:	{1,2} & {3}	{1,2} & {3} & <mark>{2,3</mark>]
Seedless:	{1,2} & {3} & <mark>{2,3}</mark>	{1,2} & {3} & <mark>{2,3</mark>]
Jets: ($f = 0.5$)		
Midpoint:	{1,2} & {3}	{1,2,3}
Seedless:	{1,2,3}	{1,2,3}

Midpoint:	{1,2} & {3}	{1,2,3}
Seedless:	{1,2,3}	{1,2,3}

Stable cone missed — IR unsafety of the midpoint algorithm

3-particle event — CMS Iterative Cone

hardest seed

iterate

stable \Rightarrow 1 jet

Collinear splitting

hardest seed

iterate

stable \Rightarrow 1st jet

remaining particle stable \Rightarrow 2nd jet

- Before collinear spliting: 1 jet
- After collinear spliting: 2 jets

\rightarrow collinear unsafety of the iterative cone algorithm