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Abstract

Some tests, exercises and web applications are proposed to enhance the compre-

hension of basic aspects of perturbative QCD in collider physics. Material is organized

as follows:

1. QCD 101

2. QCD in the final state:e+
e
− collisions

3. QCD in the initial state: evolution and DIS

4. QCD everywhere: hadron collisions



1 Introduction

This is a collection of tests, exercises, web applications and simulations useful for a first
approach to understanding QCD and its role in collider physics.

Tests are collections of very easy questions on the content of the lectures, which some-
times imply a very short calculation.

The simulations can be performed with the help of the MadGraph/MadEvent MonteCarlo,
directly from the web or by downloading the main code at http://madgraph.phys.ucl.ac.be.
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2 QCD 101

2.1 Test

1. List what are the main motivations, both theoretical and experimental, for us to believe
that QCD is the right theory of strong interactions.

2. Write down the quark content of the mesons beloging to the spin-0 8-multiplet of
SU(3)f

3. Look at the plot of R versus
√

s. Why is R proportional to the color? What are the
red spikes in the plots? Why are they there? Why are they before each step?

4. Explain why scaling is so revealing about the nature of strong interactions at high
energy. Derive the expressions for x, y, ν, W 2 in terms of the four momenta and explain
their meaning in the lab frame.

5. What does it mean that a QFT is renormalizable? What is the consequence of renor-
mazability for QCD? Can QCD be a fundamental theory? What about QED?

6. Show that the QCD Lagrangian for u, d is isospin invariant either if mu = md or if
mu, md → 0.

7. Look at the plot of the cross sections at hadron colliders. What is the cross section
for producing a Higgs of 120 GeV of mass? Suppose the Higgs decays into bb̄ with
branching ratio (=probability) one. What is the ratio signal over backround expected
for such a channel at LHC?

8. True or False: In QCD as in QED, gauge invariance implies that it is enough to contract
the an external gluon index with its four momentum, regardless of the other gluons,
to get zero, i.e.,

kµ
1 Mµ,ρ,... = 0 . (1)

Explain.

9. Explain why in the NLO calculation of σ(e+e− → hadrons) there is no need to renor-
malize the strong coupling (i.e., the UV divergences cancel).

10. Λ is a physical parameter. True or False? Explain.

11. For a leading order calculation αS at 1-loop should be used. For a NLO αS at 2-loops,
and so on. True or False? Explain.

12. Which one(s) are true? If αS at 2-loops is used instead of the αS at 1-loop in a leading
order calculation, the result

• is wrong.

• does not change.

• changes but it is not improved.
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• is improved.

13. How are the unknown higher order corrections usually estimated in QCD? Why?

2.2 Exercises

2.2.1 Four-gluon vertex

By requiring that the amplitude qq̄ → gg is gauge invariant, we have shown that a three-
gluon vertex is necessary and that it can be found by only using arguments of symmetry and
dimensional analysis.

(a) Using similar arguments show that the gg → gg scattering amplitude is not gauge
invariant and a four-gluon vertex is needed and build it.

(b) Show that the role of a four gluon-vertex is equivalent to the introduction of an an-
tisymmetric, not propagating, color-octet, tensor particle Bµν , which interacts with a
gluon through a vertex of the form

VBgg = gfabc/
√

2 (gµρgνσ − gµσgνρ) , (2)

and has a trivial “propagator”:

∆µν,ρσ
ab = −igµρgνσδab . (3)

2.2.2 Ghost contribution

(a) Show that in qq̄ → gg the sum over non-physical polarization is non zero (Hint: calcu-
late the sum over all polarization

∑

ǫµǫ∗ν = −gµν and the sum over the physical states
and take the difference):

∑

non−physical

|ǫµ
1ǫ

ν
2Mµν |2 =

∣

∣

∣

∣

ig2fabctc
1

2k1 · k2

v̄(q̄)k̂1u(q)

∣

∣

∣

∣

2

. (4)

(b) Show that the diagram with the ghosts exactly cancels the above contribution.

2.2.3 Color

Using the ’t Hooft double line formalism, whose rules are summarized in Fig. 1 calculate the
color factors of the following diagrams shown in Fig. 2.

In particular, compare the last color factor with that obtained from the diagram where
the external gluon is replaced by a photon. In the former case the quark pair is in a color-
octet state, while in the latter in a color-singlet state. Is the sign of the interaction between
them the same?
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Figure 1: Double line Feynman rules useful to make fast and easy the evaluation of color
factors.

2.2.4 Renormalization schemes

The QCD scale parameter Λ is defined by

log
Q2

Λ2
= −

∫ ∞

αS(Q)

dx

β(x)
, (5)

where the β-function is

β(αS) = µ2∂αS

∂µ2
= −bα2

S

[

1 + b′αS + b′′α2
S + O(α3

S)
]

. (6)

(a) Consider the two renormalization schemes A and B, where the couplings are related
by

αB
S = αA

S

[

1 + c1α
A
S + c2(α

A
S )2 + O((αA

S )3)
]

. (7)

Show that the first two β-function coefficients b and b′ are scheme-independent, whereas
the third is related in the two schemes by

b′′B = b′′A + c2 − b′c1 − c2
1 . (8)

(b) Show the scale parameters of the two schemes are related by

ΛB = ΛA exp
( c1

2b

)

. (9)

Hint: Combine the two formulas for ΛA,B and calculate

log
ΛB

ΛA
=

1

2

∫ αB(Q)

αA(Q)

(10)

and then take the limit Q → ∞, αA,B → 0.
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Figure 2: Sample of QCD diagrams.

(c) The QCD effective charge is

αS = α0 − g4
0bId + . . . (11)

where g0 is the bare charge and Id is the dimensionless integral

Id =
µ4−d

(2π)d

∫

ddk

(k2 + m2)2
(12)

=
µ4−d

(2π)d
Γd

∫ ∞

0

kd−1 dk

(k2 + m2)2
(13)

where Γd = 2πd/2

Γ(d/2)
is the the d − 1 dimensional surface of a d-dimensional unit hyper-

sphere. Show that for d = 4 − 2ǫ

Id =
1

(4π)2

[

1

ǫ
+ log(4π) − γE + log

(

µ2

m2

)

+ O(ǫ)

]

, (14)
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and find the relation between the ΛMSand ΛMS where in the MS-scheme we absorb
only the 1/ǫ into the renormalized charge, whereas in the MS-scheme we also absorb
the log(4π) − γE. The following formulas are useful:

∫ 1

0

ua−1(1 − u)b−1 = β(a, b) = Γ(a)Γ(b)/Γ(a + b) , (15)

Γ(a + 1) = aΓ(a) , Γ(1) = 1 , Γ(
1

2
) =

√
π , Γ(ǫ) =

1

ǫ
− γE + O(ǫ) . (16)

2.3 Web

2.3.1 αS extractions

Browse the Particle Data Group (PDG) site and find the plot that summarizes the deter-
mination of αS(MZ) from different experiments. Which measurement is the best one? At
which scale has it been performed? Which extraction has the central value mostly off? How
is that measuremement performed? Divide (when possible) the measurements at low energy
from those at high energy. Is there a systematic behaviour? Find the plot which shows the
evolution of αS with the scale and understand which data go in it.

2.3.2 Try MadGraph out

Logon to the MadGraph web site and register. Familiarize with the code by generating a few
processes in QED and QCD trying to guess which diagrams appear. What is the minimum
number of jets have to be asked for in e+e− collisions so that the triple gauge vertex appear?
Calculate the cross section for uū → γγ, uū → gg, fixing the c.m.s energy at 100 GeV and
leaving the acceptance cuts as in the default. Which one of the two processes gives as a larger
cross section, taking in to account the difference in the couplings,i.e., setting αS = αEM?
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3 e+e− collisions

3.1 Test

1. How should we intepret the leading order calculation for σ(e+e− → qq̄) ?

2. List the properties that a function of the four momenta has to enjoy to be an “infrared-
safe” quantity.

3. Explain what is the physics leading to the idea of factorization.

4. Derive the soft Feynman rules for a qqg and ggg.

5. Show by explicit calculation that the form of the virtual corrections

d2σVIRT

dEd cos θ
= −σLOCF

αS

π

∫

√
s/2

0

dE ′

E ′

∫ 1

−1

d cos θ′

1 − cos2 θ′
2δ(E ′)[δ(1−cos θ′)+δ(1+cos θ′)]+. . .

(17)
cancels the soft and collinear divergences present in σ(e+e− → qq̄g).

6. Present the physical explanation of the angular ordering.

7. Explain the Chudakov effect by angular ordering.

8. Explain preconfiment.

9. Derive the amplitude for soft gluon emission from a qq̄g final state.

10. Show by explicit calculation in the example above that interference from different color
flows is suppressed 1/N2

c . Generalize to any color flow.

11. Write down the definition of a two-jet cross section (Sterman-Weinberg) and see in
which configurations e+e− → qq̄gg would contribute to it.

3.2 Exercises

3.2.1 e+e− → qq̄

(a) Derive the expression for the amplitude squared e+e− → qq̄,in terms of the invariants,
s, t, u, for massless quarks. Include only photon exchange. Express it in terms of the
c.m.s. variables cos θ, φ and write the differential cross section:

dσ

d cos θ
= Nc(

∑

f

Q2
f )

πα2

2s
(1 + cos θ2) . (18)

Which quarks should be included in the sum over flavors f?
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(b) Include the diagram where a Z is exchanged and recall that the interaction vertex qq̄Z
is given by:

−igw

2
√

2
γµ(Vf − Afγ5) , (19)

and the axial and vector couplings of the fermions to the Z are

Vf = T 3
f − 2Qf sin2 θW , Af = T 3

f , (20)

with T 3
f = 1/2for f = ν, u, . . . and T 3

f = −1/2 for f = e, d, . . ..
What happens to the cos θ distribution?

3.2.2 e+e− → qq̄g

(a) Show that the phase space for the unpolarized decay into three massless objects can
be written as:

dΦ3 =
1

(2π)5

s

32
dx1dx2dαd(cos β)dγ (21)

where s is the c.m.s. energy and xi = 2Ei/
√

s are the fractional energies for the quark
and anti-quark.

(b) Calculate the matrix element squared for e+e− → qq̄g. Use the fact that we interested
only in azimuthal averaged quantities and therefore we neglect angular correlations
betweeen the initial state plane and the final state one, so we can write

|M |2 =
1

s2
LµνHµν → 1

s2
(Lµνgµν)(H

ρσgρσ) (22)

where Lµν and Hµν are the leptonic and hadronic tensors that come from the squaring
of the the corresponding currents. The result to be be found is:

σqq̄g = σLOCF
αS

2π

∫

dx1dx2
x2

1 + x2
2

(1 − x1)(1 − x2)
(23)

where σLO = Nc(
∑

f Q2
f )4πα2/(3s).

(c) Perform the same calculation for a scalar gluon and verify that

σqq̄s = σLO

∫

dx1dx2
x2

3

2(1 − x1)(1 − x2)
. (24)

3.2.3 Thrust distribution

The thrust is defined as:

T = max
n

∑

i |pi · n|
∑

i |pi|
(25)

and in the case of e+e− → qq̄g process it corresponds to the max{xi} , where the xi = 2Ei/
√

s
are the energy fractions of each parton.
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Figure 3: Countour in the (x1, x2) phase space plane corresponding to the JADE measure for
jet definition. The differential cross section has to be integrated on the countour to obtain
the thrust T . y = T .

(a) Calculate the thrust distribution for a vector gluon:

dσ

dT
=

∫

dx1dx2
dσ

dx1dx2

δ(T − max{xi}) . (26)

Convince yourself that the above result is obtained by integrating the differential cross
section over the (JADE) countour in the (x1, x2) plane shown by the dashed line in
Fig. 3. Compare your result with:

1

σ

dσ

dT
= CF

αS

2π

[

2(3T 2 − 3T + 2)

T (1 − T )
log

(

2T − 1

1 − T

)

− 3(3T − 2)(2 − T )

1 − T

]

. (27)

(b) Calculate the thrust distribution for a scalar gluon and compare your result with:

1

σ

dσ

dT
= CF

αS

2π

[

9(2 − T )T − 8

2(1 − T )
+ log

(

2T − 1

1 − T

)]

. (28)

(c) Plot the two distributions for 2/3 < T < 1 in a log scale and compare with the data
of Fig. 4. Why the QCD prediction at order O(αS) start to differ from the data when
T approaches 1? What about at 2/3?

3.2.4 e+e− → QQ̄g

(a) Compute the differential cross section for the case of massive final state using a program
for symbolic calculations (such as FORM or Mathematica+FeynCalc) and compare your
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Figure 4: The thrust distribution measured at LEP, showing data from the DELPHI collab-
oration.

result with

1

σLO

d2σ

dx1dx2
=

1

β
CF

αS

2π

[

2(x1 + x2 − 1 − ρ/2)

(1 − x1)(1 − x2)

−ρ

2

(

1

(1 − x1)2
+

1

(1 − x2)2

)

+
1

1 + ρ/2

(1 − x1)
2 + (1 − x2)

2

(1 − x1)(1 − x2)

]

, (29)

where

ρ =
4m2

s
≤ 1 , β =

√

1 − ρ (30)

and σLO is defined as in Eq. (23).

(b) Verify that the massless limit corresponds to Eq. (23). Study the soft and collinear
limits. Is the collinear divergence still there? Write the soft and collinear approximation
of the amplitude in the case the gluon is close to the quark:

1

σLO

d2σ

dzdθ2
= CF

αS

π

1

z

θ2

(θ2 + ρ)2
(31)

where z = 2Eg/
√

s is the energy fraction of the gluon and θ the angle between the
gluon and the quark. Plot the behaviour of the matrix element in the massless and
massive cases and compare with Fig. 5. Explain this behaviour in terms of angular
momentum conservation.
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Figure 5: Dead cone: emission of collinear (soft) gluons from a massive quark is suppressed
by angular momentum conservation.

3.2.5 Jet rates in the soft limit(∗)

(a) Derive the expression of the differential cross section for e+e− → qq̄g in the soft limit,
in the terms of the gluon energy E and the cosine of angle between the gluon and the
quark (or anti-quark) cos θ:

d2σREAL

dEd cos θ
= σLOCF

2αS

π

1

E

1

1 − cos2 θ
. (32)

(b) Without calculating the virtual contributions, guess their final form in order to cancel
the soft and collinear divergences:

d2σVIRT

dEd cos θ
= −σLOCF

2αS

π

∫

√
s/2

0

dE ′

E ′

∫ 1

−1

d cos θ′

1 − cos2 θ′
1

2
δ(E ′)[δ(1−cos θ′)+δ(1+cos θ′)]+. . .

(33)

(c) Define the two and three jet rates using the JADE measure, y = M2/s and calculate
the two- and three-jet rates up to order αS. First, identify the regions of the phase
space contributing to the two jet rates

Region I : E < y
√

s and 0 < cos θ < 1 ,

Region II : E > y
√

s and 1 − y
√

s

E
< cos θ < 1 , (34)

and then perfom the integration:

σ2−jet

σLO
=

1

σLO

[

2

∫

R1

dσREAL + 2

∫

R2

dσREAL +

∫

dσVIRTUAL

]

(35)
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Compare your result with:

σ2−jet = σLO
[

1 − CF
αS

π
log2 y + . . .

]

(36)

σ3−jet = σLOCF
αS

π
log2 y + . . . (37)

and, ignoring self-gluon interaction, exponentiate the above result to find the σ(n+2)−jet

rate.

(d) Estimate the average number of the jets, 〈njet〉 and how the average number of particles
in the final states (identify each particle with a jet at small y) scales with the c.m.s
energy.

(e) Estimate the average invariant mass of the jets as a function of the c.m.s energy.

(f) Estimate the average thrust.

3.3 Web and MC Simulations

3.3.1 e+e− cross section

Surf onto the Particle Data Group web-site and find the plot of R, the ratio of the hadronic
cross section over that of µ+µ− in e+e− collisions.
(Hint: http://pdg.lbl.gov/2006/hadronic-xsections/hadron.html). Compare your
leading order calculation for e+e− → qq̄ to the data. Is this a strong evidence that the
number of colors is three? Evaluate the steps in R due to the opening of cc̄ and bb̄ channels
and compare with the experimental data.

3.3.2 Thrust distributions

Use MadGraph/MadEvent to obtain the thrust distributions in e+e− → 3jfor a vector and a
scalar gluon and compare your results with the analytic ones of Fig. 4. For details on the
thrust definitions see Ex. 3.2.3.

3.3.3 e+e− → QQ̄g

Use MadGraph/MadEvent and verify that there are no collinear divergences to be regulated
and the cross section is finite with just a minimum cut on the energy of the gluon. Plot
the behaviour of the cross sections as a function of the quark mass and verify that it has a
logarithmic behaviour.

3.3.4 The BZ angle in e+e− → 4jets: abelian vs non-abelian

Use MadGraph/MadEvent to produce two event samples, one for standard QCD and one with
an abelian QCD model for

e+e− → Z → 4j . (38)
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Figure 6: Distribution in the Bengtsson-Zerwas angle at LEP. Here the Abelian model
includes only four-quark final states.

Run the collision on the peak of the Z and set a minimum invariant mass for the jets of
mjj > 10 GeV. Plot the angle between the planes identified by the two lowest and to highest
energy jets:

cos χBZ =
(p1 × p2) · (p3 × p4)

|p1 × p2||p3 × p4|
. (39)

Comparison should be made with the plots of Ref. http://arxiv.org/abs/hep-ph/9503354,
where various implementation of the abelian models are discussed. Our web implementation
include the emission of abelian gluons as possible partons leading to jets.
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4 Evolution and DIS

4.1 Test

1. Derive the formula for d2σ/dxdQ2 in terms of the structure functions.

2. Derive how a Lorentz transformation acts on the p+ and p− component of a four vector
in the light-cone coordinates.

3. What is the purpose of the Breit frame? Can you explain how a DIS event looks like
in this frame?

4. What has aymptotic freedom to do with the parton model?

5. What is the physical meaning of the Callan-Gross relation? Why? (You might want
to calculate the scattering amplitude eq → eq for scalar quarks).

6. Scaling is indeed violated. How and by what?

7. In the NLO calculation for γ∗q → q all divergences cancel, except for ...? What is the
nature of these left-over divergences? Are these divergences universal?

8. Take the explicit form of the splitting functions given below and ignore δ(1− x) terms
and the ()+ distributions. Set the color factors CF , TR, CA to one. Prove they satisfy
the SUSY relation

pgq + pqq = pqg + pgg (40)

9. Explain the idea of factorization. How do we exactly get rid of the large logs? What
is the role of universality?

10. What is the strategy to be followed to make a prediction in QCD? What is the part
to be calculated by theorists and the one measured by experimentalists?

4.2 Exercises

4.2.1 Splitting functions

Calculate the splitting functions for q → qg and g → qq̄. (To be completed. . . )

4.2.2 DGLAP resums towers of logs

Show that the DGLAP equations resum a full tower of logarithms of Q2.

4.2.3 Evolution

As discussed in the lecture the parton distributions do not scale as in the näıve parton model
but rather are expected to exhibit the scaling violations predicted by QCD. The structure
of the evolution is determined by the DGLAP equation, whose basic ingredients are the
splitting functions.
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(a) The plus-prescription is defined by

∫ 1

0

dxf(x)g+(x) ≡
∫ 1

0

dx[f(x) − f(1)]g(x) . (41)

Show that
(

1 + z2

1 − z

)

+

=
1 + z2

(1 − z)+
+

3

2
δ(1 − z) (42)

and
(

z

1 − z
+

1

2
z(1 − z)

)

+

=
z

(1 − z)+
+

1

2
z(1 − z) +

11

12
δ(1 − z) . (43)

(b) The splitting functions are

Pqq(z) = CF

(

1 + z2

1 − z

)

+

(44)

Pqg(z) = TR

(

z2 + (1 − z)2
)

(45)

Pgq(z) = CF
1 + (1 − z)2

z
(46)

Pgg(z) = 2CA

[(

z

1 − z
+

1

2
z(1 − z)

)

+

+
1 − z

z
+

1

2
z(1 − z)

]

− 2

3
nfTRδ(1 − z) .(47)

The anomalous dimensions are given by the moments of the splitting functions,

γij(N, αS) =
∞

∑

n=0

γ
(n)
ij (N)

(αS

2π

)n+1

, (48)

γ
(0)
ij (N) =

∫ 1

0

dzzN−1Pij(z) . (49)

Show that

γ(0)
qq (N) = CF

[

−1

2
+

1

N(N + 1)
− 2

N
∑

k=2

1

k

]

(50)

γ(0)
qg (N) = TR

[

2 + N + N2

N(N + 1)(N + 2)

]

(51)

γ(0)
gq (N) = CF

[

2 + N + N2

N(N + 1)(N − 1)

]

(52)

γ(0)
gg (N) = 2CA

[

− 1

12
+

1

N(N − 1)
+

1

(N + 1)(N + 2)
− 2

N
∑

k=2

1

k

]

− 2

3
nfTR .(53)

(c) Now consider the evolution of the singlet quark distribution

Σ(x) =
∑

i

qi(x) + q̄i(x) (54)
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which mixes with the gluon distribution via the evolution equations. In terms of
moments with evolution variable t = log(Q2/Λ2) we have

d

dt
Σ(N) =

αS(t)

2π
[γqq(N)Σ(N) + 2nfγqg(N)g(N)] (55)

d

dt
g(N) =

αS(t)

2π
[γgq(N)Σ(N) + γgg(N)g(N)] (56)

Verify that for N = 2 there are two eigenvalues to the above evolution equation and
the corresponding anomalous dimensions are λ± = 0,−(16/9 + nf/3) and find the
corresponding eigenfunctions.

(d) Use the above result to find the momentum fractions carried by the quarks and gluons
at truly asymptotic values of Q2

Σ(2) =
1

1 + 4CF

nf

(57)

f (2)
g =

4CF

1 + 4CF

nf

(58)

4.3 Gluon at small x

The evolution of the pdf’s tends to build up the gluon distribution at small x, which will be
important at the LHC. In the limit of small x and very large Q2 the DGLAP equations are
dominated by the small argument behaviour of the splitting functions Pgg.

(a) Verify that in this limit the gluon distribution G(x, t) = xg(x, t) satifies

dG(x, t)

dt
≃ 3αS(t)

π

∫ 1

x

dy

y
G(y, t) . (59)

(b) Now use the 1-loop form for αS and change variables to τ = log t and ξ = 24/b0 log(1/x)
to show that the approximate equation to solve is

d2G

dξ2
≃ 1

2
G . (60)

(c) Verify that at truly large values of both ξ and τ a solution is

G(ξ, τ) ∼ e
√

2ξτ . (61)

or

g(x, t) ∼ 1

x
exp

√

48

b0
log

(

t

t0

) (

1

x

)

× xg(x, t0) . (62)

(d) Use the following (fictious) form of the gluon distribution

g(x, Q0 = 5 GeV) =
420

99

(1 − x)7

x
(63)

to study the enhancement for Q = 100 GeV at x = 0.01 (Λ = 0.1 GeV) .
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4.3.1 Q2
min in the EPA(∗)

In the Equivalent Photon Approximation (EPA), the process ep → e + X is approximated
by the collinear emission of an almost-on-shell photon which then scatters with the proton,
γ∗p → X,

dσep = σγpf
(e)
γ (y)dy , (64)

Show that the photon distribution in the electron is given by

f (e)
γ (y) =

α

2π

[

1 + (1 − y)2

y
log

q2
min

q2
max

+ 2m2
ey

(

1

q2
max

− 1

q2
max

)]

(65)

where

q2
max = −m2

ey
2

1 − y
(66)

q2
min = q2

max − E2(1 − y)θc (67)

with θc the maximum allowed value for θ, which depends on the geometry of the detector.

4.3.2 Soft cones(∗)

A soft function for a an emitter quark i, a soft gluon k, and a spectator anti-quark j is
defined as

W(i) ≡
1

2

[

cos θjk − cos θij

(1 − cos θik)(1 − cos θjk)
+

1

1 − cos θjk

]

. (68)

Prove that by averaging over the azimuthal angle, one obtains a positive definite quantity
with the following properties:

∫

dφik

2π
W(i) =

1

1 − cos θik
if θik < θij (69)

= 0 otherwise. (70)

Hint: An integral on a coplex contour is needed. Write 1 − cos θjk = a − b cos φik, where
a = 1−cos θij cos θik and b = sin θij sin θik. Then define z = exp(iφik) and rewrite the integral

I(i) ≡
∫ 2π

0

φik

2π

1

1 − cos θjk

=

∫

dz

(z − z+)(z − z−)
, (71)

where the integration is done over the unit circle. Once the expression for z± are found, one
realizes that only one pole, z = z− can lie insider the unit circle, so

I(i) =

√

1

a2 − b2
=

1

| cos θik − cos θij |
. (72)

4.4 Web

4.4.1 PDF plots

Log onto the Durham on-line calculator and graphical display for the pdf,
http://durpdg.dur.ac.uk/hepdata/pdf3.html. Plot the parton distributions, xf(x, µ2)
for Q2 = 10 GeV2 and the Bjorken 0.01 < x < 1.0. Plot the error range of the gluon pdf for
Q2 = 10000 GeV2. Which values of x are associated to the largest uncertainty?
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5 Hadron hadron collisions

5.1 Exercises

5.1.1 Basic kinematics

The rapidity y and pseudo-rapidity η are defined as:

y =
1

2
log

(

E + pz

E − pz

)

(73)

η = − log

(

tan

(

θ

2

))

, (74)

where the z direction is that of the colliding beams.

(a) Verify that for a particle of mass m

E =
√

m2 + p2
T cosh y (75)

pz =
√

m2 + p2
T sinh y (76)

p2
T = p2

x + p2
y . (77)

(b) Prove that tanh η = cos θ.

(c) Consider a set of particles produced uniformly in longitudinal phase space

dN = C
dpz

E
. (78)

Find the distribution in η.

(d) Prove that rapidity equals pseudo-rapidity, η = y for a relativistic particle E ≫ m.

(e) Prove that for Lorentz transformation (boost) in the beam (z) directions, the rapidity
y of every particle is shifted by a constant y0, related to the boost velocity. Find the
relation between β and y0 for a generic boost:

E ′ = γ(E − βpz) (79)

p′z = γ(pz − βE) (80)

p′x = px (81)

p′y = py (82)

γ =
1

√

1 − β2
(83)

(f) Consider a generic particle X of mass M (such as a Z boson or a Higgs) produced
on shell at the LHC , with zero transverse momentum, pp → X. Find the relevant
values of x1, x2 of the initial partons that can be accessed by producing such a particle.
Compare your results with that of Fig. 7, considering the scale Q = M .
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Figure 7: Range in x, Q accessible at the LHC.

5.1.2 Jet kinematics

At the LHC, partons in the incoming beams (beam energy Eb=7 TeV) collide with a mome-
mentum fraction x1,2 and produce two jets with negligible mass, transverse momentum pT

and rapidities y3,4.

(a) Show that

x1 =
pT√

s
(ey3 + ey4), x2 =

pT√
s
(e−y3 + e−y4) . (84)

(b) Show that the invariant mass of the jet-jet system is

MJJ = 2pT cosh

(

y3 − y4

2

)

, (85)
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Figure 8: Plot showing the fraction of the jet ET distribution initiated by different parton
combinations.

and the centre-of-mass scattering angle is given by

cos θ∗ = tanh

(

y3 − y4

2

)

. (86)

(c) Discuss the regions of x1,2, MJJ and θ∗ that can be studied at the LHC with a jet
trigger of pT > 35 GeV and |y3,4| < 3.

5.2 MC simulations

5.2.1 Jet fraction from different parton combinations

Use MadGraph/MadEvent to obtain the relative contribution of gg, qg + q̄g, qq + qq̄ initial
states to the jet ET distribution as function of the ET (10 < ET < Emax/4) at the Tevatron
Run II (pp̄ collisions at 1.96 TeV) and the LHC (pp collisions at 14 TeV). Compare with the
results at the Tevatron, Run I shown in Fig. 8

5.2.2 Multijet production at the Tevatron(∗)

Use MadGraph/MadEvent to obtain the distributions of x3, x4 where xi = 2Ei/M3j are the
energy fraction of the jets normalized as x3 + x4 + x5 = 2, with x3 > x4 > x5, in three-jet
events. Consider pp̄ collisions at 1.8 TeV of c.m.s. Set the minimum pT for the jets to
15 GeV, the maximum rapidity of 3.5 and the ∆R = 0.8. Compare your results with the
experimental data from CDF, Run I, shown in Fig. 9.
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Figure 9: Distributions in the variables x3 and x4 in a sample of three jet events as measured
by the CDF collaboration (Run I data), pp̄ collisions at 1.8 TeV. The solid and dashed lines
are the predicitons from QCD and phase space respectively.

5.2.3 tt̄ production: Tevatron vs LHC

tt̄ production at hadron collider come from both qq̄ annhilation and gg fusion.

(a) Use the web interface of MadGraph/MadEvent to find the LO cross sections for tt̄ pro-
duction at Tevatron and LHC. Which initial parton contributions are dominating in
the two cases?

(b) Use the web interface of MadGraph/MadEvent to find the cross sections for tt̄ + 1j
production at the LHC. Select events for which the jet has pT > 20 GeV and |η| < 4
(Is a ∆R cut needed to have a finite cross section?). Estimate the cross section and
compare it with the LO result for tt̄. Is the result reasonable? What’s going on?
Explain.

5.2.4 W rapidity asymmetry at the Tevatron

The rapidity asymmetry AW (y) for W± production at a pp̄ collider is defined as:

AW (y) =
dσ(W+)/dy − dσ(W−)/dy

dσ(W+)/dy + dσ(W−)/dy
. (87)

(a) Give an estimate of such asymmetry and show that it is proportional to the slope of
d(x)/u(x) evaluated at x = MW /

√
s.

(b) Use the web interface of MadGraph/MadEvent to plot the rapidity distributions of the
the charged leptons coming from W± decays at the Tevatron.
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