

MADGRAPH5_AMC@NLO tutorial

Pavia

Marco Zaro LPTHE - Université Pierre et Marie Curie Paris

Part I: getting familiar with

What is MADGRAPH5_AMC@NLO?

- It is an automatic meta-code that write the code for computing the cross-section and generating events for any process at colliders
- All the details are in arXiv: [405.030]
- NLO QCD corrections can be included
- Matrix elements of different multiplicities can be combined
 - at LO (CKKW or MLM)
 - at NLO (FxFx or UNLOPS)

Software prerequisites:

- Python 2.6 or 2.7
- Fortran compiler supporting quadruple precision (needed for NLO)
 - gfortran v4.6+ OK
- Optional:
 - gnuplot
 - FastJet (FJcore is included in the tarball)
 - LHAPDF
 - Herwig++ / Pythia8

Where do I get it?

• On LaunchPad: <u>https://launchpad.net/mg5amcnlo</u>

MadGraph5_aMC@NLO Generator

Overview Code Bugs Blueprints Translations Answers

Registered 2009-09-15 by 🙇 Michel Herquet

MadGraph5_aMC@NLO is a framework that aims at providing all the elements necessary for SM and BSM phenomenology, such as the computations of cross sections, the generation of hard events and their matching with event generators, and the use of a variety of tools relevant to event manipulation and analysis. Processes can be simulated to LO accuracy for any user-defined Lagrangian, and the NLO accuracy in the case of QCD corrections to SM processes. Matrix elements at the tree- and one-loop-level can also be obtained.

MadGraph5_aMC@NLO is the new version of both MadGraph5 and aMC@NLO that unifies the LO and NLO lines of development of automated tools within the MadGraph family. It therefore supersedes all the MadGraph5 1.5.x versions and all the beta versions of aMC@NLO.

The standard reference for the use of the code is: J. Alwall et al, "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations", arXiv:1405.0301 [hep-ph]. A more complete list of references can be found here: http://amcatnlo.web.cern.ch/amcatnlo/list_refs.htm

Download:

The latest stable release can downloaded as a tar.gz package (see the right of this page), or through the Bazaar versioning system, using bzr branch lp:madgraph5

Installation:

MadGraph5_aMC@NLO needs Python version 2.6 or 2.7 ; gfortran/gcc 4.6 or higher is required for NLO calculations/simulations.

Getting started:

Run bin/mg5_aMC and type "help" to learn how to run MadGraph5_aMC@NLO using the command interface, or run the interactive quick-start tutorial by typing "tutorial". Some third-party packages can be installed using the MG5_aMC shell command "install". LO generation can also be done

arco zaro (marco-zaro) • 🛛 Log Out

Change details

🖉 Sharing

Subscribe to bug mail
 Edit bug mail
 Get Involved
 Report a bug
 Ask a question
 Ask a question
 Register a blueprint
 Melp translate
 Configuration Progress
 Configuration options
 Downloads
 Latest version is 2.2.0
 MG5_aMC_v2....beta.tar.gz
 MG5_aMC_v2.2.3.tar.gz

Where do I get it?

- On LaunchPad: <u>https://launchpad.net/mg5amcnlo</u>
- •tar -xzf MG5_aMC_v2.3.0.tar.gz
- cd MG5_aMC_v2_3_0
- •./bin/mg5_aMC

Let's start the tutorial

- On LaunchPad: <u>https://launchpad.net/mg5amcnlo</u>
- •tar -xzf MG5_aMC_v2.3.0.tar.gz
- cd MG5_aMC_v2_3_0
- •./bin/mg5_aMC
- •> tutorial

Top pair production at LO

• Basic questions:

- Generate the process (following the tutorial)
- Which partonic subprocesses contribute?
- How many Feynman diagrams has each subprocess?
- Output the code
- Compute the cross-section at the LHC (8 TeV) for $m_t = 170$ GeV

• Extra questions:

- Are b-quarks included in the initial state? If not, how can I include them?
- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change? What is that 'WEIGHTED'?
- Recompute the tt cross-section for m_t =170, 172, 174 ... 180 GeV

•> generate $p p > t t^{-}$

INFO: Checking for minimal orders which gives processes. INFO: Please specify coupling orders to bypass this step. INFO: Trying coupling order WEIGHTED=2 INFO: Trying process: g g > t t~ WEIGHTED=2 INFO: Process has 3 diagrams INFO: Trying process: u u~ > t t~ WEIGHTED=2 INFO: Process has 1 diagrams INFO: Trying process: u c~ > t t~ WEIGHTED=2 INFO: Trying process: c u~ > t t~ WEIGHTED=2 INFO: Trying process: c c~ > t t~ WEIGHTED=2 INFO: Process has 1 diagrams INFO: Trying process: d d~ > t t~ WEIGHTED=2 INFO: Process has 1 diagrams INFO: Trying process: d s~ > t t~ WEIGHTED=2 INFO: Trying process: s d~ > t t~ WEIGHTED=2 INFO: Trying process: s s~ > t t~ WEIGHTED=2 INFO: Process has 1 diagrams INFO: Process u~ u > t t~ added to mirror process u u~ > t t~ INFO: Process c~ c > t t~ added to mirror process c c~ > t t~ INFO: Process $d \sim d > t t \sim added$ to mirror process $d d \sim > t t \sim$ INFO: Process s~ s > t t~ added to mirror process s s~ > t t~ 5 processes with 7 diagrams generated in 0.075 s Total: 5 processes with 7 diagrams

• Which partonic subprocesses contribute?

●> display processes

Process: g g > t t~ WEIGHTED=2 Process: u u~ > t t~ WEIGHTED=2 Process: c c~ > t t~ WEIGHTED=2 Process: d d~ > t t~ WEIGHTED=2 Process: s s~ > t t~ WEIGHTED=2

• Which partonic subprocesses contribute?

• Which partonic subprocesses contribute?

●> display processes

Process: g g > t t~ WEIGHTED=2
Process: u u~ > t t~ WEIGHTED=2
Process: c c~ > t t~ WEIGHTED=2
Process: d d~ > t t~ WEIGHTED=2
Process: s s~ > t t~ WEIGHTED=2

QCD master formula:

```
\sigma(pp \to t\bar{t}) = \sum_{ab} \int dx_1 dx_2 f_a(x_1, \mu_F) f_b(x_2, \mu_F) \times \hat{\sigma}(ab \to t\bar{t})
```


What does it mean?

$$\sigma(pp \to t\bar{t}) = \sum_{ab} \int dx_1 dx_2 f_a(x_1, \mu_F) f_b(x_2, \mu_F) \times \hat{\sigma}(ab \to t\bar{t})$$

- What is the probability to find parton a inside the proton with momentum fraction x? f_a(x)
- µ_F is a scale which separates low energy from high energy dynamics
- The partonic scattering occurs at a reduced energy:

$$\hat{s} = x_1 x_2 S = x_1 x_2 (13 \text{TeV})^2$$

- How many Feynman diagrams has each subprocess?
 - ●> display diagrams

Marco Zaro, 12/14-05-2015

●> output mytestdir

INFO: initialize a new directory: mytestdir INFO: remove old information in mytestdir INFO: Creating files in directory P0 gg ttx INFO: Generating Feynman diagrams for Process: g g > t t~ WEIGHTED=2 INFO: Finding symmetric diagrams for subprocess group gg ttx INFO: Creating files in directory P0 gg ttx INFO: Generating Feynman diagrams for Process: u u \sim > t t \sim WEIGHTED=2 INFO: Finding symmetric diagrams for subprocess group gg ttx History written to /Users/marcozaro/Physics/MadGraph/MG5 aMC v2 2 2/mytestdir/Cards/proc card mg5.dat Generated helas calls for 2 subprocesses (0 diagrams) in 0.000 s Wrote files for 16 helas calls in 0.102 s Export UFO model to MG4 format ALOHA: aloha creates FFV1 routines ALOHA: aloha creates VVV1 set of routines with options: P0 save configuration file to /Users/marcozaro/Physics/MadGraph/MG5 aMC v2 2 2/mytestdir/Cards/me5 configuration.txt INFO: Use Fortran compiler gfortran **INFO:** Generate jpeg diagrams **INFO:** Generate web pages Output to directory /Users/marcozaro/Physics/MadGraph/MG5 aMC v2 2 2/mytestdir done.

• Compute the cross-section at the LHC (8 TeV) for $m_t = 170$ GeV

•> launch

The following switches determine which programs are run:

- 1 Run the pythia shower/hadronization:
- 2 Run PGS as detector simulator:
- 3 Run Delphes as detector simulator:
- 4 Decay particles with the MadSpin module:
- 5 Add weight to events based on coupling parameters:
- Either type the switch number (1 to 5) to change its default setting,
- or set any switch explicitly (e.g. type 'madspin=ON' at the prompt)
- Type '0', 'auto', 'done' or just press enter when you are done.
- [0, 4, 5, auto, done, madspin=0N, madspin=0FF, madspin, reweight=0N, ...][60s to answer]

• > 0 (let's keep it simple ;-)

Do you want to edit a card (press enter to bypass editing)?

- 1 / param : param_card.dat
- 2 / run : run_card.dat
- you can also
 - enter the path to a valid card or banner.
 - use the 'set' command to modify a parameter directly. The set option works only for param_card and run_card. Type 'help set' for more information on this command.
 - call an external program (ASperGE/MadWidth/...). Type 'help' for the list of available command
- [0, done, 1, param, 2, run, enter path] [60s to answer]

• edit the cards

pythia=NOT INSTALLED
 pgs=NOT INSTALLED
 delphes=NOT INSTALLED
 madspin=OFF
 reweight=OFF
 efault setting,

• Compute the cross-section at the LHC (8 TeV) for $m_t = 170$ GeV

run card # Running parameters # #></ # Tag name for the run (one word) = run_tag ! name of the run tag 1 # Run to generate the grid pack = gridpack !True = setting up the grid pack .false. # Number of events and rnd seed # Warning: Do not generate more than 1M events in a single run # If you want to run Pythia, avoid more than 50k events in a run. 10000 = nevents ! Number of unweighted events requested 0 = iseed ! rnd seed (0=assigned automatically=default)) # Collider type and energy # lpp: 0=No PDF, 1=proton, -1=antiproton, 2=photon from proton, 3=photon from electron = lpp1 ! beam 1 type 1 = lpp2 1 ! beam 2 type 6500 = ebeam1 ! beam 1 total energy in GeV 6500 = ebeam2 ! beam 2 total energy in GeV # Beam polarization from -100 (left-handed) to 100 (right-handed) Ø = polbeam1 ! beam polarization for beam 1 0 = polbeam2 ! beam polarization for beam 2 # PDF CHOICE: this automatically fixes also alpha_s and its evol.

param_card

INFORMATION FOR MASS Block mass 5 4.700000e+00 # MB 6 1.730000e+02 # MT 15 1.777000e+00 # MTA 23 9.118800e+01 # MZ 25 1.250000e+02 # MH ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. 1 0.000000 # d : 0.0 2 0.000000 # u : 0.0 3 0.000000 # s : 0.0 4 0.000000 # c : 0.0 11 0.000000 # e- : 0.0 12 0.000000 # ve : 0.0 13 0.000000 # mu- : 0.0 14 0.000000 # vm : 0.0 16 0.000000 # vt : 0.0 21 0.000000 # q : 0.0 22 0.000000 # a : 0.0 24 80.419002 # w+ : cmath.sqrt(MZ_exp_2/2. + cmath.sqrt(MZ_exp_4 /4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2))) < v2_2_2/mytestdir/Cards/param_card.dat" 78L, 2770C 1,1 Top

5%

47,1

15

- Compute the cross-section at the LHC (8 TeV) for m_t =172 GeV
 - One can also set the parameters without editing the cards (useful for scripting)
 - •> set ebeam1 4000
 - •> set ebeam2 4000
 - •> set MT 172.
 - ●> done

- Compute the cross-section at the LHC (8 TeV) for $m_t=172$ GeV
 - One can also set the parameters without editing the cards (useful for scripting)
 - •> set ebeam1 4000
 - •> set ebeam2 4000
 - •> set MT 172.
 - ●> done

Working on SubProcesses P0_gg_ttx P0_qq_ttx INFO: Idle: 0, Running: 1, Completed: 1 [current time: 15h13] INFO: End survey refine 10000 Creating Jobs INFO: Refine results to 10000 P0_gg_ttx P0_qq_ttx INFO: Idle: 6, Running: 4, Completed: 3 [3.2s] INFO: Idle: 2, Running: 4, Completed: 7 [6.6s] INFO: Idle: 0, Running: 1, Completed: 12 [9.7s] **INFO:** Combining runs **INFO:** finish refine refine 10000 Creating Jobs INFO: Refine results to 10000 P0_gg_ttx P0_qq_ttx **INFO:** Combining runs **INF0:** finish refine combine_events **INFO:** Combining Events === Results Summary for run: run_01 tag: tag_1 === Cross-section : 160.1 +- 0.2302 pb Nb of events : 10000

Monitor via the web interface

Results in the sm for p p > t t~

Currently Running

Run Name	Tag Name	Cards	Results	Status/Jobs Queued Running Done
run_01	tag_1	<u>param card</u> r <u>un card</u> <u>plot card</u>	<u>160.1 ± 0.2302 (pb)</u>	Combining Events

Available Results

Run	Collider	Banner	Cross section (pb)	Events	Data	Output	Action
run_01	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>160.1 ± 0.23</u>	No events yet		banner only	remove run re-run from the banner

Main Page

- Script it:
 - open a text file (mymg5amc.txt) and put the commands inside:
 - generate $p p > t t^{\sim}$
 - output mytestdir
 - launch
 - set ebeam1 4000
 - set ebeam2 4000
 - set MT 172
 - launch MG5_aMC@NLO with that file
 - ./bin/mg5_amc mymg5amc.txt

g Toronomic g

Intermezzo:

From Feynman diagrams to the amplitude

- What is the amplitude for $u\overline{u} \rightarrow t\overline{t}$?
 - Peskin & Schroeder answer:
 - $|M|^{2} = Tr[p_{2}\gamma^{\mu}p_{1}\gamma^{\nu}]\frac{g^{4}}{(p_{1}\cdot p_{2})^{2}}Tr[(p_{3}+m)\gamma^{\mu}(p_{4}-m)\gamma^{\nu}] = \dots$
 - Gives a clean and compact expression (for simple processes)
 - Number of terms ~ N_{diag}^2
 - OK for simple processes, not for complex ones!

From Feynman diagrams to the amplitude

2

u~

g The second se

What is the amplitude for uu→tt?
Helicity-based formula

$$|M|^{s_1s_2s_3s_4} = g^2 \bar{v}(p_2)^{s_2} \gamma_\mu u(p_1)^{s_1} \frac{g^{\mu\nu}}{p_1 \cdot p_2} \bar{u}(p_3)^{s_3} \gamma_\nu u(p_4)^{s_4}$$

$$|M|^2 = \sum_{s_1 s_2 s_3 s_4} \left(|M|^{s_1 s_2 s_3 s_4} \right)^2$$

- Much simpler expression
- Number of terms $\sim N_{diag}$
- Suitable for numeric codes!

From Feynman diagrams to the amplitude

What is the amplitude for uu→tt?
Helicity-based formula

$$|M|^{s_1 s_2 s_3 s_4} = g^2 \bar{v}(p_2)^{s_2} \gamma_\mu u(p_1)^{s_1} \frac{g^{\mu\nu}}{p_1 \cdot p_2} \bar{u}(p_3)^{s_3} \gamma_\nu u(p_4)^{s_4}$$

$$|M|^2 = \sum_{s_1 s_2 s_3 s_4} (|M|^{s_1 s_2 s_3 s_4})^2$$

BEGIN CODE

```
CALL IXXXXX(P(0,1),ZER0,NHEL(1),+1*IC(1),W(1,1))
CALL 0XXXXX(P(0,2),ZER0,NHEL(2),-1*IC(2),W(1,2))
CALL 0XXXXX(P(0,3),MDL_MT,NHEL(3),+1*IC(3),W(1,3))
CALL IXXXXX(P(0,4),MDL_MT,NHEL(4),-1*IC(4),W(1,4))
CALL FFV1P0_3(W(1,1),W(1,2),GC_11,ZER0,ZER0,W(1,5))
Amplitude(s) for diagram number 1
CALL FFV1_0(W(1,4),W(1,3),W(1,5),GC_11,AMP(1))
```


From Feynman diagrams to the amplitude

What is the amplitude for uu→tt?
Helicity-based formula

$$|M|^{s_1 s_2 s_3 s_4} = g^2 \bar{v}(p_2)^{s_2} \gamma_{\mu} u(p_1)^{s_1} \frac{g^{\mu\nu}}{p_1 \cdot p_2} \bar{u}(p_3)^{s_3} \gamma_{\nu} u(p_4)^s$$

$$|M|^2 = \sum_{s_1 s_2 s_3 s_4} (|M|^{s_1 s_2 s_3 s_4})^2$$

BEGIN CODE

CALL IXXXXX(P(0,1),ZER0,NHEL(1),+1*IC(1),W(1,1)) CALL 0XXXXX(P(0,2),ZER0,NHEL(2),-1*IC(2),W(1,2)) CALL 0XXXXX(P(0,3),MDL_MT,NHEL(3),+1*IC(3),W(1,3)) CALL IXXXXX(P(0,4),MDL MT,NHEL(4),-1*IC(4),W(1,4)) CALL FFV1P0_3(W(1,1),W(1,2),GC_11,ZER0,ZER0,W(1,5)) Amplitude(s) for diagram number 1 CALL FFV1_0(W(1,4),W(1,3),W(1,5),GC_11,AMP(1))

From Feynman diagrams to the amplitude

• What is the amplitude for $u\overline{u} \rightarrow t\overline{t}$? • Helicity-based formula $|M|^{s_1s_2s_3s_4} = g^2 \overline{v}(p_2)^{s_2} \gamma_{\mu} u(p_1)^{s_1} \frac{g^{\mu\nu}}{p_1 \cdot p_2} \overline{u}(p_3)^{s_3} \gamma_{\nu} u(p_4)^{s_4}$ $|M|^2 = \sum (|M|^{s_1s_2s_3s_4})^2$

BEGIN CODE

CALL IXXXXX(P(0,1),ZERO,NHEL(1),+1*IC(1),W(1,1)) CALL OXXXXX(P(0,2),ZERO,NHEL(2),-1*IC(2),W(1,2)) CALL OXXXXX(P(0,3),MDL_MT,NHEL(3),+1*IC(3),W(1,3)) CALL IXXXXX(P(0,4),MDL MT,NHEL(4),-1*IC(4),W(1,4)) CALL FFV1P0_3(W(1,1),W(1,2),GC_11,ZERO,ZERO,W(1,5)) Amplitude(s) for diagram number 1 CALL FFV1_0(W(1,4),W(1,3),W(1,5),GC_11,AMP(1))

 $s_1 s_2 s_3 s_4$

From Feynman diagrams to the amplitude

Extra questions:

 Are b-quarks included in the initial state? If not, how can I include them?

●> display processes

Process: g g > t t~ WEIGHTED=2 Process: $u u_{\sim} > t t_{\sim} WEIGHTED=2$ Process: c c~ > t t~ WEIGHTED=2 Process: d d~ > t t~ WEIGHTED=2 Process: s s \sim > t t \sim WEIGHTED=2

- No b-quark appears. Note that at the startup you have Defined multiparticle $p = g u c d s u \sim c \sim d \sim s \sim$ Defined multiparticle $j = g u c d s u \sim c \sim d \sim s \sim$
- You can add the b/b to the multiparticle labels
- •> define p = p b b~ Defined multiparticle p = g u c d s u~ c~ d~ s~ b b~

- Isplay multiparticles
- For consistency one should use a model with $m_b=0$
- ●> import model sm-no b mass

Extra questions:

Are b-quarks included in the initial state? If not, how can I include them?

Extra questions:

- Are b-quarks included in the initial state? If not, how can I include them?
- Regenerate the process
 - ●> generate p p > t t~
 - > display processes
 Process: g g > t t~ WEIGHTED=2
 Process: u u~ > t t~ WEIGHTED=2
 Process: c c~ > t t~ WEIGHTED=2
 Process: d d~ > t t~ WEIGHTED=2
 Process: s s~ > t t~ WEIGHTED=2
 Process: s b b~ > t t~ WEIGHTED=2

Extra questions:

- Are b-quarks included in the initial state? If not, how can I include them?
- Regenerate the process
 - ●> generate p p > t t~
 - > display processes
 Process: g g > t t~ WEIGHTED=2
 Process: u u~ > t t~ WEIGHTED=2
 Process: c c~ > t t~ WEIGHTED=2
 Process: d d~ > t t~ WEIGHTED=2
 Process: s s~ > t t~ WEIGHTED=2
 Process: s b b~ > t t~ WEIGHTED=2
- Does it make a big difference?
 - •> output
 - •> launch
 - •> set ebeam1 4000
 - •> set ebeam2 4000

•> set MT 172 Marco Zaro, 12/14-05-2015

Extra questions:

- Are b-quarks included in the initial state? If not, how can I include them?
- Regenerate the process
 - ●> generate p p > t t~
 - > display processes
 Process: g g > t t~ WEIGHTED=2
 Process: u u~ > t t~ WEIGHTED=2
 Process: c c~ > t t~ WEIGHTED=2
 Process: d d~ > t t~ WEIGHTED=2
 Process: s s~ > t t~ WEIGHTED=2
 Process: s b b~ > t t~ WEIGHTED=2
- Does it make a big difference?
 - •> output
 - •> launch
 - •> set ebeam1 4000
 - •> set ebeam2 4000

•> set MT 172 Marco Zaro, 12/14-05-2015 Cross-section : 160.4 +- 0.231 pb Nb of events : 10000

Without b Cross-section : 160.1 +- 0.2302 pb Nb of events : 10000

 Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change? What is that 'WEIGHTED'?

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change? What is that 'WEIGHTED'?
 - ●> display diagrams

- No photon/z appear.
- Are we missing anything important?

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change? What is that 'WEIGHTED'?
 - ●> display diagrams
 - No photon/z appear.
 - Are we missing anything important?

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change? What is that 'WEIGHTED'?
 - ●> display diagrams
 - No photon/z appear.
 - Are we missing anything important?

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change? What is that 'WEIGHTED'?
 - ●> display diagrams
 - No photon/z appear.
 - Are we missing anything important?

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change? What is that 'WEIGHTED'?
 - ●> display diagrams
 - No photon/z appear.
 - Are we missing anything important? Does not seem the case
 - How to have them anyway?
 - MG5 exploits the hierarchy between QCD and QED couplings in order to give the leading (i.e. with most QCD) contribution to the cross-section by default
 - It assign WEIGHTED order = I (=2) to QCD (QED) vertices and generates the process with minimum WEIGHTED order

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change?
 What is that 'WEIGHTED'?
 - ●> display diagrams
 - No photon/z appear.
 - Are we missing anything important? Does not seem the case
 - How to have them anyway?
 - MG5 exploits the hierarchy between QCD and QED couplings in order to give the leading (i.e. with most QCD) contribution to the cross-section by default
 - It assign WEIGHTED order = I (=2) to QCD (QED) vertices and generates the process with minimum WEIGHTED order

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change?
 - •> generate p p > t t~ WEIGHTED=4
 - ●> display diagrams

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change?
 - •> generate p p > t t~ WEIGHTED=4
 - ●> display diagrams

Marco Zaro, 12/14-05-2015

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change?
 - •> generate p p > t t~ WEIGHTED=4
 - ●> display diagrams
 - •> output ...
 - > launch
 - •> ...

27

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change?
 - ●> generate p p > t t~ WEIGHTED=4
 - ●> display diagrams
 - •> output ...
 - •> launch
 - •> ...

QCD=0, QED=2

diagram 1

QCD=2, QED=0

- Alternatively, one can specify the coupling powers
 - •> generate p p > t t~ QED=2
 - orders which are not specified are unconstrained

- Alternatively, one can specify the coupling powers
 - •> generate p p > t t~ QED=2
 - orders which are not specified are unconstrained
- In order to have only the QED contribution
 - •> generate p p > t t~ QED=2 QCD=0

Exercise 1:

Extra questions:

- Recompute the $t\bar{t}$ cross-section for m_t =170, 172, 174 ... 180 GeV
- Be smart! Script it!
- Create a txt file myttbar_scan.txt

generate p p > t t~ output mytestdir2 launch set ebeam1 4000 set ebeam2 4000 set MT 170 launch set MT 172 launch set MT 174 launch set MT 176 launch set MT 178 launch set MT 180

• ./bin/mg5_aMC myttbar_scan.txt

Exercise 1:

Extra questions:

- Recompute the $t\bar{t}$ cross-section for m_t =170, 172, 174 ... 180 GeV
- Be smart! Script it!
- You can also launch an existing folder, without regenerating the code

launch mytestdir2 set ebeam1 4000 set ebeam2 4000 set MT 170 launch set MT 172 launch set MT 174 launch set MT 176 launch set MT 178 launch set MT 180

• Recompute the tt cross-section for m_t =170, 172, 174 ... 180 GeV

Results in the sm for p p > t t~

Available Results

Γ	Run	Collider	Banner	Cross section (pb)	Events	Data	Output	Action
r	un_01	p p 4000 x 4000 GeV	tag 1	<u>169.8 ± 0.24</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
r	un_02	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>160.1 ± 0.28</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
r	un_03	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>151.1 ± 0.2</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
r	un_04	p p 4000 x 4000 GeV	tag 1	<u>142.9 ± 0.18</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
r	un_05	p p 4000 x 4000 GeV	tag 1	<u>134.7 ± 0.19</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
r	un_06	p p 4000 x 4000 GeV	tag 1	<u>127.3 ± 0.16</u>	10000	parton madevent	LHE	remove run launch detector simulation

Main Page

• Recompute the tt cross-section for m_t =170, 172, 174 ... 180 GeV

Results in the sm for p p > t t~

Available Results

Run	Collider	Banner	Cross section (pb)	Events	Data	Output	Action
run_01	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>169.8 ± 0.24</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_02	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>160.1 ± 0.28</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_03	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>151.1 ± 0.2</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_04	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>142.9 ± 0.18</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_05	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>134.7 ± 0.19</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_06	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>127.3 ± 0.16</u>	10000	parton madevent	LHE	remove run launch detector simulation

Main Page

which folder is what?

Exercise 1:

Extra questions:

- Recompute the $t\bar{t}$ cross-section for m_t =170, 172, 174 ... 180 GeV
- Be smart! Script it!
- You can specify the name (instead of run_01...) with -n NAME launch mytestdir2 -n run_MT170

set ebeam1 4000
set ebeam2 4000
set MT 170
launch -n run_MT172
set MT 172
launch -n run_MT174
set MT 174
launch -n run_MT176
set MT 176
launch -n run_MT178
set MT 178
launch -n run_MT180
set MT 180

• Recompute the $t\bar{t}$ cross-section for m_t =170, 172, 174 ... 180 GeV

Run	Collider	Banner	Cross section (pb)	Events	Data	Output	Action
run_01	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>169.8 ± 0.24</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_02	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>160.1 ± 0.28</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_03	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>151.1 ± 0.2</u>	10000	parton madevent	LHE	remove run launch detector simulation
run_04	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>142.9 ± 0.18</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_05	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>134.7 ± 0.19</u>	10000	parton madevent	LHE	remove run launch detector simulation
run_06	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>127.3 ± 0.16</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_MT170	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>170 ± 0.22</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_MT172	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>159.6 ± 0.22</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_MT174	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>151.1 ± 0.22</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_MT176	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>142.6 ± 0.19</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_MT178	p p 4000 x 4000 GeV	<u>tag 1</u>	<u>134.7 ± 0.18</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_MT180	p p 4000 x 4000 GeV	tag 1	<u>127.2 ± 0.24</u>	10000	parton madevent	LHE	remove run launch detector simulation

Main Page

Intermezzo:

The Standalone output mode

- Suppose you want just the matrix element for a given process
- Why shall I need it?
 - You want to cross-check one computation you did
 - You have your own integrator, and you need to plug the matrix element in
 - The Standalone output mode is what you need
 - ●> generate u u~ > t t~
 - ●> output standalone my_uux_ttx_SA
 - > launch

The Standalone output mode

mdl_lam = 0.12886910601690263	
mdl_yb = 2.6995554250465490E-002	
mdl_yt = 0.99366614581500623	
mdl_ytau = 1.0206617000654717E-002	
mdl_muH = 88.388347648318430	
mdl_I1x33 = (2.6995554250465490E-002, 0.000000000000000)
mdl_I2x33 = (0.99366614581500623 , 0.0000000000000000)
mdl_I3x33 = (0.99366614581500623 , 0.0000000000000000)
$mdl_{I4x33} = (2.6995554250465490E-002, 0.000000000000000000000000000000000$)
mdl_eeexp2 = 9.4835522759998875E-002	
mdl_sw_exp_2 = 0.22224648578577769	
mdl_cw_exp_2 = 0.77775351421422245	
Internal Params evaluated point by point	
mdl_sqrtaS = 0.34351128074635334	
mdl_Gexp2 = 1.4828317324943823	

Couplings of sm

GC_11 = 0.00000E+00 0.12177E+01 1000.00000000000 500.00000000000

Phase space point:

n	E	px	py	pz	m
1	0.5000000E+03	0.0000000E+00	0.0000000E+00	0.500000E+03	0.0000000E+00
2	0.5000000E+03	0.0000000E+00	0.0000000E+00	-0.500000E+03	0.0000000E+00
3	0.5000000E+03	0.1040730E+03	0.4173556E+03	-0.1872274E+03	0.1730000E+03
4	0.5000000E+03	-0.1040730E+03	-0.4173556E+03	0.1872274E+03	0.1730000E+03
Mat	rix element =	0.615628186652	255248 Ge	/^ 0	

Momenta and masses

Matrix element value

Exercise 2: decay chains

- Theory: the top quark is an unstable particle:
 - It decays: ~100% of times into bW
 - The W boson decays too:
 - 67% (2/3) of times into hadrons
 - 22% (2/9) of times into "leptons" (e- v_e or μ - v_{μ})
 - 11% (1/9) of times into τ -V τ
- A decayed pair of top quarks can be classified as:
 - hadronic (both tops to hadrons)
 - semileptonic (one top to hadrons, the other to leptons)
 - dileptonic (both quarks to leptons)

Exercise 2: decay chains

- Questions:
 - How often a top pair decays hadronically/semi-leptonically/dileptonically?
 - Learn the syntax to specify decay chains
 - Generate the code for dileptonic top decay and compute the cross-section. Compare with what computed in Ex. I
 - What is the difference with $p p > l + l vl vl \sim b b \sim$?

Top Pair Decay Channels

- How often a top pair decays hadronically/semi-leptonically/dileptonically?
 - Since the top always decays to Wb, look at how a pair of W decays (b's are stable)

- How often a top pair decays hadronically/semi-leptonically/dileptonically?
 - Since the top always decays to Wb, look at how a pair of W decays (b's are stable)
 - Hadronically: 2/3 * 2/3 = 4/9

- How often a top pair decays hadronically/semi-leptonically/dileptonically?
 - Since the top always decays to Wb, look at how a pair of W decays (b's are stable)
 - Hadronically: 2/3 * 2/3 = 4/9

- How often a top pair decays hadronically/semi-leptonically/dileptonically?
 Top Pair Decay Channels
 - Since the top always decays to Wb, look at how a pair of W decays (b's are stable)
 - Hadronically: 2/3 * 2/3 = 4/9

• Semi-lep. (incl.
$$\tau$$
): 2 * 1/3 * 2/3 = 4/9

- How often a top pair decays hadronically/semi-leptonically/dileptonically?
 - Since the top always decays to Wb, look at how a pair of W decays (b's are stable)
 - Hadronically: 2/3 * 2/3 = 4/9
 - Semi-lep. (incl. τ): 2 * 1/3 * 2/3 = 4/9
 - Di-lep. (incl. τ): 1/3 * 1/3 = 1/9

Top Pair Decay Channels

SORBONNE UNIVERSI

Something like this!

• Learn the syntax to specify decay chains

• > help generate

-- generate diagrams for a given process

General leading-order syntax:

o generate INITIAL STATE > REQ S-CHANNEL > FINAL STATE \$ EXCL S-CHANNEL / FORBIDDEN PARTICLES COUP1=ORDER1 COUP2^2=ORDER2 @N

o Example: generate l+ vl > w+ > l+ vl a \$ z / a h QED=3 QCD=0 @1

- > Alternative required s-channels can be separated by "|": b b~ > W+ W- | H+ H- > ta+ vt ta- vt~
- > If no coupling orders are given, MG5 will try to determine orders to ensure maximum number of QCD vertices.
- > Desired coupling orders combination can be specified directly for the squared matrix element by appending '^2' to the coupling name. For example, 'p p > j j QED^2==2 QCD^==2' selects the QED-QCD interference terms only. The other two operators '<=' and '>' are supported. Finally, a negative value COUP^2==-I refers to the N^(-I+1)L0 term in the expansion of the COUP order.
- > To generate a second process use the "add process" command Decay chain syntax:
- o core process, decay1, (decay2, (decay2', ...)), ... etc
- o Example: generate p p > t~ t QED=0, (t~ > W- b~, W- > l- vl~), t > j j b @2
- > Note that identical particles will all be decayed

• > generate p p > t t~, (t > w+ b, w+ > l+ vl), (t~ > w- b~, w- > l- vl~)

- Questions:
 - Generate the code for dileptonic top decay and compute the cross-section. Compare with what computed in Ex. I

- Questions:
 - Generate the code for dileptonic top decay and compute the cross-section. Compare with what computed in Ex. I
 - > generate p p > t t~, (t > w+ b, w+ > l+ vl), (t~ > w- b~, w- > l- vl~)
 - > output myttbardecayed
 - > launch
 - > set ebeam1 4000
 - > set ebeam2 4000
 - > set MT 172

- Questions:
 - Generate the code for dileptonic top decay and compute the cross-section. Compare with what computed in Ex. I
 - > generate p p > t t~, (t > w+ b, w+ > l+ vl), (t~ > w- b~, w- > l- vl~)
 - > output myttbardecayed
 - > launch
 - > set ebeam1 4000
 - > set ebeam2 4000
 - > set MT 172
 - What do we expect?

- Questions:
 - Generate the code for dileptonic top decay and compute the cross-section. Compare with what computed in Ex. I
 - > generate p p > t t~, (t > w+ b, w+ > l+ vl), (t~ > w- b~, w- > l- vl~)
 - > output myttbardecayed
 - > launch
 - > set ebeam1 4000
 - > set ebeam2 4000
 - > set MT 172
 - What do we expect?
 - Something like 160 * 1/9 = 18 pb?

Cross-section : 5.65 +- 0.01823 pb Nb of events : 10000

- Questions:
 - Generate the code for dileptonic top decay and compute the cross-section. Compare with what computed in Ex. I
 - > generate p p > t t~, (t > w+ b, w+ > l+ vl), (t~ > w- b~, w- > l- vl~)
 - > output myttbardecayed
 - > launch
 - > set ebeam1 4000
 - > set ebeam2 4000
 - > set MT 172
 - What do we expect?
 - Something like 160 * 1/9 = 18 pb?
 - Wait: what is 1+/1-?

Cross-section : 5.65 +- 0.01823 pb Nb of events : 10000

- Questions:
 - Generate the code for dileptonic top decay and compute the cross-section. Compare with what computed in Ex. I
 - > generate p p > t t~, (t > w+ b, w+ > l+ vl), (t~ > w- b~, w- > l- vl~)
 - > output myttbardecayed
 - > launch
 - > set ebeam1 4000
 - > set ebeam2 4000
 - > set MT 172
 - What do we expect?
 - Something like 160 * 1/9 = 18 pb?
 - Wait: what is 1+/1-?
 - > display multi particles

Cross-section : 5.65 +- 0.01823 pb Nb of events : 10000

```
Multiparticle labels:
all = g u c d s u~ c~ d~ s~ a ve vm vt e- mu- ve~ vm~ vt~ e+ mu+ t
l- = e- mu-
j = g u c d s u~ c~ d~ s~
vl = ve vm vt
l+ = e+ mu+
p = g u c d s u~ c~ d~ s~
vl~ = ve~ vm~ vt~
```


- Questions:
 - Generate the code for dileptonic top decay and compute the cross-section. Compare with what computed in Ex. I
 - > generate p p > t t~, (t > w+ b, w+ > 1+ v1), (t~ > w- b~, w- > 1- v1~)

8 pb?

- > output myttbardecayed
- > launch
- > set ebeam1 4000
- > set ebeam2 4000
- > set MT 172
- What do we expect? 4/81 = 7.9
 - Something like 160 * 179
- Wait: what is 1+/1-?
 - > display multi particles

Cross-section : 5.65 +- 0.01823 pb Nb of events : 10000

```
Multiparticle labels:
all = g u c d s u~ c~ d~ s~ a ve vm vt e- mu- ve~ vm~ vt~ e+ mu+ t
l- = e- mu-
j = g u c d s u~ c~ d~ s~
vl = ve vm vt
l+ = e+ mu+
p = g u c d s u~ c~ d~ s~
vl~ = ve~ vm~ vt~
```


- Questions:
 - Generate the code for dileptonic top decay and compute the cross-section. Compare with what computed in Ex. I
 - > generate p p > t t~, (t > w+ b, w+ > l+ vl), (t~ > w- b~, w- > l- vl~)

8 pb?

- > output myttbardecayed
- > launch
- > set ebeam1 4000
- > set ebeam2 4000
- > set MT 172
- What do we expect? 4/81 = 7.9
 - Something like 160 * 179
- Wait: what is 1+/1-?
 - > display multi particles
- Check the run_card...

Cross-section : 5.65 +- 0.01823 pb Nb of events : 10000

```
Multiparticle labels:

all = g u c d s u~ c~ d~ s~ a ve vm vt e- mu- ve~ vm~ vt~ e+ mu+ t

l- = e- mu-

j = g u c d s u~ c~ d~ s~

vl = ve vm vt

l+ = e+ mu+

p = g u c d s u~ c~ d~ s~

vl~ = ve~ vm~ vt~
```


- Questions:
 - What is the difference with $p p > l + l vl vl \sim b b \sim$?

- Questions:
 - What is the difference with $p p > l + l vl vl \sim b b \sim$?
 - It is a much more complex process (will not run in 10s on a laptop)
 - Each subprocess has O(100) diagrams rather than O(1)

- Questions:
 - What is the difference with $p p > l + l vl vl \sim b b \sim$?
 - It is a much more complex process (will not run in 10s on a laptop)
 - Each subprocess has O(100) diagrams rather than O(1)
 - This process 'contains' tt decayed, but also other things

- Questions:
 - What is the difference with $p p > l + l vl vl \sim b b \sim$?
 - It is a much more complex process (will not run in 10s on a laptop)
 - Each subprocess has O(100) diagrams rather than O(1)
 - This process 'contains' $t\overline{t}$ decayed, but also other things
 - Which one is correct?

- Questions:
 - What is the difference with $p p > l + l vl vl \sim b b \sim$?
 - It is a much more complex process (will not run in 10s on a laptop)
 - Each subprocess has O(100) diagrams rather than O(1)
 - This process 'contains' $t\overline{t}$ decayed, but also other things
 - Which one is correct?
 - Strictly speaking tt decayed, is correct only in the limit Γ_t =0 i.e. when tops are on-shell

- Questions:
 - What is the difference with $p p > l + l vl vl \sim b b^{?}$
 - It is a much more complex process (will not run in 10s on a laptop)
 - Each subprocess has O(100) diagrams rather than O(1)
 - This process 'contains' $t\overline{t}$ decayed, but also other things
 - Which one is correct?
 - Strictly speaking tt decayed, is correct only in the limit Γ_t =0 i.e. when tops are on-shell
 - If one searches for (on-shell) top-pair production (e.g.imposing cuts on I, v, b mass), the full process will give little extra contribution

- Questions:
 - What is the difference with $p p > l + l vl vl \sim b b \sim$?
 - It is a much more complex process (will not run in 10s on a laptop)
 - Each subprocess has O(100) diagrams rather than O(1)
 - This process 'contains' $t\overline{t}$ decayed, but also other things
 - Which one is correct?
 - Strictly speaking tt decayed, is correct only in the limit Γ_t =0 i.e. when tops are on-shell
 - If one searches for (on-shell) top-pair production (e.g.imposing cuts on I, v, b mass), the full process will give little extra contribution
 - If one wants to look away from the resonant region, then the full process must be used

- Questions:
 - What is the difference with $p p > l + l vl vl \sim b b \sim$?
 - Have a look at single-top production (Papanastasiou et al. arXiv: 1305.7088)

Marco Zaro, 12/14-05-2015

Part 2: NLO

Why should I care?

- Reliable predictions of rates and shapes
- Reliable estimate of uncertainties (scale & PDF)
- Better theoretical accuracy, less need of fine tuning
- Realistic description of the final state
- Better understanding of data
- Steep increase in complexity (in particular for higher multiplicities)

Why should I care?

- Reliable predictions of rates and shapes
- Reliable estimate of uncertainties (scale & PDF)
- Better theoretical accuracy, less need of fine tuning
- Realistic description of the final state
- Better understanding of data
- Steep increase in complexity (in particular for higher multiplicities)

Ask a computer to do the hard job Automation!

NLO: How to?

NLO: How to?

NLO: How to?

- Virtual and real emission not finite if taken alone
 - Infra-red divergences occur

$$\sigma_R^{q\bar{q}g} = \sigma_{LO}H(\epsilon)C_F \frac{\alpha_s}{2\pi} \left(\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + \frac{19}{2}\right)$$
$$\sigma_V^{q\bar{q}(g)} = \sigma_{LO}H(\epsilon)C_F \frac{\alpha_s}{2\pi} \left(-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 8\right)$$

Need to include both in order to have a finite result

$$\sigma_{NLO} = \sigma_{LO} \left(1 + C_F \frac{\alpha_s}{2\pi} \frac{3}{2} \right)$$

Marco Zaro, 12/14-05-2015

Challenges at NLO:

- Compute (renormalized) one-loop diagrams for any choice of external particles
- Subtract singularities before doing the integration (numerically) in d=4
- If showering events, avoid double counting radiation from the shower and from real emissions

A revolution has just happened

- NLO evolution:
 - e.g. $pp \rightarrow W+n$ jets

A revolution has just happened

- NLO evolution:
 - e.g. $pp \rightarrow W+n$ jets

Process	Syntax	Cross section (pb)		Process	Syntax	Cross s	ection (pb)
Vector boson +jets		LO 13 TeV	NLO 13 TeV	Four vector bosons		LO 13 TeV 📔 🥌	NLO 13 TeV
a.1 $m \rightarrow W^{\ddagger}$	maw < a a	$1.375 \pm 0.002 \cdot 10^5 \pm 15.4\% \pm 2.0\%$	$1.773 \pm 0.007 \cdot 10^5 \pm 5.2\% \pm 1.9\%$	-21*	(f)	- 5 721 + 0.014 10-4 +3.7% +2.3%	0.050 1.0.025 10-4 +7.4% +1.7%
a.2 $pp \rightarrow W^{\pm}i$	pp>wpmj	$2.045 \pm 0.001 \cdot 10^4$ $^{-16.6\%}_{-1.6\%}$ $^{-1.6\%}_{-1.6\%}$	$2.843 \pm 0.010 \cdot 10^4 + 5.9\% + 1.3\%$	$C.21 pp \to W^+W^-W^+W^-(4)$	41) pp>w+w-w+v	$ = 6.201 \pm 0.076 \pm 10^{-4} \pm 4.4\% \pm 2.4\% $	-6.0% - 1.2%
a.3 $pp \rightarrow W^{\pm}jj$	pp>wpmjj	$6.805 \pm 0.015 \cdot 10^{3} \qquad \begin{array}{c} -11.2\% & -1.1\% \\ +24.5\% & +0.8\% \\ +28.6\% & 0.7\% \end{array}$	$7.786 \pm 0.030 \cdot 10^3 $ $^{-8.0\%}_{-8.0\%} + 0.9\%$	$C.22 pp \to W^+W^-W^\pm 2 (41)$) pp>w+w-wpm	2 $0.391 \pm 0.070 \cdot 10$ _4.1% _1.8%	$1.188 \pm 0.004 \cdot 10 - 6.8\% - 1.2\%$
a.4 $pp \rightarrow W^{\pm} jjj$	pp>wpmjjj	$1.821 \pm 0.002 \cdot 10^{3} {}^{+41.0\%}_{-27.1\%} {}^{-0.1\%}_{-0.5\%}$	$2.005 \pm 0.008 \cdot 10^3 $ $^{+0.9\%}_{-6.7\%} + 0.6\%$	$c.25 pp \to W^+W^- \gamma (41)$ $c.24^* m \to W^+W^- ZZ (4f)$	pp>w+w-wpm	a $0.113 \pm 0.004 \cdot 10$ -2.5% -1.7%	$7.107 + 0.020 + 10^{-4} + 7.0\% + 1.8\%$
25 00 7		$4.248 \pm 0.005 \cdot 10^4 \pm 14.6\% \pm 2.0\%$	$5,410 \pm 0.022$, $104 \pm 4.6\% \pm 1.9\%$	$c.24 pp \to W^+W^-Z_2(41)$	p p > w+ w- z z	$4.320 \pm 0.015 \cdot 10^{-4.1\%} - 1.7\%$	$7.107 \pm 0.020 \cdot 10^{-5.7\%} - 1.3\%$
a.5 $pp \rightarrow Z$ a.6 $pn \rightarrow Zi$	pp>z nn>zi	$4.248 \pm 0.005 \cdot 10$ $_{-15.8\%}$ $_{-1.6\%}$ 7 209 + 0.005 $\cdot 10^3$ $^{+19.3\%}$ $^{+1.2\%}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	c.25* $pp \rightarrow W^+W^-Z\gamma$ (4f)	pp>w+w-za	$8.403 \pm 0.016 \cdot 10^{-2.9\%} - 1.7\%$	$1.483 \pm 0.004 \cdot 10^{-5.8\%} - 1.2\%$
a.0 $pp \rightarrow Zj$ a.7 $pn \rightarrow Zji$	pp>zj nn>zii	$2.348 \pm 0.006 \cdot 10^{3}$ $^{-17.0\%}_{-12.0\%}$ $^{-1.0\%}_{-1.0\%}$	$2.665 \pm 0.010 \cdot 10^3 \pm 2.5\% \pm 0.7\%$	c.26' $pp \rightarrow W^+W^-\gamma\gamma$ (41)	pp>w+w-aa	$5.198 \pm 0.012 \cdot 10^{-1.6\%}$	$9.381 \pm 0.032 \cdot 10^{-5.3\%} - 1.1\%$
a.8 $pp \rightarrow Zjj$ a.8 $pn \rightarrow Zijj$	pp>2jj pp>ziii	$\begin{array}{c} 2.010 \pm 0.000 & 10 & -18.5\% & -0.6\% \\ 6.314 \pm 0.008 \cdot 10^2 & \pm 40.8\% & \pm 0.5\% \end{array}$	-6.0% - 0.7% $6.996 \pm 0.028 \cdot 10^2 + 1.1\% + 0.5\%$	c.27* $pp \rightarrow W^{\perp}ZZZ$	p p > wpm z z z	$5.862 \pm 0.010 \cdot 10^{-5}$ $^{+3.7\%}_{-4.7\%}$ $^{-1.8\%}_{-8.7\%}$	$1.240 \pm 0.004 \cdot 10^{-4}$ $-8.0\% - 1.2\%$
	P. P. 2 J.			c.28* $pp \rightarrow W^{\pm}ZZ\gamma$	pp>wpmzza	$1.148 \pm 0.003 \cdot 10^{-4}$ $^{+3.0\%}_{-3.5\%}$ $^{+2.2\%}_{-1.7\%}$	$2.945 \pm 0.008 \cdot 10^{-4} +10.0\% +1.5\% \\ -8.7\% -1.0\% \\ +10.6\% +11\%$
a.9 $pp \rightarrow \gamma j$	pp>aj	$1.964 \pm 0.001 \cdot 10^4$ $^{+0.12\%}_{-26.0\%}$ $^{+1.1\%}_{-1.8\%}$	$5.218 \pm 0.025 \cdot 10^4$ $^{+2.5\%}_{-21.4\%}$ $^{+1.4\%}_{-1.6\%}$	c.29* $pp \rightarrow W^{\pm} Z \gamma \gamma$	pp>wpmzaa	$1.054 \pm 0.004 \cdot 10^{-4} \begin{array}{c} +1.1\% +2.1\% \\ -1.9\% -1.7\% \\ -1.0\% -1.7\% \end{array}$	$3.033 \pm 0.010 \cdot 10^{-4} \begin{array}{c} +10.0\% & +11.1\% \\ -8.6\% & -0.8\% \end{array}$
a.10 $pp \rightarrow \gamma j j$	pp>ajj	$7.815 \pm 0.008 \cdot 10^{3} \begin{array}{c} +0.008 \\ -24.2\% \\ -1.2\% \end{array}$	$1.004 \pm 0.004 \cdot 10^4 -10.9\% -10.9\%$	c.30* $pp \rightarrow W^{\pm} \gamma \gamma \gamma$	pp>wpmaaa	$3.600 \pm 0.013 \cdot 10^{-5} {}^{+0.4\%}_{-1.0\%} {}^{+0.4\%}_{-1.6\%} {}^{+0.4\%}_{-1.6\%}$	$1.246 \pm 0.005 \cdot 10^{-4} {}^{+9.8\%}_{-8.1\%} {}^{+0.9\%}_{-0.8\%}$
Process	Syntax	Cross see	tion (pb)	c.31* $pp \rightarrow ZZZZ$	p p > z z z z	$\begin{array}{cccc} 1.989 \pm 0.002 \cdot 10^{-5} & +3.8\% & +2.2\% \\ & -3.6\% & -1.7\% \\ \end{array}$	$2.629 \pm 0.008 \cdot 10^{-5} {}^{+3.5\%}_{-3.0\%} {}^{+2.2\%}_{-1.7\%}$
Vector-boson pair $+jets$		LO 13 TeV	NLO 13 TeV	${\rm c.32^*} pp \mathop{\rightarrow} ZZZ\gamma$	p p > z z z a	$3.945 \pm 0.007 \cdot 10^{-5} {}^{+1.9\%}_{-2.1\%} {}^{+2.1\%}_{-1.6\%}$	$5.224 \pm 0.016 \cdot 10^{-5}$ $^{+3.3\%}_{-2.7\%}$ $^{+2.1\%}_{-1.6\%}$
b.1 $pp \rightarrow W^+W^-$ (4f)	p p > w+ w-	$7.355 \pm 0.005 \cdot 10^{1}$ $^{+5.0\%}_{-6.1\%}$ $^{+2.0\%}_{-1.5\%}$	$1.028 \pm 0.003 \cdot 10^2 ^{+4.0\%}_{-4.5\%} ^{+1.9\%}_{-1.4\%}$	c.33* $pp \rightarrow ZZ\gamma\gamma$	p p > z z a a	$5.513 \pm 0.017 \cdot 10^{-5} {}^{+0.0\%}_{-0.3\%} {}^{+2.1\%}_{-1.6\%}$	$7.518 \pm 0.032 \cdot 10^{-5} {}^{+ 3.4 \% }_{- 2.6 \% } {}^{+ 2.0 \% }_{- 1.5 \% }$
b.2 $pp \rightarrow ZZ$	pp>zz	$1.097 \pm 0.002 \cdot 10^{1}$ $^{+4.5\%}_{-5.6\%}$ $^{+1.9\%}_{-1.5\%}$	$1.415 \pm 0.005 \cdot 10^{1}$ $^{+3.1\%}_{-3.7\%}$ $^{+1.4\%}_{-1.4\%}$	${\rm c.34}^* pp {\rightarrow} Z\gamma\gamma\gamma$	p p > z a a a	$4.790 \pm 0.012 \cdot 10^{-5} {}^{+2.3\%}_{-3.1\%} {}^{+2.0\%}_{-1.6\%}$	$7.103 \pm 0.026 \cdot 10^{-5} {}^{+ 3.4 \% }_{- 3.2 \% } {}^{+ 1.6 \% }_{- 1.5 \% }$
b.3 $pp \rightarrow ZW^{\pm}$	p p > z wpm	$2.777 \pm 0.003 \cdot 10^{1}$ $^{+3.6\%}_{-4.7\%}$ $^{+2.0\%}_{-1.5\%}$	$4.487 \pm 0.013 \cdot 10^{1} {}^{+4.4\%}_{-4.4\%} {}^{+1.7\%}_{-1.3\%}$	${\rm c.35^*} pp {\rightarrow} \gamma\gamma\gamma\gamma$	pp>aaaa	$1.594 \pm 0.004 \cdot 10^{-5} {}^{+ 4.7 \% }_{- 5.7 \% } {}^{+ 1.9 \% }_{- 1.7 \% }$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
b.4 $pp \rightarrow \gamma \gamma$	pp>aa	$2.510 \pm 0.002 \cdot 10^{1} {}^{+ 22.1 \% }_{- 22.4 \% } 2.593 \pm 0.021 \cdot 10^{1} {}^{+ 17.6 \% }_{- 18.8 \% } {}^{+ 2.0 \% }_{- 1.9 \% }$		Process	Syntax	yntax Cross section (pb)	
b.5 $pp \rightarrow \gamma Z$	pp>az	$2.523 \pm 0.004 \cdot 10^{1} {}^{+9.9\%}_{-11.2\%} {}^{+2.0\%}_{-1.6\%}$	$3.695 \pm 0.013 \cdot 10^{1} {}^{+ 5.4 \% }_{- 7.1 \% } {}^{+ 1.8 \% }_{- 1.4 \% }$	Heavy quarks and jets	j in	LO 13 TeV	NLO 13 TeV
b.6 $pp \rightarrow \gamma W^{\pm}$	p p > a wpm	$2.954 \pm 0.005 \cdot 10^{1} {}^{+9.5\%}_{-11.0\%} {}^{+2.0\%}_{-1.7\%}$	$7.124 \pm 0.026 \cdot 10^{1} {}^{+9.7\%}_{-9.9\%} {}^{+1.5\%}_{-1.3\%}$	$d1 m \rightarrow ii$	nnlii	$1.162 \pm 0.001 \cdot 10^{6} \pm 24.9\% \pm 0.8\%$	$1.580 \pm 0.007 \cdot 10^6 + 8.4\% + 0.7\%$
b.7 $pp \rightarrow W^+W^-j$ (4f)	p p > w+ w- j	$2.865 \pm 0.003 \cdot 10^{1}$ $^{+11.6\%}_{-10.0\%}$ $^{+1.0\%}_{-0.8\%}$	$3.730 \pm 0.013 \cdot 10^{1} {}^{+4.9\%}_{-4.9\%} {}^{+1.1\%}_{-0.8\%}$	d.1 $pp \rightarrow jj$ d.2 $pp \rightarrow jjj$	pp>jj nn>iii	$\begin{array}{c} 1.102 \pm 0.001 \cdot 10 & -18.8\% & -0.9\% \\ 8.940 \pm 0.021 \cdot 10^4 & \pm 43.8\% & \pm 1.2\% \end{array}$	$\begin{array}{c} 1.300 \pm 0.007 \cdot 10 & -9.0\% & -0.9\% \\ 7.791 \pm 0.037 \cdot 10^4 & \pm 2.1\% & \pm 1.1\% \end{array}$
b.8 $pp \rightarrow ZZj$	p p > z z j	$3.662 \pm 0.003 \cdot 10^{0} {}^{+10.9\%}_{-9.3\%} {}^{+1.0\%}_{-0.8\%}$	$4.830 \pm 0.016 \cdot 10^{0} {}^{+ 5.0 \% }_{- 4.8 \% } \stackrel{+ 1.1 \% }{_{- 0.9 \% }}$		P P · J J J	-28.4% - 1.4%	-23.2% - 1.3%
b.9 $pp \rightarrow ZW^{\pm}j$	p p > z wpm j	$1.605 \pm 0.005 \cdot 10^{1} {}^{+11.6\%}_{-10.0\%} {}^{+0.9\%}_{-0.7\%}$	$2.086 \pm 0.007 \cdot 10^{1} {}^{+ 4.9 \% }_{- 4.8 \% } {}^{+ 0.9 \% }_{- 0.7 \% }$	d.3 $pp \rightarrow bb$ (4f)	pp>bb∼	$3.743 \pm 0.004 \cdot 10^{3}$ $^{-18.9\%}_{-18.9\%}$ $^{-1.8\%}_{-1.8\%}$	$ 6.438 \pm 0.028 \cdot 10^{3} {}^{+10.00}_{-13.3\%} {}^{+1.000}_{-1.7\%} \\ 1.207 \pm 0.007 10^{3}_{-1.6.8\%} {}^{+1.5\%}_{-1.7\%} $
b.10 $pp \rightarrow \gamma \gamma j$	pp>aaj	$1.022 \pm 0.001 \cdot 10^{1} {}^{+ 20.3 \% }_{- 17.7 \% } {}^{+ 1.2 \% }_{- 1.5 \% }$	$2.292 \pm 0.010 \cdot 10^{1} {}^{+17.2\%}_{-15.1\%} {}^{+1.0\%}_{-1.4\%}$	d.4' $pp \rightarrow obj$ (41) d 5* $m \rightarrow b\bar{b}ii$ (4f)	pp>bb~j	$1.050 \pm 0.002 \cdot 10^{\circ}$ $_{-28.5\%}$ $_{-1.8\%}$ 1.852 ± 0.006 10° $_{+61.8\%}$ $_{+2.1\%}$	$1.327 \pm 0.007 \cdot 10^{\circ} -11.6\% -1.8\%$ $2.471 \pm 0.012 10^{2} +8.2\% +2.0\%$
b.11* $pp \rightarrow \gamma Zj$	pp>azj	$8.310 \pm 0.017 \cdot 10^{0} {}^{+14.5\%}_{-12.8\%} {}^{+1.0\%}_{-1.0\%}$	$1.220 \pm 0.005 \cdot 10^{1} {}^{+7.3\%}_{-7.4\%} {}^{+0.9\%}_{-0.9\%}$	d.5 $pp \rightarrow b\bar{b}\bar{b}\bar{b}$ (41) d.6 $pp \rightarrow b\bar{b}\bar{b}\bar{b}$ (4f)	$p p > b b \sim j j$ $p p > b b \sim b b \sim$	$\begin{array}{c} 1.852 \pm 0.000 \cdot 10 & -35.6\% & -2.4\% \\ 5.050 \pm 0.007 \cdot 10^{-1} & \pm 61.7\% & \pm 2.9\% \end{array}$	$2.471 \pm 0.012 \cdot 10 - 16.4\% - 2.3\% \\ 8.736 \pm 0.034 \cdot 10^{-1} + 20.9\% + 2.9\%$
b.12* $pp \rightarrow \gamma W^{\pm} j$	p p > a wpm j	$2.546 \pm 0.010 \cdot 10^{1} {}^{+13.7\%}_{-12.1\%} {}^{+0.9\%}_{-1.0\%}$	$3.713 \pm 0.015 \cdot 10^{1} {}^{+7.2\%}_{-7.1\%} {}^{+0.9\%}_{-1.0\%}$		pp> b b c b b c	-35.6% - 3.4%	
b.13 $pp \rightarrow W^+W^+jj$	p p > w+ w+ j j	$1.484 \pm 0.006 \cdot 10^{-1}$ $^{+25.4\%}_{-18.9\%}$ $^{+2.1\%}_{-1.5\%}$	$2.251 \pm 0.011 \cdot 10^{-1}$ $^{+10.5\%}_{-10.6\%}$ $^{+2.2\%}_{-1.6\%}$	d.7 $pp \rightarrow t\bar{t}$	pp>tt~	$4.584 \pm 0.003 \cdot 10^2$ +25.0% +1.0% -21.1% -2.0% +45.1% +2.2%	$ 6.741 \pm 0.023 \cdot 10^2 +3.5\% +1.5\% \\ -10.9\% -2.1\% \\ +3.1\% +2.1\% $
b.14 $pp \rightarrow W^-W^-jj$	p p > w- w- j j		$1.003 \pm 0.003 \cdot 10^{-1} {}^{+10.1\%}_{-10.4\%} {}^{+2.5\%}_{-10.8\%}$	d.8 $pp \rightarrow ttj$	pp>tt~j	$3.135 \pm 0.002 \cdot 10^{2} -29.0\% -2.5\%$ 1.261 ± 0.001 102 +61.4\% +2.6\%	$4.106 \pm 0.015 \cdot 10^{2} -12.2\% -2.5\%$ $1.705 \pm 0.006 10^{2} +9.3\% +2.4\%$
b.15 $pp \rightarrow W^+W^-jj$ (4f)	p p > w+ w- j j	$1.144 \pm 0.002 \cdot 10^{1} {}^{+ 27.2 \% }_{- 19.9 \% } {}^{+ 0.7 \% }_{- 0.5 \% }$	$\begin{array}{rrrr} 1.396 \pm 0.005 \cdot 10^{1} & {}^{+ 5.0 \% }_{- 6.8 \% } -0.6 \% \end{array}$	d.9 $pp \rightarrow tijj$ d.10 $pp \rightarrow t\bar{t}t\bar{t}$	pp>tt~jj	$1.501 \pm 0.001 \cdot 10 \qquad -35.6\% -3.0\% \\ 4.505 \pm 0.005 \cdot 10^{-3} \qquad +63.8\% +5.4\%$	$\begin{array}{c} 1.195 \pm 0.000 \cdot 10 \\ -16.1\% & -2.9\% \\ 0.201 \pm 0.028 \cdot 10^{-3} \\ +30.8\% \\ +5.5\% \end{array}$
b.16 $pp \rightarrow ZZjj$	pp>zzjj	$1.344 \pm 0.002 \cdot 10^{0}$ $^{+26.6\%}_{-19.6\%}$ $^{+0.7\%}_{-0.6\%}$	$1.706 \pm 0.011 \cdot 10^{0} {}^{+5.8\%}_{-7.2\%} {}^{+0.8\%}_{-0.6\%}$	$a.10 pp \rightarrow tttt$	pp>cc;cc;c	-36.5% - 5.7%	<u>-25.6%</u> -5.9%
b.17 $pp \rightarrow ZW^{\pm}jj$	pp>zwpmjj	$8.038 \pm 0.009 \cdot 10^{0} {}^{+26.7\%}_{-19.7\%} {}^{+0.7\%}_{-0.5\%}$	$9.139 \pm 0.031 \cdot 10^{0} {}^{+3.1\%}_{-5.1\%} \stackrel{+0.7\%}{-0.5\%}_{-0.5\%}$	d.11 $pp \rightarrow ttbb$ (4f)	p p > t t \sim b b \sim	$6.119 \pm 0.004 \cdot 10^{\circ} {}^{+02.1\%}_{-35.7\%} {}^{+2.9\%}_{-3.5\%}$	$1.452 \pm 0.005 \cdot 10^{1} {}^{+37.6\%}_{-27.5\%} {}^{+2.9\%}_{-3.5\%}$
b.18 $pp \rightarrow \gamma \gamma jj$	pp>aajj	$5.377 \pm 0.029 \cdot 10^{0}$ $^{+20.2\%}_{-19.8\%}$ $^{+0.0\%}_{-1.0\%}$	$7.501 \pm 0.032 \cdot 10^{\circ} +8.8\% +0.0\% \\ -10.1\% -1.0\% \\ +6.5\% +0.6\% \\ -6.5\% +0.6\% \\ -10.0\% \\ -$	Process	Syntax	Cross se	ection (pb)
b.19* $pp \rightarrow \gamma Zjj$	pp>azjj	$3.260 \pm 0.009 \cdot 10^{\circ}$ $^{-18.4\%}_{-18.4\%}$ $^{-0.6\%}_{-0.6\%}$	$4.242 \pm 0.016 \cdot 10^{\circ}$ $^{-7.3\%}_{-7.3\%} - 0.6\%$	Heavy quarks+vector bosons		LO 13 TeV	NLO 13 TeV
b.20° $pp \rightarrow \gamma W = jj$	pp>awpmjj	$1.233 \pm 0.002 \cdot 10^{-18.6\%} - 0.6\%$	$1.448 \pm 0.005 \cdot 10^{-10} -5.4\% -0.7\%$	e.1 $pp \rightarrow W^{\pm} b\bar{b}$ (4f)	p p > wpm b b \sim	$3.074 \pm 0.002 \cdot 10^2 {}^{+42.3\%}_{-29.2\%} {}^{+2.0\%}_{-1.6\%}$	$8.162 \pm 0.034 \cdot 10^2 {}^{+29.8\%}_{-23.6\%} {}^{+1.5\%}_{-1.2\%}$
Process	Syntax	Cross s	ection (pb)	e.2 $pp \rightarrow Z b\bar{b}$ (4f)	p p > z b b \sim		$1.235 \pm 0.004 \cdot 10^{3} {}^{+ 19.9 \% }_{- 17.4 \% } {}^{+ 1.0 \% }_{- 1.4 \% }$
Three vector bosons +jet		LO 13 TeV	NLO 13 TeV	e.3 $pp \rightarrow \gamma b\bar{b}$ (4f)	pp>abb \sim	$1.731 \pm 0.001 \cdot 10^{3} {}^{+51.9\%}_{-34.8\%} {}^{+1.6\%}_{-2.1\%}$	$4.171 \pm 0.015 \cdot 10^{3} {}^{+33.7\%}_{-27.1\%} {}^{+1.4\%}_{-1.9\%}$
c.1 $pp \rightarrow W^+W^-W^{\pm}$ (4f)	p p > w+ w- wpm	$\begin{array}{rrrr} 1.307 \pm 0.003 \cdot 10^{-1} & {}^{+ 0.0 \% }_{- 0.3 \% } & {}^{+ 2.0 \% }_{- 1.5 \% }\end{array}$	$2.109 \pm 0.006 \cdot 10^{-1} {}^{+ 5.1 \% }_{- 4.1 \% } {}^{+ 1.6 \% }_{- 1.2 \% }$	e.4* $pp \rightarrow W^{\pm} b\bar{b} j$ (4f)	p p > wpm b b \sim j	$1.861 \pm 0.003 \cdot 10^2 {}^{+42.5\%}_{-27.7\%} {}^{+0.7\%}_{-0.7\%}$	$3.957 \pm 0.013 \cdot 10^2 {}^{+ 27.0\% }_{- 21.0\% } {}^{+ 0.7\% }_{- 0.6\% }$
c.2 $pp \rightarrow ZW^+W^-$ (4f)	p p > z w+ w-	$9.658 \pm 0.065 \cdot 10^{-2} {}^{+0.8\%}_{-1.1\%} {}^{+2.1\%}_{-1.6\%}$	$1.679 \pm 0.005 \cdot 10^{-1}$ $^{+6.3\%}_{-5.1\%}$ $^{+1.6\%}_{-1.2\%}$	e.5* $pp \rightarrow Z b\bar{b} j$ (4f)	p p > z b b \sim j	$1.604 \pm 0.001 \cdot 10^{2} {}^{+ 42.4 \% }_{- 27.6 \% } {}^{+ 0.9 \% }_{- 1.1 \% }$	$2.805 \pm 0.009 \cdot 10^{2} {}^{+ 21.0 \% }_{- 17.6 \% } {}^{+ 0.8 \% }_{- 1.0 \% }$
c.3 $pp \rightarrow ZZW^{\pm}$	p p > z z wpm	$2.996 \pm 0.016 \cdot 10^{-2} \begin{array}{c} +1.0\% & +2.0\% \\ -1.4\% & -1.6\% \\ -0.0\% & +1.9\% \end{array}$	$5.550 \pm 0.020 \cdot 10^{-2}$ $^{+6.8\%}_{-5.5\%}$ $^{+1.5\%}_{-5.5\%}$ $^{-1.1\%}_{-1.1\%}$	e.6* $pp \rightarrow \gamma b\bar{b} j$ (4f)	pp≻abb∼ j	$7.812 \pm 0.017 \cdot 10^2 {}^{+51.2\%}_{-32.0\%} {}^{+1.0\%}_{-1.5\%}$	$1.233 \pm 0.004 \cdot 10^{3} {}^{+ 18.9 \% }_{- 19.9 \% } {}^{+ 1.0 \% }_{- 1.5 \% }$
c.4 $pp \rightarrow ZZZ$	pp>zzz	$1.085 \pm 0.002 \cdot 10^{-2} + 0.0\% + 1.5\% \\ -0.5\% - 1.5\% \\ 1.497 \pm 0.011 + 10^{-1} + 1.9\% + 2.0\%$	$1.417 \pm 0.005 \cdot 10^{-2}$ $^{+2.1\%}_{-2.1\%}$ $^{+1.5\%}_{-1.5\%}$	e.7 $pp \rightarrow t\bar{t} W^{\pm}$	pp>tt \sim wpm	$3.777 \pm 0.003 \cdot 10^{-1}$ $^{+23.9\%}_{-18.0\%}$ $^{+2.1\%}_{-1.6\%}$	$5.662 \pm 0.021 \cdot 10^{-1}$ $^{+11.2\%}_{-10.6\%}$ $^{+1.7\%}_{-1.3\%}$
c.5 $pp \rightarrow \gamma W^+ W^-$ (41)	pp>aw+w-	$1.427 \pm 0.011 \cdot 10^{-1} - 2.6\% - 1.5\%$ 2.681 ± 0.007 10 ⁻² +4.4% +1.9%	$2.581 \pm 0.008 \cdot 10^{-1} - 4.3\% - 1.1\%$ 8 251 ± 0.022 10 ⁻² +7.6% +1.0%	e.8 $pp \rightarrow t\bar{t} Z$	p p > t t \sim z	$5.273 \pm 0.004 \cdot 10^{-1} {}^{+30.5\%}_{-21.8\%} {}^{+1.8\%}_{-2.1\%}$	$7.598 \pm 0.026 \cdot 10^{-1} {}^{+ 9.7 \% }_{- 11.1 \% } {}^{+ 1.9 \% }_{- 2.2 \% }$
c.0 $pp \rightarrow \gamma\gamma W$ c.7 $pn \rightarrow \gamma ZW^{\pm}$	pp>aawpm pp>azwpm	$ \begin{array}{c} 2.081 \pm 0.007 \cdot 10 & -5.6\% & -1.6\% \\ 4.994 \pm 0.011 \cdot 10^{-2} & \pm 0.8\% & \pm 1.9\% \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e.9 $pp \rightarrow t\bar{t}\gamma$	p p > t t \sim a	$1.204 \pm 0.001 \cdot 10^{0} {}^{+ 29.6 \% }_{- 21.3 \% } {}^{+ 1.6 \% }_{- 1.8 \% }$	$1.744 \pm 0.005 \cdot 10^{0} {}^{+ 9.8 \% }_{- 11.0 \% } {}^{+ 1.7 \% }_{- 2.0 \% }$
c.8 $pp \rightarrow \gamma ZZ$	pp>azwpm pp>azz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3.118 \pm 0.012 \cdot 10^{-2}$ $^{+2.8\%}_{-5.9\%}$ $^{-0.9\%}_{-0.9\%}$	e.10* $pp \rightarrow t\bar{t} W^{\pm} j$	pp≻tt~wpmj	$2.352 \pm 0.002 \cdot 10^{-1}$ +40.9% +1.3%	$3.404 \pm 0.011 \cdot 10^{-1}$ $^{+11.2\%}_{14.0\%}$ $^{+1.2\%}_{0.0\%}$
c.9 $pp \rightarrow \gamma \gamma Z$	pp>aaz	$3.078 \pm 0.007 \cdot 10^{-2} \begin{array}{c} -2.9\% & -1.5\% \\ +5.6\% & +1.9\% \\ 6.9\% & 1.6\% \end{array}$	$4.634 \pm 0.020 \cdot 10^{-2}$ $+4.5\%$ $+1.7\%$	e.11* $pp \rightarrow t\bar{t} Zj$	pp>tt~zj	$3.953 \pm 0.004 \cdot 10^{-1} {}^{+21.1\%}_{+46.2\%} {}^{+2.7\%}_{+2.7\%} \\ {}^{-29.5\%}_{-29.5\%} {}^{-3.0\%}_{-3.0\%}$	$5.074 \pm 0.016 \cdot 10^{-1}$ $^{-14.0\%}_{-12.3\%}$ $^{-0.5\%}_{-2.5\%}$
c.10 $pp \rightarrow \gamma \gamma \gamma$	pp>aaa	$1.269 \pm 0.003 \cdot 10^{-2}$ $^{+0.8\%}_{-11.0\%}$ $^{+2.0\%}_{-11.0\%}$	$3.441 \pm 0.012 \cdot 10^{-2}$ $^{+10.8\%}_{-11.6\%}$ $^{+1.8\%}_{-1.5\%}$	e.12* $pp \rightarrow t\bar{t}\gamma j$	pp>tt \sim aj	$8.726 \pm 0.010 \cdot 10^{-1} {}^{+45.4\%}_{-29.1\%} {}^{+2.3\%}_{-29.6\%}$	$1.135 \pm 0.004 \cdot 10^{0} {}^{+ 7.5 \% }_{- 12.2 \% } {}^{+ 2.2 \% }_{- 2.5 \% }$
c.11 $mn \rightarrow W^+W^-W^{\pm}i$ (4f	ממש – ש + ש < מ מ (i $9.167 \pm 0.010 \cdot 10^{-2} \pm 15.0\% \pm 1.0\%$	$1.197 \pm 0.004 \cdot 10^{-1} \pm 5.2\% \pm 1.0\%$	e.13 [*] $pp \rightarrow t\bar{t}W^-W^+$ (4f)	p p > t t~ w+ w-	$6.675 \pm 0.006 \cdot 10^{-3}$ $^{+30.9\%}_{-2.0\%}$ $^{+2.1\%}_{-2.0\%}$	$9.904 \pm 0.026 \cdot 10^{-3}$ $^{+10.9\%}_{-11.0\%}$ $^{+2.1\%}_{-2.1\%}$
c.12* $pp \rightarrow ZW^+W^-i$ (4f)	pp>zw+w-i	$ \begin{array}{c} -12.2\% & -0.7\% \\ 8.340 \pm 0.010 \cdot 10^{-2} & +15.6\% + 1.0\% \\ 10.6\% & -0.0\% \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e.14* $pp \rightarrow t\bar{t}W^{\pm}Z$	pp>tt~wpmz	$2.404 \pm 0.002 \cdot 10^{-3} \begin{array}{c} -21.9\% - 2.0\% \\ +26.6\% + 2.5\% \\ -19.6\% - 1.8\% \end{array}$	$ \begin{array}{c} -11.8\% & -2.1\% \\ +10.6\% & +2.3\% \\ -10.8\% & -1.6\% \end{array} $
c.13* $pp \rightarrow ZZW^{\pm}j$	pp>zzwpmj	$2.810 \pm 0.004 \cdot 10^{-2} {}^{+12.6\%}_{-13.0\%} {}^{-0.7\%}_{-0.7\%}_{-13.0\%}$	$\begin{array}{ccc} -5.3\% & -0.7\% \\ +4.8\% & +1.0\% \\ -5.6\% & -0.7\% \end{array}$	e.15* $pp \rightarrow t\bar{t} W^{\pm} \gamma$	pp>tt \sim wpm a	$2.718 \pm 0.003 \cdot 10^{-3} {}^{+25.4\%}_{-18.9\%} {}^{+2.5.4\%}_{-18.9\%} {}^$	$ 3.927 \pm 0.013 \cdot 10^{-3} {}^{-10.3\%}_{-10.4\%} {}^{+2.0\%}_{-1.5\%} \\$
c.14* $pp \rightarrow ZZZj$	pp>zzzj	$4.823 \pm 0.011 \cdot 10^{-3} {}^{+14.3\%}_{-11.8\%} {}^{+1.4\%}_{-10\%}$		e.16* $pp \rightarrow t\bar{t}ZZ$	p p > t t \sim z z	$1.349 \pm 0.014 \cdot 10^{-3} {}^{+ 29.3 \% }_{- 21.1 \% } {}^{+ 1.7 \% }_{- 1.5 \% }$	$1.840 \pm 0.007 \cdot 10^{-3} {}^{+7.9\%}_{-9.9\%} {}^{+1.7\%}_{-1.5\%}$
c.15 [*] $pp \rightarrow \gamma W^+ W^- j$ (4f)	p p > a w+ w- j	$1.182 \pm 0.004 \cdot 10^{-1} {}^{+ 13.4 \% }_{- 11.2 \% } {}^{+ 0.8 \% }_{- 0.7 \% }$	$1.233 \pm 0.004 \cdot 10^{3} {}^{+ 18.9 \% }_{- 19.9 \% } {}^{+ 1.0 \% }_{- 15.9 \% }$	e.17* $pp \rightarrow t\bar{t} Z\gamma$	p p > t t \sim z a	$2.548 \pm 0.003 \cdot 10^{-3} {}^{+ 30.1 \% }_{- 21.5 \% } {}^{+ 1.7 \% }_{- 1.6 \% }$	$3.656 \pm 0.012 \cdot 10^{-3} {}^{+ 9.7 \% }_{- 11.0 \% } {}^{+ 1.8 \% }_{- 1.9 \% }$
c.16 $pp \rightarrow \gamma \gamma W^{\pm} j$	pp>aawpmj	$4.107 \pm 0.015 \cdot 10^{-2} {}^{+11.8\%}_{-10.2\%} {}^{+0.6\%}_{-0.8\%}$	$5.807 \pm 0.023 \cdot 10^{-2} {}^{+ 5.8 \% }_{- 5.5 \% } {}^{+ 0.7 \% }_{- 0.7 \% }$	e.18* $pp \rightarrow t\bar{t}\gamma\gamma$	pp > t t \sim a a	$3.272 \pm 0.006 \cdot 10^{-3} {}^{+28.4\%}_{-20.6\%} {}^{+1.3\%}_{-1.1\%}$	$4.402 \pm 0.015 \cdot 10^{-3} {}^{+7.8\%}_{-9.7\%} {}^{+1.4\%}_{-1.4\%}$
c.17* $pp \rightarrow \gamma ZW^{\pm}j$	pp>azwpmj	$5.833 \pm 0.023 \cdot 10^{-2} ^{+14.4\%}_{-12.0\%} ^{+0.7\%}_{-0.6\%}$	$7.764 \pm 0.025 \cdot 10^{-2}$ +5.1% +0.8% -5.5% -0.6%	Process	Syntax	Cre	bss section (pb)
	L/ №4-IJD=∠U .	9 9.995 \pm 0.013 \cdot 10 ⁻³ +12.3% +1.2% -10.6% -0.9% +1.2% +1.0% +1.0% +1.0%	$1.371 \pm 0.005 \cdot 10^{-2} + 5.0\% + 1.2\% $	to Single-top		LO 13 TeV	NLO 13 TeV
c.19 $pp \rightarrow \gamma \gamma \Sigma j$	pp>aazj	$1.372 \pm 0.003 \cdot 10^{-2}$ -9.4% -0.9%	$2.001 \pm 0.011 \cdot 10^{-6.3\%} - 6.3\% - 0.9\%$	f.1 $pp \rightarrow tj$ (t-channel)	pp>ttj\$\$ w+ w-	$1.520 \pm 0.001 \cdot 10^2 + 9.4\% + 0.001 \cdot 10^{-0.00}$	$1.563 \pm 0.005 \cdot 10^2 + 1.4\% + 0.4\%$

Loop proliferation

- in the last 10 years, many different techniques have been developed in order to compute any one-loop process.
- They (roughly) fall into 3 classes
 - Tensor reduction
 - Generalized unitarity
 - Integrand reduction

Passarino, Veltman, 1979 Denner, Dittmaier, hep-ph/509141 Binoth, Guillet, Heinrich, Pilon, Reiter, arXiv:0810.0992

Bern, Dixon, Dunbar, Kosower, hep-ph/9403226 + ... Ellis, Giele, Kunszt, arXiv:0708.2398 + Melnikov, arXiv:0806.3467

Ossola, Papadopoulos, Pittau, hep-ph/0609007 Del Aguila, Pittau, hep-ph/0404120 Mastrolia, Ossola, Reiter, Tramontano, arXiv:1006.0710

Basics of loops: Passarino-Veltman reduction

 Any one-loop amplitude can be written as a linear combination of a basis of integrals

• Integrals can be computed once for all and coded into libraries

QCDLoops, Ellis, Zanderighi OneLoop, Van Hameren

- Coefficients can be found by computing analytically the amplitude and solving (algebraically) a system of equations
 - In practice feasible only for low multiplicities

Marco Zaro, 12/14-05-2015

Passarino-Veltman reduction SORBONNE UNIVERSITES

 D_i

 $_{i_2,i_3}$

at the integrand level

Ossola, Papadopoulos, Pittau, hep-ph/0609007 CutTools: Ossola, Papadopoulos, Pittau, arXiv:0711.3596

• The integrand of the loop amplitude can be written as

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} \quad N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i$$

$$a,b,c,d \text{ are the same as in the previous slide;} \qquad + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i$$

$$+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i$$

$$+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i$$

$$+ \tilde{P}(q) \prod_{i=1}^{m-1} D_i.$$

- The system of equation can be cast in a triangolar form and solved numerically at each point in the phase-space:
 - Fix external momenta
 - Choose q such that all D's vanish but $D_1, D_2, D_3, D_4 \rightarrow \text{get the coefficient } d(1234)$
 - Do that for all 4-point integrals, then for 3-point ones, until all coefficients are known

Marco Zaro, 12/14-05-2015

The evil is in the details

- Numerical approach: must work in D=4
 - But scalar integrals are computed in D=D
 - Mismatch gives origin to the rational terms (R) which need to be added in order to get the correct result
 - Two kind of rational terms exist:
 - Rational terms that originates from the denominators (R₁): can be obtained from the amplitude without extra infos
 - Rational terms that originates from the numerator (R₂): need to be added to the amplitude, can be provided as extra Feynman rules
 - Are in a finite number
 - Can be computed once for all from the model
 - •UV renormalisation done via extra Feynman rules as well

Subtraction of Infra-Red divergences: Problem #1

- Real and virtual contributions are not separately finite
- Numerical integration (in D=4): can integrate only finite quantities
- QCD helps: divergences have an universal structure:

 Use universality of limits to build local counterterms to render n and n+1 body contributions finite

$$d\sigma_{NLO}^n = d\sigma_{LO}^n + d\sigma_V^n - \int d\Phi_1 C + \int d\Phi_1 \left(C + d\sigma_R^{n+1}\right)$$

Integrating C is much simpler than than R Can be done in D=D dimension (once and for all)

Marco Zaro, 12/14-05-2015

Subtraction of Infra-Red divergences: Problem #2

- Real emissions can have singularities in different regions of the phase-space:
- E.g. $gg \rightarrow t \overline{tg}$:
 - g collinear to g or g
 - g soft
- Numeric integrators (VEGAS) are quite dumb (still, that is the best one can do): peaks need to be well aligned with the integration variables
- "Divide et impera" solution: integrate one singularity at the time, with the most suitable phase-space parameterisation:

$$|M|^{2} = \sum_{ij} S_{ij} |M|^{2} = \sum_{ij} |M|^{2}_{ij} \qquad \sum S_{ij} = 1$$
$$S_{ij} \to 1 \text{ if } k_{i} \cdot k_{j} \to 0 \qquad S_{ij} \to 0 \text{ if } k_{m\neq i} \cdot k_{n\neq j} \to 0$$

Advantages:

- Parallelization: Each contribution can be integrated independently, with a suitable PS parameterization
- The number of contribution grows at most as n²
- Symmetries can be used to reduce the numbers of contributions
 - E.g: only 3 contributions for $gg \rightarrow g...g$

More details...

- Local subtraction is done as a modified '+' prescription
 - Subtract only close enough to the singularity

$$d\sigma_{ij}^{(n+1)}(r) = \left(\frac{1}{\xi_i}\right)_c \left(\frac{1}{1-y_{ij}}\right)_\delta \left((1-y_{ij})\xi_i^2 \mathcal{M}^{(n+1,0)}(r)\right) \mathcal{S}_{ij}(r) \frac{J^{n_L^{(B)}}}{\mathcal{N}(r)} d\xi_i dy_{ij} d\varphi_i d\widetilde{\phi}_n^{ij}$$

$$\int_{-\infty}^{\xi_{\text{max}}} \int_{-\infty}^{\xi_{\text{max}}} f(\xi_i) - f(0)\Theta(\xi_{\text{max}} - \xi_i)$$

$$\int_{0}^{\xi_{\text{max}}} d\xi_{i} f(\xi_{i}) \left(\frac{1}{\xi_{i}}\right)_{c} = \int_{0}^{\xi_{\text{max}}} d\xi_{i} \frac{f(\xi_{i}) - f(0)\Theta(\xi_{cut} - \xi_{i})}{\xi_{i}},$$
$$\int_{-1}^{1} dy_{ij} g(y_{ij}) \left(\frac{1}{1 - y_{ij}}\right)_{\delta} = \int_{-1}^{1} dy_{ij} \frac{g(y_{ij}) - g(1)\Theta(y_{ij} - 1 + \delta)}{1 - y_{ij}},$$

• This is (a summary of) the so-called FKS-subtraction (Frixione, Kunszt, Signer, hep-ph/9512328)

Why to care about showering?

Why to care about showering?

 Quarks and gluons undergo confinement: need to a description of final states in terms of hadrons

Why to care about showering?

- Quarks and gluons undergo confinement: need to a description of final states in terms of hadrons
- Parton shower cures bad behaviours of fixed-order computations and resums soft logarithms
 Frixione, Hirschi, Pagani, Shao, Zaro, arXiv:1407.0823

(Unweighted) event generation and matching to parton-showers

MC@NLO: Frixione, Webber hep-ph/0204244

- Problem #I: the n and n+1 body cross-sections are not separately finite at NLO
 - Cannot unweight an infinite cross-section
- Problem #2: when showering events, one must not double count radiation from the shower and the real-emission matrix-element
- Solution: introduce the so-called Monte-Carlo counterterms $\frac{d\sigma_{MC@NLO"}}{dO} = \left[\int d\Phi_n (B+V+\int d\Phi_1 MC) \right] I_{MC}^n(O) + \left[\int d\Phi_{n+1} (R-MC) \right] I_{MC}^{n+1}(O)$ S-events H-events
 - They are related to the shower Sudakov

$$I_{MC}^{k} = \Delta + \Delta d\Phi_{1} \frac{MC}{B} + \dots \qquad \Delta = \exp\left[-\int d\Phi_{1} \frac{MC}{B}\right]$$
$$MC = J \frac{1}{t_{MC}} \frac{\alpha_{s}}{2\pi} P(z^{MC})B$$

 MC is shower-dependent (i.e. the same sample of event has to be showered with a specific parton shower)

Marco Zaro, 12/14-05-2015

aMC@NLO

- Can write the code for computing cross-section at NLO for any process (limited only by CPU time)
- 2 main run modes (at LO and NLO):
 - fixed-order
 - do <u>not</u> generate events. Just compute the cross-section and optionally fill histograms on the fly
 - PS matching
 - generate events à la MC@NLO. Distributions obtained from NLO events are <u>unphysical</u> unless events are showered
- In either case, the cross-section has to be the same within statistical uncertainties

Including the decay in NLO^{MEDINEUNVERSITÉS} samples

- How to deal with unstable particles (e.g. top) at the NLO?
 - Cannot use decay-chain syntax: gauge invariance violated at NLO
- Very rough solution:
 - Let the shower decay the particles: spin correlations are lost
- Very refined solution:
 - Generate process with only stable particles (pp>1+1-vv~bb~): includes spin correlations, off-shell effects, non resonant contributions, ...
 - Needs special treatment of intermediate resonances (e.g. complex-mass scheme)
 - Computationally very expensive
 - Only needed when background is enhanced or when aiming at very high precision

Including the decay in NLO^{MEDINE UNIVERSITÉS} samples

- How to deal with unstable particles (e.g. top) at the NLO?
 - Cannot use decay-chain syntax: gauge invariance violated at NLO
- Very rough solution:
 - Let the shower decay the particles: spin correlations are lost
- Very refined solution:
 - Generate process with only stable particles (pp>1+1-vv~bb~): includes spin correlations, off-shell effects, non resonant contributions, ...
 - Needs special treatment of intermediate resonances (e.g. complex-mass scheme)
 - Computationally very expensive
 - Only needed when background is enhanced or when aiming at very high precision

Anything in between?

Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv: 1212.3460

Spin correlations made easy: SORBONNE UNIVERSITES MadSpin

Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv:1212.3460

- Wish-list:
 - For a given event sample (LO or MC@NLO), include the decay of any final state particle
 - Keep spin correlations
 - Generate decayed unweighted events

Spin correlations made easy: SORBONNE UNIVERSITÉS MadSpin

Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv:1212.3460

- Wish-list:
 - For a given event sample (LO or MC@NLO), include the decay of any final state particle
 - Keep spin correlations
 - Generate decayed unweighted events
- Solution:
 - Read event
 - Generate decay kinematics
 - Reweight the event with ratio $\left|M_{P+D}\right|^2 / \left|M_P\right|^2$
 - Or do secondary unweighting
 - Generate many decay configurations until $|M_{P+D}|^2 / |M_P|^2 > \text{Rand}() \max(|M_{P+D}|^2 / |M_P|^2)$

Spin correlations made easy: SORBONNE UNIVERSITÉS MadSpin

Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv:1212.3460

- Wish-list:
 - For a given event sample (LO or MC@NLO), include the decay of any final state particle
 - Keep spin correlations
 - Generate decayed unweighted events
- Solution:
 - Read event
 - Generate decay kinematics
 - Reweight the event with ratio $\left|M_{P+D}\right|^2 / \left|M_P\right|^2$
 - Or do secondary unweighting
 - Generate many decay configurations until $|M_{P+D}|^2 / |M_P|^2 > \text{Rand}() \max(|M_{P+D}|^2 / |M_P|^2)$
- This was been done for the first time for $t\bar{t}$ and singletop

Frixione, Leanen, Motylinski, Webber, arXiv:hep-ph/0702198

Spin correlations made easy: SORBONNE UNIVERSITES MadSpin

Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv:1212.3460

- How to deal with MC@NLO events?
- Spin correlations usually have tiny effects on observables
 - Include them at tree level
- For H (n+1 body) events, use decayed real-emission matrixelement
- For S (*n* body) events, use decaysed born matrix-element
- This guarantees NLO accuracy for observables related to production (e.g. top pt)
- This includes all spin correlation for observables related to production + decay (apart non-factorizable ones)

Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv:1212.3460

• Example: 6 lepton production at NLO (arXiv: 1405.0301)

Time for

NLO exercise tt production at NLO

Part I

- Learn the syntax:
 - > tutorial aMCatNLO
- Generate the code for $t\overline{t}$ production at NLO
- Compute the LO and NLO cross-section (run at fixed order)
- Select the analysis analysis_HwU_pp_ttx.o in the FO_analyse_card to generate histograms (need GnuPlot installed)
- In the NLO histograms, which of these variables are described at the NLO? $p_T(t)$, $p_T(t\overline{t})$, $y(t) M(t\overline{t})$, $\Delta \phi(t\overline{t})$
- What are the histograms with muR=... muF=... for?

- Learn the syntax:
 - > tutorial NLO
- Generate the code for $t\overline{t}$ production at NLO
 - > generate $p p > t t \sim [QCD]$

The current model sm does not allow to generate loop corrections of type QCD. MG5_aMC now loads 'loop_sm'.

```
INF0: Generating FKS-subtracted matrix elements for born process: g g > t t~ [ QCD ] (1 / 9)
```

- > output my_ttbar_nlo
- Compute the LO and NLO cross-section
 - > launch

import model loop_sm

C

NLO exercise

Solution

	INF0: ************************************	****
Part I	* * WELCOME to MADGRAPH5	*
 Learn the sy 	INFO: Final results and run summary: Process p p > t t~ [OCD]	* * *
•> tutori	Run at p-p collider ($6500 + 6500 \text{ GeV}$) Total cross-section: $6.871e+02 + 5.9e+00 \text{ pb}$	* *
 Generate th 	Ren. and fac. scale uncertainty: +9.7% -11.7%	* * *
Second Stress Seco	<pre>INF0: The results of this run and the HwU and GnuPlot files with the plots have been saved in /Users/marcozaro/ Physics/MadGraph/2.2.3new/my_tt_nlo_qcd/Events/run_01</pre>	* * * *
 INFO: Generating FKS-su Output Compute th Iaunch 	<pre>INF0: Final results and run summary: Process p p > t t~ [QCD] Run at p-p collider (6500 + 6500 GeV) Total cross-section:</pre>	* * * ted: order=NL0 g): fixed_order=OFF shower=ON madspin=OFF ult setting, prompt)
ł	<pre>Type '0', 'auto', 'done' or just press enter when you ard [0, 1, 2, 3, 4, auto, done, order=L0, order=NL0,][60 > fixed_order=ON > order=L0 (for L0 run)</pre>	e done. s to answer]

Part I

• Select the analysis analysis_HwU_pp_ttx in the

FO_analyse_card to generate histograms

● > launch my_ttbar_nlo

```
The following switches determine which operations are executed:
1 Perturbative order of the calculation:
                                                                       order=NL0
2 Fixed order (no event generation and no MC@[N]LO matching):
                                                                 fixed order=ON
                                                                      shower=0FF
3 Shower the generated events:
4 Decay particles with the MadSpin module:
                                                                     madspin=0FF
 Either type the switch number (1 to 4) to change its default setting,
 or set any switch explicitly (e.g. type 'order=L0' at the prompt)
 Type '0', 'auto', 'done' or just press enter when you are done.
 [0, 1, 2, 3, 4, auto, done, order=L0, order=NL0, ... ][60s to answer]
INFO: will run in mode: NLO
Do you want to edit a card (press enter to bypass editing)?
 1 / param
             : param card.dat
                 : run_card.dat
 2 / run
 3 / F0_analyse : F0_analyse_card.dat
you can also
  - enter the path to a valid card or banner.
   - use the 'set' command to modify a parameter directly.
    The set option works only for param_card and run_card.
    Type 'help set' for more information on this command.
   – call an external program (ASperGE/MadWidth/...).
    Type 'help' for the list of available command
 [0, done, 1, param, 2, run, 3, F0_analyse, enter path][60s to answer]
```

Marco Zaro, 12/14-05-2015

• The HwU (Histogram with Uncertainties) format

##& xmin & xmax & central value & dy & delta_mu_min @aux & delta_mu_max @aux & muR=1.00 muF=1.00 & muR=1.00 muF=2.00 & muR=1.00 muF=2.00 & muR=1.00 & muR=2.00 muF=2.00 & muR=2.00 muF=0.50 & muR=0.50 muF=1.00 & muR=0.50 muF=2.00 & muR=0.50 muF=0.50

<histogram> 50 "tt pt |X_AXIS@LIN |Y_AXIS@LOG"

+0.000000e+00 +2.000000e+00 -1.0242367e+03+2.5047252e+01 -1.7206530e+03-6.0160203e+02 -1.0242367e+03 -9.0715087e+02 -1.1432407e+03 -6.8421704e+02 -7.6882229e+02 -1.5496422e+03-1.3802509e+03-6.0160203e+02-1.7206530e+03 +2.0297264e+01 +3.4493531e+02 +2.0000000e+00 +4.000000e+00 +4.9088904e+02 +7.1188196e+02 +4.9088904e+02 +4.5019210e+02 +5.3086979e+02 +3.7613186e+02 +3.4493531e+02 +4.0679297e+02 +6.5832080e+02 +6.0377117e+02 +7.1188196e+02 +4.000000e+00 +6.000000e+00 +2.2787754e+02 +2.3122314e+01 +1.5999659e+02 +3.3086836e+02 +2.2787754e+02 +1.7482611e+02 +2.0857157e+02 +2.4714205e+02 +1.5999659e+02 +1.8963760e+02 +3.0513912e+02 +2.7932554e+02 +3.3086836e+02 +6.000000e+00 +8.000000e+00 +1.7671803e+02 +9.5392210e+00 +1.2453269e+02 +2.5575724e+02 +1.7671803e+02 +1.3562893e+02 +2.1720764e+02 +1.6227348e+02 +1.9111959e+02 +1.2453269e+02 +1.4669918e+02 +2.3651862e+02 +2.5575724e+02 +7.1903869e+00 +8.6399100e+01 +1.7898773e+02 +8.000000e+00 +1.0000000e+01 +1.2311654e+02 +1.2311654e+02 +1.1261446e+02 +1.3369767e+02 +9.4461506e+01 +8.6399100e+01 +1.0258866e+02 +1.6483914e+02 +1.5078780e+02 +1.7898773e+02 +1.0000000e+01 +1.2000000e+01+7.8022445e+01 +1.0748137e+01 +5.4873577e+01 +1.1315020e+02 +7.8022445e+01 +7.1570742e+01 +8.4452355e+01 +5.9823787e+01 +5.4873577e+01 +6.4760050e+01 +1.0454718e+02 +9.5909144e+01 +1.1315020e+02 +1.2000000e+01 +6.1770611e+01 +3.2903213e+00 +4.3437593e+01 +8.9537046e+01 +6.1770611e+01 +1.400000e+01

Marco Zaro, 12/14-05-2015

Part I

- In the NLO histograms, which of these variables are described at the NLO? $p_T(t)$, $p_T(t\overline{t})$, $y(t) M(t\overline{t})$, $\Delta \phi(t\overline{t})$
 - Some of these variables are trivial at LO, because of 2→2 kinematics
 - t and \overline{t} are always back to back: $d\sigma/d\Delta\Phi(t\overline{t}) = \delta(\Delta\Phi - \pi)$ $d\sigma/dp_T(t\overline{t}) = \delta(p_T - 0)$
 - $p_T(t\bar{t})$ and $\Delta \varphi(t\bar{t})$ are non-trivial if the cross-section is at least at NLO: they are effectively described with LO accuracy
 - The other variables are described at NLO

Part I

- What are the histograms with muR=... muF=... for?
 - QCD master formula

$$\sigma(pp \to t\bar{t}) = \sum_{ab} \int dx_1 dx_2 f_a(x_1, \mu_F) f_b(x_2, \mu_F) \times \hat{\sigma}(ab \to t\bar{t})$$
er

or better

$$\sigma(pp \to t\bar{t}) = \sum_{ab} \int dx_1 dx_2 f_a(x_1, \mu_F) f_b(x_2, \mu_F) \times \hat{\sigma}(ab \to t\bar{t}; \mu_F, \mu_R, \alpha_S(\mu_R))$$

re UF/R?

- What are $\mu_{F/R}$?
 - They are arbitrary scales needed to renormalise the strong coupling and to reabsorb initial state IR-divergences in PDFs, chosen to be of the order of the hard scattering scales (sum of masses, p_T, ...)
 - The all-order cross-section is independent of the choice of $\mu_{\text{F/R}}$
 - At N^kLO, the dependence is of N^{k+1}LO
 - Computing the cross-section with different scales can be a way to estimate uncertainties due to missing higher orders
 - How much scales are varied is arbitrary, usually in the range [0.5, 2]

- Look at the LO and NLO cross-section we have just computed
 - Values with different scales are computed on the fly and the

envelope is taken

INF0:

```
Final results and run summary:
      Process p p > t t \sim [QCD]
      Run at p-p collider (6500 + 6500 GeV)
      Total cross-section:
                                6.871e+02 +- 5.9e+00 pb
      Ren. and fac. scale uncertainty: +9.7% -11.7%
INFO: The results of this run and the TopDrawer file with
the plots have been saved in /Users/marcozaro/Physics/
MadGraph/2.2.3new/my tt nlo gcd/Events/run 01
INFO:
      Final results and run summary:
      Process p p > t t \sim [QCD]
      Run at p-p collider (6500 + 6500 GeV)
      Total cross-section:
                                4.622e+02 +- 2.2e+00 pb
      Ren. and fac. scale uncertainty: +29.8% -22.3%
INFO: The results of this run and the TopDrawer file with
the plots have been saved in /Users/marcozaro/Physics/
MadGraph/2.2.3new/my_tt_nlo_qcd/Events/run_02_L0
```


- Look at the LO and NLO cross-section we have just computed
 - Values with different scales are computed on the fly and the envelope is taken
- Typically LO has larger scale uncertainties

- Look at the LO and NLO cross-section we have just computed
 - Values with different scales are computed on the fly and the envelope is taken
- Typically LO has larger scale uncertainties
- To have scale uncertainties for distributions, one must fill one histogram per scale choice, and then take the envelope

- Look at the LO and NLO cross-section we have just computed
 - Values with different scales are computed on the fly and the envelope is taken
- Typically LO has larger scale uncertainties
- To have scale uncertainties for distributions, one must fill one histogram per scale choice, and then take the envelope
- The same is possible for PDF uncertainties

$p_T(t\bar{t})$ histogram from NLO run

NLO exercise tt production at NLO

Part 2

- Generate a NLO event sample to be showered by Pythia6Q
- Shower and analyse it with the py6an_HwU_pp_ttx.o analysis (to be specified in the shower_card)
- The histogramming routine (HwU.o) must also be added to the analysis files in the shower_card (Hint: you can shower an existing run with ./bin/shower run_xx)
- Use MadSpin to generate a di-leptonic (into muons) decayed sample
- Re-analyse the decayed and undecided sample with the py6an_HwU_pp_lplm.o analysis and check the lepton pair pT
 - The analysis (in MCatNLO/PYAnalyzer/py6an_HwU_pp_lplm.f) has to be slightly modified:
 - IORI.LE.10 \rightarrow IORI.LE.20 at lines 186, 190
 - To tell Pythia to perform di-leptonic decays, add these lines in the shower_card ('Decay channels' block; antiparticles are decayed as particles)
 - DM_1 = 6 > 24 5 @1d0 @100
 DM_2 = 24 > 14 -13 @1d0 @100

Part 2

- Generate a NLO event sample to be showered by Pythia6Q
 - Shower it with the mcatnlo_pyan_pp_ttx analysis (to be specified in the shower_card)
 - cd my_ttbar_nlo
 - ./bin/aMCatNLO
 - > launch
 - > fixed_order=OFF
 - > shower=ON
 - Edit run_card
 - Edit shower_card

Solution

Solution

Solution

Marco Zaro, 12/14-05-2015

76

Solution

Marco Zaro, 12/14-05-2015

76

The events

<initrwgt></initrwgt>	
<pre><weightgroup combine="envelope" type="scale_variation"></weightgroup></pre>	
<pre><weight id="1001"> muR=0.10000E+01 muF=0.10000E+01 </weight></pre>	
<pre><weight id="1002"> muR=0.10000E+01 muF=0.20000E+01 </weight></pre>	• Each event keeps information about
<pre><weight id="1003"> muR=0.10000E+01 muF=0.50000E+00 </weight></pre>	• Each event keeps mormation about
<pre><weight 1d="1004"> muR=0.20000E+01 muF=0.10000E+01 </weight> </pre>	ceale verietiene
<pre><weight id="1005"> muR=0.20000E+01 muF=0.20000E+01 </weight> </pre>	scale variations
< weight id= 1000 > muR=0.20000E+01 muF=0.50000E+00	• To obtain coole un containties use the
\sim weight id= 1007 > muR=0.50000E+00 muF=0.10000E+01	• To obtain scale uncertainties use the
<pre><weight id="1000"> muR=0.50000E+00 muF=0.50000E+01 </weight> </pre>	over a verights to fill histographs and
mdit=0.50000Er00 mdi=0.50000Er00	extra weights to fill histograms and
	tales the anyeland
	take the envelope
<init></init>	
2212 2212 0.6500000E+04 0.6500000E+04 -1 -1 244600 244600 -4	1
0.68147533E+03 0.22760274E+01 0.11811897E+04 0	
<event></event>	
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.11800000E+	00
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.11800000E+ 21 -1 0 0 501 502 0.0000000E+00 0.0000000E+00 0.1669	00 95776E+03 0.16695776E+03 0.00000000E+00 0.0000E+00 0.9000E+01
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.11800000E+00 21 -1 0 501 502 0.0000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 503 0000000E+00 0000000E+00 8353	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.00000000E+00 0.0000E+00 0.9000E+01
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.11800000E+00 21 -1 0 501 502 0.00000000E+00 0.0000000E+00 0.1669 21 -1 0 0 501 502 0.0000000E+00 00000000E+00 8355 6 1 1 2 501 0 87405313E+02 30435858E+03 4634	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.00000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.17300000E+03 0.0000E+00 0.9000E+01
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.11800000E+00 21 -1 0 0 501 502 0.00000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 503 00000000E+00 00000000E+00 8353 6 1 1 2 501 0 87405313E+02 30435858E+03 4634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+03 2049	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.00000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.17300000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.17300000E+03 0.0000E+00 0.9000E+01
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.1180000E+0 21 -1 0 0 501 502 0.00000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 50300000000E+000000000E+008355 6 1 1 2 501 087405313E+0230435858E+034634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+032049 #aMCatNL0 1 5 3 3 2 0.21343976E+03 0.35860250E+02 9 0 0 0.1000	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.00000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.17300000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.17300000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.1180000E+ 21 -1 0 0 501 502 0.0000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 5030000000E+000000000E+008353 6 1 1 2 501 087405313E+0230435858E+034634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+032049 #aMCatNL0 1 5 3 3 2 0.21343976E+03 0.35860250E+02 9 0 0 0.10000 <rwgt></rwgt>	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.00000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.17300000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.17300000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.1180000E+ 21 -1 0 0 501 502 0.0000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 5030000000E+000000000E+008355 6 1 1 2 501 087405313E+0230435858E+034634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+032049 #aMCatNLO 1 5 3 3 2 0.21343976E+03 0.35860250E+02 9 0 0 0.10000 <rwgt> <wgt id="1001">11812E+04 </wgt></rwgt>	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.00000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.17300000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.1730000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.11800000E+ 21 -1 0 0 501 502 0.00000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 50300000000E+0000000000E+008353 6 1 1 2 501 087405313E+0230435858E+034634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+032049 #aMCatNLO 1 5 3 3 2 0.21343976E+03 0.35860250E+02 9 0 0 0.10009 <rwgt> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> </rwgt>	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.0000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.17300000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.1730000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.11800000E+ 21 -1 0 0 501 502 0.00000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 50300000000E+0000000000E+008353 6 1 1 2 501 087405313E+0230435858E+034634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+032049 #aMCatNLO 1 5 3 3 2 0.21343976E+03 0.35860250E+02 9 0 0 0.10000 <rwgt> <pre></pre></rwgt>	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.0000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.1730000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.1730000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00
4 011811897E+04 0.68991465E+03 0.75467716E-02 0.11800000E+0 21 -1 0 0 501 502 0.00000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 50300000000E+0000000000E+008355 6 1 1 2 501 087405313E+0230435858E+034634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+032049 #aMCatNLO 1 5 3 3 2 0.21343976E+03 0.35860250E+02 9 0 0 0.10000 <rwgt> <pre></pre></rwgt>	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.0000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.17300000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.1730000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00
<pre>4 011811897E+04 0.68991465E+03 0.75467716E-02 0.11800000E+0 21 -1 0 501 502 0.00000000E+00 0.0000000E+00 0.1669 21 -1 0 502 50300000000E+0000000000E+008355 6 1</pre>	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.0000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.1730000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.1730000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00
<pre>4 011811897E+04 0.68991465E+03 0.75467716E-02 0.11800000E+0 21 -1 0 0 501 502 0.00000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 50300000000E+0000000000E+008355 6 1 1 2 501 087405313E+0230435858E+034634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+032049 #aMCatNL0 1 5 3 3 2 0.21343976E+03 0.35860250E+02 9 0 0 0.10009 <rwgt></rwgt></pre>	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.0000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.1730000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.1730000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00
<pre>4 011811897E+04 0.68991465E+03 0.75467716E-02 0.1180000E+0 21 -1 0 0 501 502 0.0000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 5030000000E+0000000000E+008355 6 1 1 2 501 087405313E+0230435858E+034634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+032049 #aMCatNLO 1 5 3 3 2 0.21343976E+03 0.35860250E+02 9 0 0 0.10000 <rwgt></rwgt></pre>	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.0000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.1730000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.1730000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00
<pre>4 011811897E+04 0.68991465E+03 0.75467716E-02 0.1180000E+0 21 -1 0 0 501 502 0.00000000E+00 0.0000000E+00 0.1669 21 -1 0 0 502 5030000000E+0000000000E+008355 6 1 1 2 501 087405313E+0230435858E+034634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+032049 #aMCatNLO 1 5 3 3 2 0.21343976E+03 0.35860250E+02 9 0 0 0.10000 <rwgt></rwgt></pre>	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.0000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.17300000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.17300000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00
<pre>4 011811897E+04 0.68991465E+03 0.75467716E-02 0.1180000E+0 21 -1 0 0 501 502 0.00000000E+00 0.0000000E+00 0.166 21 -1 0 0 502 50300000000E+0000000000E+008353 6 1 1 2 501 087405313E+0230435858E+034634 -6 1 1 2 0 503 0.87405313E+02 0.30435858E+032049 #aMCatNLO 1 5 3 3 2 0.21343976E+03 0.35860250E+02 9 0 0 0.10000 <rwgt></rwgt></pre>	00 95776E+03 0.16695776E+03 0.0000000E+00 0.0000E+00 0.9000E+01 39498E+03 0.83539498E+03 0.0000000E+00 0.0000E+00 0.9000E+01 44397E+03 0.58735266E+03 0.17300000E+03 0.0000E+00 0.9000E+01 99324E+03 0.41500008E+03 0.17300000E+03 0.0000E+00 0.9000E+01 0001E+01 0.15353083E+01 0.66887201E+00 0.00E+00 0.0E+00

Part 2

- Use MadSpin to generate a di-leptonic (into muons) decayed sample
 - ./bin/aMCatNLO
 - > decay_events run_xx
 - edit the madspin_card

Part 2

- Use MadSpin to generate a di-leptonic (into muons) decayed sample
 - ./bin/aMCatNLO
 - > decay_events run_xx
 - edit the madspin_card

Part 2

Use MadSpin to generat	li-llilililili-	
• ./bin/aMCatNLO	<pre>INF0: MadSpin: Estimate the maximum weight INF0:</pre>	
• > decay_events r	INFO: Estimating the maximum weight INFO: ************************************	
• edit the madspin_ca	INFO: Probing the first 139 events INFO: with 400 phase space points INFO:	
#*************************************	INF0: Event 1/139 : 0.059s INF0: Event 6/139 : 0.99s INF0: Event 11/139 : 1.3s	1S estimates
#* #* P. Artoisenet, R. Frederix, #*	INFO: Decaying the events max INFO: Event nb 1000 2.6s	$\left(\left \mathbf{M}_{\mathrm{P+D}}\right ^{2}/\left \mathbf{M}_{\mathrm{P}}\right ^{2}\right)$
<pre>#* Part of the MadGraph5_aMC@N #* The MadGraph5_aMC@NL0 Devel #* https://server06.fvnu.ucl.a</pre>	INFO: Event nb 3000 7s With	the first events
<pre>#* #* #*******************************</pre>	<pre>INF0: Decayed events have been written in /Users/marcozaro/Physics/ MadGraph/2.2.3new/my_tt_nlo_qcd/Events/run_01/events_decayed.lhe.gz INF0: The decayed event file has been moved to the following location: INF0: /Users/marcozaro/Physics/MadGraph/2.2.3new/my_tt_nlo_qcd/Events/ run_01_decayed_1/events.lhe.gz INF0: MadSpin Done</pre>	
<pre># # # # specify the decay for the final decay t > w+ b, w+ > mu+ vm decay t~ > w- b~, w- > mu- vm~ # running the actual code launch ~</pre>	state particles	

Part 2

- Re-analyse the decayed and undecided sample with the $py6an_HwU_pp_lplm$ analysis and check the the lepton pair p_T
 - Re-shower the un-decayed sample
 - ./bin/shower run_xx
 - edit the shower_card
 - Shower the decayed sample
 - ./bin/shower run_xx_decayed_1

- Re-analyse the decayed and undecided sample with the py6an_HwU_pp_lplm analysis and check the the lepton pair p_T
 - Re-shower the un-decayed sample
 - ./bin/shower run_xx
 - edit the shower_card
 - Shower the decayed sample
 - ./bin/shower run_xx_de DM_3 = 24 > 14 -13 @1d0 @100 DM_4 = -24 > -14 13 @1d0 @100

- Re-analyse the decayed and undecided sample with the py6an_HwU_pp_lplm analysis and check the the lepton pair p_T
 - Re-shower the un-decayed sample

• /bin/sh INFO: Preparing MCatNLO run	
# INFU: COMDILING MEATNED TOR PYTHIA60	*
• edit the sh ^{INFO} : Showering events	*d by * *
Shower the INFO: (Running in /Users/marcozaro/Physics/MadGraph/2.2.3new/my_tt_nlo_qcd/ MCatNLO/RUN_PYTHIA60_3)	
<pre>• /bin/sh INF0: Idle: 0, Running: 1, Completed: 0 [current time: 12h32] INF0: Idle: 0, Running: 0, Completed: 1 [2m 35s] INF0: Idle: 0, Running: 0, Completed: 0 [current time: 12h34] INF0: The file /Users/marcozaro/Physics/MadGraph/2.3.1/ttbar/Events/run_01/ ******</pre>	<***** <*****
plot_PYTHIA60_2_0.HwU has been generated, with histograms in the HwU and GnuPlot formats, obtained by showering the parton-level file /Users/ marcozaro/Physics/MadGraph/2.3.1/ttbar/Events/run_01/events.lhe.gz with PYTHIA60.	* : to * (to * * *
INFO: Run complete	*****
<pre>INFO: Idle: 0, Running: 1, Completed: 0 [current time: 12h32] INFO: Idle: 0, Running: 0, Completed: 1 [2m 35s] INFO: Idle: 0, Running: 0, Completed: 0 [current time: 12h34] ies</pre>	ary dl
INFO: INFO: The file /Users/marcozaro/Physics/MadGraph/2.3.1/ttbar/Events/ run_01_decayed_1/plot_PYTHIA60_1_0.HwU has been generated, with histograms in the second secon	c++ Jages
Users/marcozaro/Physics/MadGraph/2.3.1/ttbar/Events/run_01_decayed_1/ events.lhe.gz with PYTHIA6Q. INFO: Run complete	ension es)

Part 2

 Re-analyse the decayed and undecided sample with the mcatnlo_pyan_pp_lplm analysis and check the the lepton pair pT

Marco Zaro, 12/14-05-2015