

QCD AND EVENT SIMULATION FOR THE LHC

FABIO MALTONI

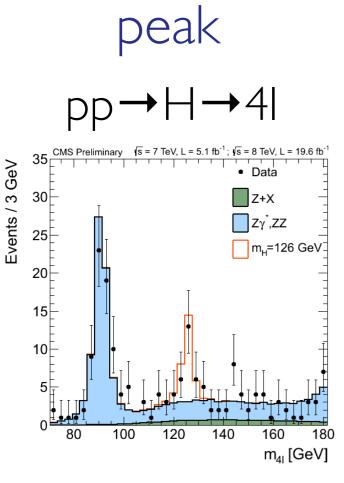
CENTRE FOR COSMOLOGY, PARTICLE PHYSICS AND PHENOMENOLOGY (CP3), BELGIUM

LECTURE I

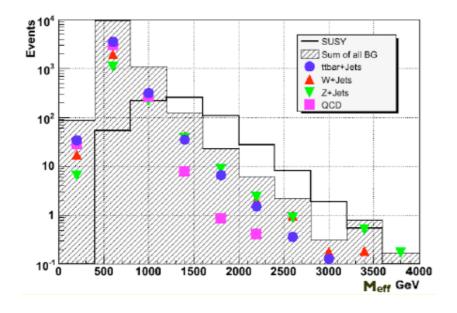
TEST: HOW MUCH DO I KNOW ABOUT MC'S?

Statements		TRUE	FALSE	IT DEPENDS	l have no clue
0	MC's are black boxes, I don't need to know the details as long as there are no bugs.				
I	A MC generator produces ''unweighted'' events, i.e., events distributed as in Nature.				
2	MC's are based on a classical approximation (Markov Chain), QM effects are not included.				
3	The ''Sudakov form factor'' directly quantifies how likely it is for a parton to undergo branching.				
4	A calculation/code at NLO for a process provides NLO predictions for any IR safe observable.				
5	Tree-level based MC's are less accurate than those at NLO.				

TEST: HOW MUCH DO I KNOW ABOUT MC's?

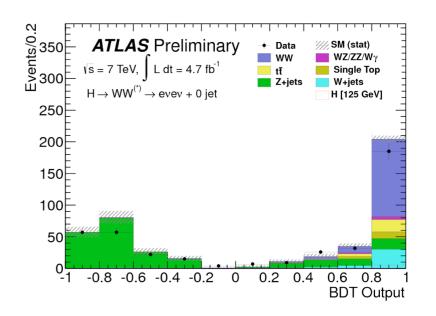

Statements		TRUE	FALSE	IT DEPENDS	l have no clue
0	MC's are black boxes, I don't need to know the details as long as there are no bugs.		\checkmark		
Ι	A MC generator produces ''unweighted'' events, i.e., events distributed as in Nature.	\checkmark			
2	MC's are based on a classical approximation (Markov Chain), QM effects are not included.		\checkmark		
3	The ''Sudakov form factor'' directly quantifies how likely it is for a parton to undergo branching.		\checkmark		
4	A calculation/code at NLO for a process provides NLO predictions for any IR safe observable.		\checkmark		
5	Tree-level based MC's are less accurate than those at NLO.			\checkmark	

TEST: HOW MUCH DO I KNOW ABOUT MC's?


Score	Result	Comment	
≥5	Addict	Always keep in mind that there are also other interesting activities in the field.	
4	Excellent	No problem in following these lectures.	
3	Fair	Check out carefully the missed topics.	
≤2	Room for improvement	Enroll in a MC crash course at your home institution.	
6 x no clue	No clue	It's Time to Call 011 1 2 3 4 5 6 7 8 9 * 0 # Weat to do in an EMERGENCY	

DISCOVERIES AT HADRON COLLIDERS

shape



discriminant

pp→H→W⁺W⁻

"easy"

Background directly measured from data. TH needed only for parameter extraction (Normalization, acceptance,...)

hard

Background shapes needed. Flexible MC for both signal and background tuned and validated with data.

very hard

Background normalization and shapes known very well. Interplay with the best theoretical predictions (via MC) and data.

NO SIGN OF NEW PHYSICS (SO FAR)!

Pavia doctoral School - May 2015

Fabio Maltoni

MC developer

Ċ

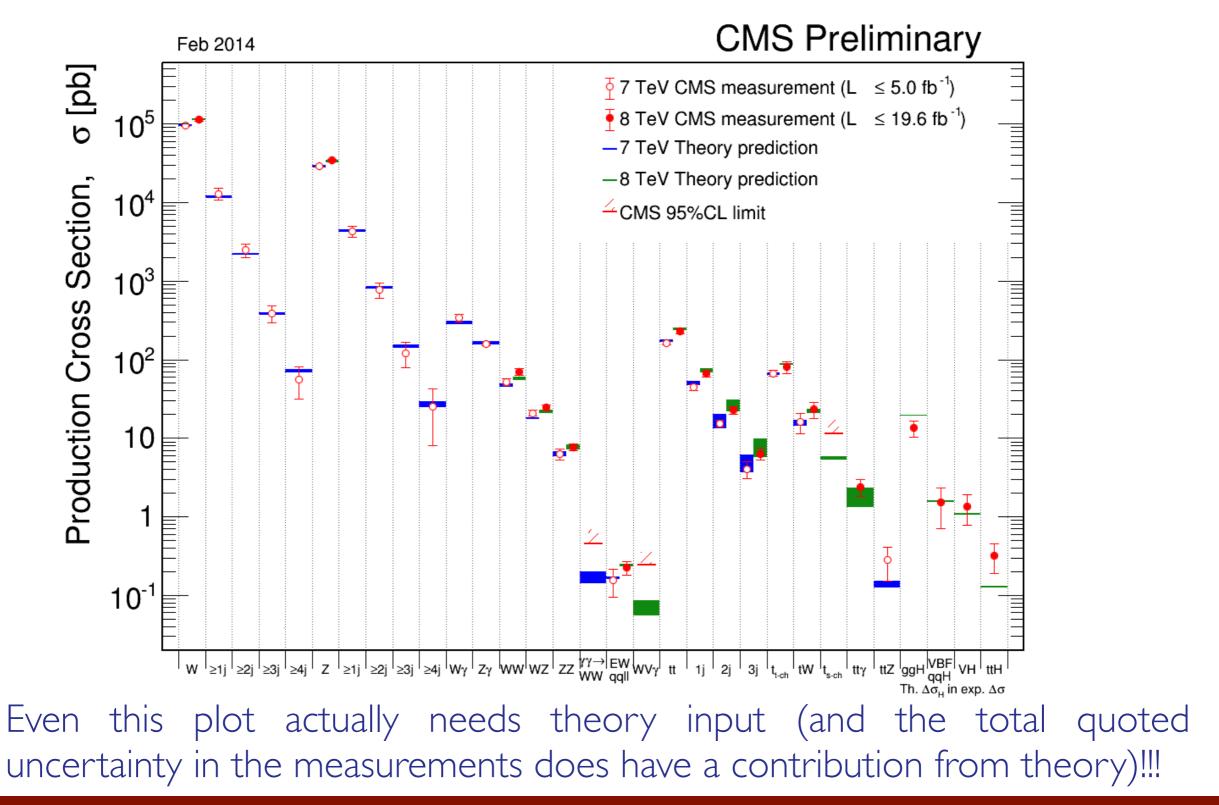
WHY HAPPY?

• Optimism: New Physics could be hiding there already, just need to dig it out.

• Democratization: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.

• Ingenuity/Creativity: From new signatures to smart and new analysis techniques (MVA), and combination with non-collider searches (DM, Flavor...).

• Massification (the practice of making luxury products available to the mass market) : MC's in the hands of every th/exp might turn out to be the best overall strategy for discovering the Unexpected.


• Flexibility: We need MC that are able to predict the pheno of the Unexpected.

• Accuracy: accurate simulations for both SM and BSM are a must.

CHALLENGES FOR LHC PHYSICISTS

- Accurate and experimental friendly predictions for collider physics range from being very useful to strictly necessary.
- Confidence on possible excesses, evidences and eventually discoveries builds upon an intense (and often non-linear) process of description/ prediction of data via MC's.
- Both measurements and exclusions rely on accurate predictions.

CHALLENGES FOR LHC PHYSICISTS

Pavia doctoral School - May 2015

Fabio Maltoni

NEW GENERATION (LHC) OF MC TOOLS

Theory

Lagrangian Gauge invariance QCD Partons NLO Resummation

....

<image>

Detector simulation Pions, Kaons, ... Reconstruction B-tagging efficiency Boosted decision tree Neural network

AIMS FOR THESE LECTURES

- Recall the basics of the necessary QCD concepts to understand what is going on in a pp event at the TeV scale.
- Critically revisit the "old" ways of making predictions for hadron colliders: either via fixed-order predictions or parton showers.
- Present the new **predictive** techniques which allow to:
 - Merge tree-level calculations with parton showers (CKKW/MLM).
 - Match NLO calculations with parton showers (MC@NLO and POWHEG) automatically.

QCD basics MC's

P