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Minimal References

• Ellis, Stirling and Webber: The Pink Book	


!

• Excellent lectures on the archive           
by M. Mangano, P. Nason,                    
and more recently by G. Salam, P. Skands.
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QCD : the fundamentals

1. QCD is a good theory for strong interactions:  facts	


2. From QED to QCD: the importance of color	


3. Renormalization group and asymptotic freedom
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Strong interactions

Strong interactions are characterized at moderate energies by a single* 
dimensionful scale, ΛS , of few hundreds of MeV:	


!
σh ≅ 1/Λs2 ≅ 10 mb	


Γh ≅ Λs	

R ≅ 1/Λs ≅ 1 fm	


No hint to the presence of a small parameter! Very hard to understand and 
many attempts...

*neglecting quark masses..!!!
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Strong interactions

Nowadays we have a satisfactory model of strong 
interactions based on a non-abelian gauge theory, i.e.. 
Quantum Chromo Dynamics.

Why is QCD a good theory?

1. Hadron spectrum	


2. Scaling	


3. QCD: a consistent QFT  	


4. Low energy symmetries	


5. MUCH more....
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Hadron spectrum

• Hadrons are made up of spin 1/2 quarks, of different flavors (d,u,s,c,b,[t])	


• Each flavor comes in three colors, thus quarks carry a flavor and and color 
index             

ψ
(f)
i

ψi →

∑

k

Uikψk

∑

k

ψ∗

kψk

∑

ijk

ϵijkψiψjψk

Mesons

Baryons

!

• The global SU(3) symmetry acting on color is exact:
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Hadron spectrum

Note that physical states are classified in multiplets of the FLAVOR SU(3)f group!

3f ⊗ 3̄f = 8f ⊕ 1f
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3f ⊗ 3f ⊗ 3f = 10S ⊕ 8M ⊕ 8M ⊕ 1A

We need an extra quantum number (color) to have the Δ++ with similar 
properties to the Σ*0. All particles in the multiplet have symmetric spin, flavour 
and spatial wave-function. Check that nq - nqbar  = n x Nc, with n integer.

Hadron spectrum

8

Note that physical states are classified in multiplets of the FLAVOR SU(3)f group!
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How many colors?

Γ ∼ N2

c

[

Q2

u − Q2

d

]2 m3
π

f2
π

�EXP = 7.7± 0.6 eV

�TH =

✓
Nc

3

◆2

7.6 eV

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
∼ Nc

X

q

e2q

= 2(Nc/3) q = u, d, s

= 3.7(Nc/3) q = u, d, s, c, b
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Scaling

cms energy2	

!
momentum transfer2	

!
scaling variable	

!
energy loss	

!
rel. energy loss	

!
recoil mass

s = (P + k)2

Q

2 = �(k � k

0)2

x = Q

2
/2(P · q)

⌫ = (P · q)/M = E � E

0

y = (P · q)/(P · k) = 1� E

0
/E

W

2 = (P + q)2 = M

2 +
1� x

x

Q

2

d�

elastic

dq

2

=

✓
d�

dq

2

◆

point

· F 2

elastic

(q2) �(1� x) dx

d�

inelastic

dq

2

=

✓
d�

dq

2

◆

point

· F 2

inelastic

(q2, x) dx

What should we expect for F(q2,x)?
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Two plausible and one crazy scenarios for the  |q2| →∞ (Bjorken) limit:	

!
1.Smooth electric charge distribution:                                                          (classical picture)	

 	


F2elastic(q2) ∼ F2inelastic(q2) <<1	

!

i.e., external probe penetrates the proton as knife through the butter!	

!

2. Tightly bound point charges inside the proton:                                             (bound quarks)	

!

F2elastic(q2) ∼1 and F2inelastic(q2) <<1	

!
i.e., quarks get hit as single particles, but momentum is immediately redistributed as they are 
tightly bound together (confinement) and cannot fly away.	

!
3. And now the crazy one:                                                                                (free quarks)	

!

F2elastic(q2) <<1  and F2inelastic(q2) ~ 1	
!
i.e., there are points (quarks!) inside the protons, however the hit quark behaves as a free 
particle that flies away without feeling or caring about confinement!!!

Scaling
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Remarkable!!! Pure dimensional analysis!	

The right hand side does not depend on ΛS !	

This is the same behaviour one may find in a 	

renormalizable theory like in QED.	

Other stunning example is again e+e- → hadrons.

d2σEXP

dxdy
∼

1

Q2

This motivated the search for a 
weakly-coupled theory at high energy!

Scaling
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Asymptotic freedom

Among QFT theories in 4 dimension only the non-Abelian gauge theories  are “asymptotically free”. 	

!
It becomes then natural to promote the global color SU(3) symmetry into a local symmetry where 
color is a charge. 	

!
This also hints to the possibility that the color neutrality of the hadrons could have a dynamical origin

Q2

αs Perturbative region

In renormalizable QFT’s scale invariance is broken by the renormalization procedure and couplings 
depend logarithmically on scales.
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!

!

Interaction

!

!

Gauge 
Fields 

!

!

Matter

The QCD Lagrangian

Very similar to the QED Lagrangian.. we’ll see in a moment where the 
differences come from!

L = −
1

4
F a

µνFµν
a +

∑

f

ψ̄
(f)
i (i̸∂ − mf )ψ(f)

i − ψ̄
(f)
i (gst

a
ij ̸Aa)ψ(f)

j

[ta, tb] = ifabctc

tr(tat
b) =

1

2
δ

ab

→Algebra of SU(N)

→Normalization 
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The symmetries of the QCD Lagrangian

Now we know that strong interacting physical states have very good symmetry properties 
like the isospin symmetry: particles in the same multiplets (n,p) or (π+,π-,π0) have nearly 
the same mass. Are these symmetries accounted for?

LF =
∑

f

ψ̄
(f)
i

[

(i̸∂ − mf )δij − gst
a
ij ̸Aa

]

ψ
(f)
j

ψ(f)
→

∑

f ′

Uff ′

ψ(f ′)
Isospin transformation acts only f=u,d. 

It is a simple EXERCISE to show that the lagrangian is invariant if mu=md or mu, md→0. It is 
the second case that is more appealing. If the masses are close to zero the QCD lagrangian 
is MORE symmetric:	

!

CHIRAL SYMMETRY

15
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LF =
∑

f

{

ψ̄
(f)
L (i̸∂ − gst

a ̸Aa) ψ
(f)
L + ψ̄

(f)
R (i̸∂ − gst

a ̸Aa) ψ
(f)
R

}

−

∑

f

mf

({

ψ̄
(f)
R ψ

(f)
L + ψ̄

(f)
L ψ

(f)
R

)}

ψ
(f)
L → eiφL

∑

f ′

U
ff ′

L ψ
(f ′)
L

ψ
(f)
R → eiφR

∑

f ′

U
ff ′

R ψ
(f ′)
R

SUL(N) × SUR(N) × UL(1) × UR(1)

Do these symmetries have counterpart in the real world?	

!
-The vector subgroup is realized in nature as the isospin	

-The corresponding U(1) is the baryon number conservation	

-The axial UA(1) is not there due the axial anomaly	

-The remaining axial transformations are spontaneously broken 
and the goldstone bosons are the pions. 

This is amazing! Without knowing anything about the dynamics of confinement we correctly describe 
isospin, the small mass of the pions, the scattering properties of pions, and many other features. 

ψL =
1

2
(1 − γ5)ψ

ψR =
1

2
(1 + γ5)ψ

The symmetries of the QCD Lagrangian
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• QCD is a non-abelian gauge theory, is renormalizable, is asymptotically free, is a 
one-parameter theory [Once you measure αS (and the quark masses) you 
know everything fundamental about (perturbative) QCD]. 	


• It explains the low energy properties of the hadrons, justifies the observed 
spectrum and catch the most important dynamical properties.	


• It explains scaling (and BTW anything else we have seen up to now!!) at high 
energies. 	


• It leaves EW interaction in place since the SU(3) commutes with SU(2) x U(1). 
There is no mixing and there are no enhancements of parity violating effect or 
flavor changing currents.

Why do we believe  QCD is  
a good theory of strong interactions?

ok, then. Are we done?
17
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Motivations for QCD predictions

•Accurate and experimental friendly predictions for collider 
physics range from being very useful to strictly necessary.	


•Confidence on possible excesses, evidences and eventually 
discoveries builds upon an intense (and often non-linear) process 
of description/prediction of data via MC’s. 	


•Measurements and exclusions always rely on accurate 
predictions. 	


•Predictions for both SM and BSM on the same ground.

no QCD ⇒ no PARTY !

18



Fabio MaltoniPavia Doctoral School - May 2015

QCD : the fundamentals

1. QCD is a good theory for strong interactions:  facts	


2. From QED to QCD: the importance of color	


3. Renormalization group and asymptotic freedom
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L = −
1

4
FµνFµν + ψ̄(i̸∂ − m)ψ − eQψ̄ ̸Aψ

where Fµν = ∂µAν − ∂νAµ

From QED to QCD

=
i

/p�m+ i✏

=
�igµ⌫
p2 + i✏

= �ie�µQ
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We want to focus on how gauge invariance is realized in practice.	

Let’s start with the computation of a simple process e+e- →γγ.  There are two diagrams:

q

k1,μ

k2,ν

q

-

From QED to QCD

Gauge invariance requires that:

iM = Mµ⌫✏
⇤µ
1 ✏⇤⌫2 = D1 +D2 = e2

✓
v̄(q̄)/✏2

1

/q � /k1
/✏1u(q) + v̄(q̄)/✏1

1

/q � /k2
/✏2u(q)

◆

✏⇤µ1 k⌫2Mµ⌫ = ✏⇤⌫2 kµ1Mµ⌫ = 0

21
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So now let’s calculate qq → gg and we obtain
i

g2
s

Mg ≡ (tbta)ijD1 + (tatb)ijD2

Mg = (tatb)ijMγ − g2fabctcijD1

!
Let’s try now to generalize what we have done for SU(3). In this case we take the 
(anti-)quarks to be in the (anti-)fundamental representation of SU(3), 3 and 3*.  Then the 
current is in a 3 ⊗ 3* = 1 ⊕ 8. The singlet is like a photon, so we identify the gluon with the 
octet and generalize the QED vertex to : 

−igst
a
ijγ

µ
[ta, tb] = ifabctcwith

j

i

a

From QED to QCD

= �v̄(q̄)/✏2u(q) + v̄(q̄)/✏2u(q) = 0

Mµ⌫k
⇤µ
1 ✏⇤⌫2 = D1 +D2 = e2

✓
v̄(q̄)/✏2

1

/q � /k1
(/k1 � /q)u(q) + v̄(q̄)(/k1 � /̄q)

1

/k1 � /q
/✏2u(q)

◆

Only the sum of the two diagrams is gauge invariant. For the amplitude to be gauge 
invariant it is enough that one of the polarizations is longitudinal. The state of the other 
gauge boson is irrelevant.	

!
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But in this case one piece is left out

k1µMµ
g = i(−gsf

abcϵµ
2
)(−igst

c
ij v̄i(q̄)γµui(q))

k1µMµ
g = −g2

sfabctcij v̄i(q̄)̸ϵ2ui(q)

To satisfy gauge invariance we still need: 

k
µ

1
ϵ2

ν
M

µ,ν

g = k
ν

2 ϵ
µ

1
M

µ,ν

g = 0.

−gsf
abcVµ1µ2µ3

(p1, p2, p3)

We indeed see that we interpret as the normal vertex	

times a new 3 gluon vertex:

From QED to QCD
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How do we write down the Lorentz part for this new interaction? We can impose	

1. Lorentz invariance : only structure of the type gμν pρ are allowed	

2. fully anti-symmetry : only structure of the type remain gμ1μ2  (k1)μ3 are allowed...	

3. dimensional analysis : only one power of the momentum.	

that uniquely constrain the form of the vertex:
Vµ1µ2µ3

(p1, p2, p3) = V0 [(p1 − p2)µ3
gµ1µ2

+ (p2 − p3)µ1
gµ2µ3

+ (p3 − p1)µ2
gµ3µ1

]

−ig2

sD3 =
(

−igst
a
ij v̄i(q̄)γ

µuj(q)
)

×

(

−i

p2

)

×

(

−gfabcVµνρ(−p, k1, k2)ϵ
ν
1(k1)ϵ

ρ
2
(k2)

)

k1 · D3 = g2fabctcV0

[

v̄(q̄)̸ϵ2u(q) −
k2 · ϵ2
2k1 · k2

v̄(q̄)̸k1u(q)

]

The first term cancels the gauge variation of D1+ D2 if V0=1, the 
second term is zero IFF the other gluon is physical!!

One can derive the form of the four-gluon vertex using the same heuristic method.

With the above expression we obtain a contribution to the gauge variation:

From QED to QCD
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The QCD Lagrangian

!

!

Interaction

!

!

Gauge 
Fields and 

their 
interact. 

!

!

Matter

L = −
1

4
F a

µνFµν
a +

∑

f

ψ̄
(f)
i (i̸∂ − mf )ψ(f)

i − ψ̄
(f)
i (gst

a
ij ̸Aa)ψ(f)

j

F a
µν = ∂µAa

ν − ∂νAa
µ−gfabcAb

µAc
ν

By direct inspection and by using the form non-abelian covariant derivation, we can check that indeed 
non-abelian gauge symmetry implies self-interactions. This is not surprising since the gluon itself is 
charged (In QED the photon is not!)

25
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The Feynman Rules of QCD

←what is this?

26
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From QED to QCD:  physical states

!
For gluons the situation is different, since k1· M ~ ε2· k2 . So the production of two unphysical gluons 
is not zero!!

X

phys pol

✏µ
i

✏⇤⌫
i

= �g
µ⌫

+
k
µ

k̄
⌫

+ k
⌫

k̄
µ

k · k̄

In QED, due to abelian gauge invariance, one can sum over the polarization of the external photons 
using:

X

pol

✏µ
i

✏⇤⌫
i

= �g
µ⌫

I In fact the longitudinal and time-like component cancel each other, no matter what the choice for ε2 
is. The production of any number of unphysical photons vanishes.	

!
In QCD this would give a wrong result!!	

!
We can write the sum over the polarization in a convenient form using the vector k=(k0, 0,0,-k0).

27
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In the case of non-Abelian theories it is therefore important to restrict the sum over polarizations 
(and the off-shell propagators) to the physical degrees of freedom.	

!
Alternatively, one has to undertake a formal study of the implications of gauge-fixing in non-physical 
gauges. The outcome of this approach is the appearance of two color-octet scalar degrees of freedom 
that have the peculiar property that behave like fermions.	

!
Ghost couple only to gluons and appear in internal loops and as external states (in place of two 
gluons). Since they break the spin-statistics theorem their contribution can be negative, which is what 
is require to cancel the the non-physical dof in the general case.	

!
Adding the ghost contribution gives	

!
!
!
!
!
!
which exactly cancels the non-physical polarization in a covariant gauge.

From QED to QCD:  physical states

−

∣

∣

∣

∣

ig2

sfabcta
1

2k1 · k2

v̄(q̄)̸k1u(q)

∣

∣

∣

∣

2

⇒

28
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Tr(tat
b) = TRδ

ab = TR * 

Tr(ta) = 0 = 0

(tat
a)ij = CF δij = CF * 

= (F c
F

c)ab = CAδab

∑

cd

facdf bcd

= CA* 

The color algebra

29
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1-loop vertices 

[ta, tb] = ifabctc

- =

a b b a a b

= CA/2 *ifabc(tbtc)ij =
CA

2
taij

= -1/2/Nc *(tbtat
b)ij = (CF −

CA

2
)taij

[F a, F b] = ifabcF c

The color algebra

30
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Problem:  Show that the one-gluon exchange between quark-antiquark pair can be attractive or 
repulsive. Calculate the relative strength.

t
a
ijt

a
kl =

1

2
(δilδkj −

1

Nc
δijδkl)

l

ji

k

-1/Nc= 1/2 * 

Solution: a q qb pair can be in a singlet state (photon) or in octet (gluon) : 3 ⊗ 3 = 1⊕ 8 
-

l

ji

k

l

ji

k

1

2
(δikδlj −

1

Nc
δijδlk)δki =

1

2
δlj(Nc −

1

Nc
) = CF δlj

1

2
(δikδlj −

1

Nc
δijδlk)taki = −

1

2Nc
t
a
lj

<0, repulsive

>0, attractive

The color algebra
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Very sharp peaks => small widths (~ 100 KeV) compared to hadronic resonances (100 MeV) => 
very long lived states.  QCD is “weak” at scales >> ΛQCD (asymptotic freedom),  non-relativistic 
bound  states are formed like positronium!	

!
The QCD-Coulomb attractive potential is like:

Quarkonium states

V (r) ≃ −CF

αS(1/r)

r

32
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i
g
√

2
γµ
1
δ

iq

j1
δi1
jq

i
g
√

2

∑
Kµ1µ2µ3δi3

j1
δi1
j2

δi2
j3

i
g2

2

∑
Pµ1µ2µ3µ4δi4

j1
δi1
j2

δi2
j3

δi3
j4

Color algebra: ‘t Hooft double line

≈ 1/2 

This formulation leads to a graphical representation of the simplifications occuring in the large Nc 
limit, even though it is exactly equivalent to the usual one. 	

!
!
!
In the large Nc limit, a gluon behaves as a quark-antiquark pair. In addition it behaves classically, in 
the sense that quantum interference, which are effects of order 1/Nc2  are neglected.  Many QCD 
algorithms and codes (such a the parton showers) are based on this picture.
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4. QCD production is a background to precise 
measurements of couplings

w,z

w,z

w,z

w,z

Example: VBF fusion

1. Important channel for light Higgs	

both for discovery and measurement

Facts:

3. Characteristic signature:                             
forward-backward jets + RAPIDITY GAP

2. Color singlet exchange in the t-channel

34

Third jet distribution
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δijδkl

Consider VBF: at LO there is no exchange of color between the quark lines:

CF δijδkl ⇒

MtreeM
∗

1−loop = CF N
2
c ≃ N

3
c

MtreeM
∗

1−loop = 0

1

2
(δikδlj −

1

Nc
δijδkl) ⇒

Also at NLO there is no color exchange! With one little exception....	

At NNLO exchange is possible but it suppressed by 1/Nc2 

Example: VBF fusion
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QCD : the fundamentals

1. QCD is a good theory for strong interactions:  facts	


2. From QED to QCD: the importance of color	


3. Renormalization group and asymptotic freedom

36
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e-

e+

γ*,Z

R0 =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= Nc

∑

f

Q2
f

Zeroth Level:  e+ e- → qq

Very simple exercise. The calculation is	

exactly the same as for the μ+μ-.

Let us consider the process:	

e-e+ → hadrons and for a Q2 >> ΛS. 	

At this pont (though we will!) we don’t have 
an idea how to calculate the details of such a 
process.	

So let’s take the most inclusive approach 
ever: we just want to count how many 
events with hadrons in the final state there 
are wrt to a pair of muons.  

37

Ren. group and asymptotic freedom
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e-

e+

γ*,Z

Let us consider the process:	

e-e+ → hadrons and for a Q2 >> ΛS. 	

At this pont (though we will!) we don’t have 
an idea how to calculate the details of such a 
process.	

So let’s take the most inclusive approach 
ever: we just want to count how many 
events with hadrons in the final state there 
are wrt to a pair of muons.  
First improvement:  e+ e- → qq at NLO	

Already a much more difficult calculation! 	

There are real and virtual contributions. 
There are:	

* UV divergences coming from loops 	

* IR divergences coming from loops and real 
diagrams. Ignore the IR for the moment (they 
cancel anyway) We need some kind of trick 
to regulate the divergences. Like dimensional 
regularization or a cutoff M.  At the end the 
result is VERY SIMPLE:

R1 = R0

(

1 +
αS

π

)

No renormalization is needed! Electric charge is left untouched by strong interactions!

Ren. group and asymptotic freedom
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Second improvement: e+ e- → qq at NNLO	

Extremely difficult calculation! 	

Something new happens:

R2 = R0

(

1 +
αS

π
+

[

c + πb0 log
M2

Q2

]

(αS

π

)2
)

The result is explicitly dependent on the 
arbitrary cutoff scale. We need to perform 
normalization of the coupling and since QCD 
is renormalizable we are guaranteed that this 
fixes all the UV problems at this order. αS(µ) = αS + b0 log

M2

µ2
α2

S

e-

e+

γ*,Z

Let us consider the process:	

e-e+ → hadrons and for a Q2 >> ΛS. 	

At this pont (though we will!) we don’t have 
an idea how to calculate the details of such a 
process.	

So let’s take the most inclusive approach 
ever: we just want to count how many 
events with hadrons in the final state there 
are wrt to a pair of muons.  

Ren. group and asymptotic freedom
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Comments:	

!
1. Now R2 is finite but depends on an arbitrary scale μ, directly and through αs. We had to 
introduce μ because of the presence of M.	

!
2. Renormalizability guarantees than any physical quantity can be made finite with the SAME 
substitution. If a quantity at LO is AαsN then the UV divergence will be N A b0 log M2 αsN+1.	

!
3. R  is a physical quantity and therefore cannot depend on the arbitrary scale μ!!  One can show 
that at order by order:	


which is obviously verified by Eq. (1).  Choosing μ ≈ Q the logs ...are resummed!

µ2
d

dµ2
Rren = 0 ⇒ Rren(αS(µ),

µ2

Q2
) = Rren(αS(Q), 1)

b0 =
11Nc − 2nf

12π

Rren

2 (αS(µ),
µ2

Q2
) = R0

(

1 +
αS(µ)

π
+

[

c + πb0 log
µ2

Q2

] (

αS(µ)

π

)2
)

(1)

αS(µ) = αS + b0 log
M2

µ2
α2

S(2) >0

Ren. group and asymptotic freedom
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β(αS) ≡ µ2
∂αS

∂µ2
= −b0α

2

S ⇒
4.  From (2) one finds that:

αS(µ) =
1

b0 log µ2

Λ2

This gives the running of αS.  Since b0 > 0, this expression make sense for all scale μ>Λ. 	

In general one has:

dαS(µ)

d log µ2
= −b0α

2
S(µ) − b1α

3
S(µ) − b2α

4
S(µ) + . . .

where all bi  are finite (renormalization!).  At present we know the bi up to b3 (4 loop calculation!!). 
b1and b2 are renormalization scheme independent. Note that the expression for αS( μ) changes 
accordingly to the loop order.  At two loops we have:

αS(µ) = αS + b0 log
M2

µ2
α2

S b0 =
11Nc − 2nf

12π
(2) >0

αS(µ) =
1

b0 log µ2

Λ2

[

1 −

b1

b2
0

log log µ2/Λ2

log µ2/Λ2

]

Ren. group and asymptotic freedom
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Roughly speaking, quark loop diagram (a) contributes a negative Nf  term in b0, while the gluon 
loop, diagram (b) gives a positive contribution proportional to the number of colors Nc, which 
is dominant and make the overall beta function negative.

b0 =
11Nc − 2nf

12π
>0     ⇒  β(αS)<0 in QCD

b0 = −

nf

3π
<0     ⇒  β(αS)>0 in QED

αEM (µ) =
1

b0 log µ2

Λ2
QED

Perturbative regionPerturbative region
αEM

Why is the beta function negative in QCD? 
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Roughly speaking, quark loop diagram (a) contributes a negative Nf  term in b0, while the gluon 
loop, diagram (b) gives a positive contribution proportional to the number of colors Nc, which 
is dominant and make the overall beta function negative.

b0 =
11Nc − 2nf

12π
>0     ⇒  β(αS)<0 in QCD

b0 = −

nf

3π
<0     ⇒  β(αS)>0 in QED

αEM (µ) =
1

b0 log µ2

Λ2
QED

Perturbative regionPerturbative region
αEM

Why is the beta function negative in QCD? 
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Why is the beta function negative in QCD? 

QED

44

charge screening

as a result the charge	

increases as you get	

closer to the center

DIELECTRIC ε>1
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Why is the beta function negative in QCD? 

QCD

45

charge screening	

from quarks

gluons align as little 
magnets along the 
color lines and make 
the field increase at 
larger distances.

charge anti-screening	

 from gluons

DIAMAGNETIC μ<1	

(=DIELECTRIC ε>1, SINCE με=1) 

PARAMAGNETIC μ>1
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R(MZ) = R0

(

1 +
αS(MZ)

π

)

= R0(1 + 0.046)

αS(µ) =
1

b0 log µ2

Λ2

Given 

b0 =
11Nc − 2nf

12π

It is tempting to use identify Λ with ΛS=300 MeV and see what we get for LEP I

which is in very reasonable agreement with LEP.  	

!
This example is very sloppy since it does not take into account heavy flavor thresholds, higher order 
effects, and so on. However it is important to stress that had we measured 8% effect at LEP I we 
would have extracted Λ= 5 GeV, a totally unacceptable value...

Ren. group and asymptotic freedom
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αS: Experimental results

Many measurements at different scales all 
leading to very consistent results once 
evolved to the same reference scale, MZ.
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Scale dependence

Rren

2 (αS(µ),
µ2

Q2
) = R0

(

1 +
αS(µ)

π
+

[

c + πb0 log
µ2

Q2

] (

αS(µ)

π

)2
)

As we said,  at all orders physical quantities do not depend on the choice of the 
renormalization scale.  At fixed order, however, there is a residual dependence due to the non-
cancellation of the higher order logs:   

d

d log µ

N
∑

n=1

cn(µ)αn
S(µ) ∼ O

(

αn
S(µ)N+1(µ)

)

So possible (related) questions are:	

!
* Is there a systematic procedure to estimate the residual uncertainty in the theoretical prediction?	

!
* Is it possible to identify a scale corresponding to our best guess for the theoretical prediction?

BTW:  The above argument proves that the more we work the better a prediction becomes!
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choosing the scale in e+e- → hadrons

Let’s take  our best TH prediction

�
tot

=
12⇡↵2

s

 
X

q

q2
f

!
(1 +�)

�(µ) =
↵S(µ)

⇡
+ [1.41 + 1.92 log(µ2/s)]

✓
↵S(µ)

⇡

◆2

= [�12.8 + 7.82 log(µ2/s) + 3.67 log2(µ2/s)]

✓
↵S(µ)

⇡

◆3

Cross section for e+e- → hadrons:
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!
!
First curve Δ1 	

!
!
Second curve Δ2	

!
Possible choice:	

!
ΔPMS = Δ(μ0) where  at μ0  dΔ/dμ=0 	

and error band p∈[1/2,2] 

Take αs(Mz) = 0.117, √s = 34 GeV, 5 flavors and let’s plot ∆(μ) as function 
of p where μ=2p √s.	

!
!

Principle of mimimal sensitivity!

Improvement of a factor of two from LO to NLO! 	

How good is our error estimate?

choosing the scale in e+e- → hadrons
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What happens at αs3? 	


choosing the scale in e+e- → hadrons
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N=2

N=3

N=1

N=3 less scale dependent.	

Two places where μ is stationary.	

Take the average, then the previous	

estimate was sligthly off.

What happens at αs3? 	


choosing the scale in e+e- → hadrons
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Bottom line	

!
There is no theorem that states the right 95% confidence interval for the 
uncertainty associated to the scale dependence of a theoretical predictions.	

!
There are however many recipes available, where educated guesses 
(meaning physical). For example the so-called BLM choice. 	

!
In hadron-hadron collisions things are even more complicated due to the 
presence of another scale, the factorization scale, and in general also on a 
multi-scale processes...

choosing the scale in e+e- → hadrons
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Summary 

1. We have given evidence of why we think QCD is a good theory: hadron 
spectrum, scaling, QCD is a renormalizable and asymptotically free QFT, 
low energy (broken) symmetries.	


2. We have seen how gauge invariance is realized in QCD starting from 
QED.	


3. We have illustrated with an example the use of the renormalization 
group and the appearance of asymptotic freedom.
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QCD redux

55
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New set of questions

1. How can we identify a cross sections for producing quarks and gluons with 
a cross section for producing hadrons? 	

!
2. Given the fact that free quarks are not observed, why is the computed Born 
cross section so good?	

!
3. Are there other calculable, i.e., that do not depend on the non-perturbative 
dynamics (like hadronization), quantities besides the total cross section? 

56
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Real

Virtual

Anatomy of a NLO calculation

σ
NLO =

∫
R

|Mreal|
2
dΦ3 +

∫
V

2Re (M0M
∗

virt) dΦ2 = finite!

∫
ddk

(2π)d
. . .

The KLN theorem states that divergences appear because some of the final state are physically 
degenerate but we treated them as different. A final state with a soft gluon is nearly degenerate with 
a final state with no gluon at all (virtual).
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p̄, j

p, i

k, a

p̄, j

p, i

k, a

γ∗, Z γ∗, Z

A = ū(p)̸ϵ(−igs)
−i

̸p + ̸k
Γµv(p̄)ta + ū(p)Γµ

i

̸p̄ + ̸k
(−igs)̸ϵv(p̄)ta

= −gs

[

ū(p)̸ϵ(̸p + ̸k)Γµv(p̄)

2p · k
−

ū(p)Γµ(̸p̄ + ̸k)̸ϵv(p̄)

2p̄ · k

]

ta

The denominators                              give singularities for collinear (cos θ →1) or soft (k0 →0)  
emission. By neglecting k in the numerators and using the Dirac equation, the amplitude simplifies and 
factorizes over the Born amplitude:

2p · k = p0k0(1 − cos θ)

ABorn = ū(p)Γµv(p̄)Asoft = −gst
a

(

p · ϵ

p · k
−

p̄ · ϵ

p̄ · k

)

ABorn

Factorization: Independence of long-wavelength (soft) emission form the hard (short-distance) process. 
Soft emission is universal!!

Let’s consider the real gluon emission 
corrections to the process e+e- →qq.	

The full calculation is a little bit tedious, 
but since we in any case interested in the 
issues arising in the infra-red, we already 
start in that approximation.

Anatomy of a NLO calculation

58



Fabio MaltoniPavia Doctoral School - May 2015

0 ≤ x1, x2 ≤ 1, and x1 + x2 ≥ 1

Two collinear divergences and a soft one.  Very often you find the integration over phase space 
expressed in terms of x1 and x2, the fraction of energies of the quark and anti-quark:

x1 = 1 − x2x3(1 − cos θ23)/2

x2 = 1 − x1x3(1 − cos θ13)/2

x1 + x2 + x3 = 2

collinear soft

collinear

dσ
VIRT
qq̄ = −σ

Born
qq̄ CF

αS

2π

∫
d cos θ

′
dk′

0

k′

0

1

1 − cos2 θ
2δ(k′

0)[δ(1−cos θ
′)+δ(1+cos θ

′)]+. . .

So we can now predict the divergent part of the virtual  
contribution, while for the finite part an explicit calculation 
is necessary:

Anatomy of a NLO calculation
By squaring the amplitude we obtain:

σqq̄g = CF g2
sσBorn

qq̄

∫
d3k

2k0(2π)3
2

p · p̄

(p · k)(p̄ · k)

= CF
αS

2π
σ

Born
qq̄

∫
d cos θ

dk0

k0

4

(1 − cos θ)(1 + cos θ)

REAL
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Anatomy of a NLO calculation

Summary:

�REAL + �VIRT = 1�1 =?

Solution: regularize the “intermediate” divergences, by giving a gluon a mass (see later) or going to 
d=4-2ε dimensions.Z

1

1

1� x

dx = � log 0

regularization!
Z

1

(1� x)

�2✏

1� x

dx = � 1

2✏

lim
✏!0

(�REAL + �VIRT) = CF
3

4

↵S

⇡
�Born

R1 = R0

(

1 +
αS

π

)

as presented before

�REAL = �BornCF
↵S

2⇡

✓
2

✏2
+

3

✏
+

19

2
� ⇡2

◆

�VIRT = �BornCF
↵S

2⇡

✓
� 2

✏2
� 3

✏
� 8 + ⇡2

◆

This gives:
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1. How can we identify a cross sections for producing (few) quarks 
and gluons with a cross section for producing (many) hadrons? 	

!
2. Given the fact that free quarks are not observed, why is the 
computed Born cross section so good?

Answers:	
 	
 	
 	
 	

!

The Born cross section IS NOT the cross section for producing q qbar, since the 
coefficients of the perturbative expansion are infinite!  But this is not a problem 
since we don’t observe q qbar and nothing else. So there is no contradiction here.	

!
On the other hand the cross section for producing hadrons is finite order by order 
and its lowest order approximation IS the Born.	

!
A further insight can be gained by thinking of what happens in QED and what is 
different there. For instance soft and collinear divergence are also there. In QED one 
can prove that cross section for producing “only two muons” is zero...	


New set of questions
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Infrared divergences

Even in high-energy, short-distance regime, 
long-distance aspects of QCD cannot be 
ignored. 	

 
This is because there are configurations in 
phase space for gluons and quarks, i.e. when 
gluons  are soft and/or when are pairs of 
partons are collinear.	


⇒

∫
ddk

(2π)d

1

k2(k + p)2(k − p̄)2

also for soft and collinear or collinear configurations associated to the virtual partons with 
the region of integration of the loop momenta.

Asoft = −gst
a

(

p · ϵ

p · k
−

p̄ · ϵ

p̄ · k

)

ABorn
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k+
≃

√
s/2

k−

≃ (kT + 2k+k−)
√

s/2

x+
≃ 1/k−

x−

≃ 1/k+

large

small

large

small

travel a long 
distance along the 

light-cone

Space-time picture of IR singularities
The singularities can be understood in terms of light-cone coordinates. Take pμ=(p0, p1, p2, p3) and 	

define p±=(p0±p3)/√2. Then choose the direction of the + axis as the one of the largest between + 
and - . A particle with small virtuality travels for a long time along the x+  direction.	
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Infrared divergences

Infrared divergences arise from interactions that happen a long time after the 
creation of the quark/antiquark pair.	

!
When distances become comparable to the hadron size of ~1 Fermi, quasi-
free partons of the perturbative calculation are confined/hadronized non-
perturbatively.	

!
We have seen that in total cross sections such divergences cancel. But what 
about for other quantities?	

!
Obviously, the only possibility is to try to use the pQCD calculations 
for quantities that are not sensitive to the to the long-distance physics. 
!
Can we formulate a criterium that is valid in general?

YES!  It is called INFRARED SAFETY
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Infrared-safe quantities

DEFINITION: quantities are that are insensitive to soft and collinear 
branching. 	

!
For these quantities, an extension of the general theorem (KLN) exists 
which proves that infrared divergences cancel between real and virtual or 
are simply removed by kinematic factors. 	

!
Such quantities are determined primarily by hard, short-distance physics. 
Long-distance effects give power corrections, suppressed by the inverse 
power of a large momentum scale (which must be present in the first 
place to justify the use of PT). 	

!
Examples: 	

1. Multiplicity of gluons is not IRC safe	

2. Energy of hardest particle is not IRC safe	

3. Energy flow into a cone is IRC safe	


65



Fabio MaltoniPavia Doctoral School - May 2015

q

q

Event shape variables

pencil-like spherical
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Event shape variables

The idea is to give more information than just 
total cross section by defining “shapes” of an 
hadronic event (pencil-like, planar, spherical, etc..)	

!
In order to be comparable with theory it MUST 
be IR-safe, that means that the quantity should not 
change if one of the parton “branches”  pk →pi + pj 	

!
Examples are: Thrust, Spherocity, C-parameters,...	

!
Similar quantities exist for hadron collider too, but 
they much less used.	
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Is the thrust IR safe?

T = maxn⃗

∑
i
p⃗i · n⃗∑
i
p⃗i

Contribution from a particle with momentum going to zero drops out.	

!
Replacing one particle with two collinear ones does not change the thrust:	

!
!
!
!

|(1� �)~pk · ~u|+ |�~pk · ~u| = |~pk · ~u|

|(1� �)~pk|+ |�~pk| = |~pk|
and	
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1

σ

dσ

dT
= CF

αS

2π

[

2(3T 2
− 3T + 2)

T (1 − T )
log

(

2T − 1

1 − T

)

−

3(3T − 2)(2 − T )

1 − T

]

.

Calculation of event shape variables: Thrust
The values of the different event-shape variables for different topologies are

O(αS2) corrections (NLO) are also 
known. Comparison with data provide 
test of QCD matrix elements, through 
shape distribution and measurement of 
αS from overall rate. Care must be 
taken around T=1 where 	

(a) hadronization effects become large 
and 	

(b) large higher order terms of the 
form αSN [log2N-1 (1-T)]/(1-T) need to 
be resummed. 	

At lower T multi-jet matrix element 
become important. 
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!
Angular correlations also provide interesting information about the properties of the matrix elements in 
QCD. One of these quantities is the so-called Bengtsson-Zerwas angle. It is the angle between planes of 
the two lowest and the two highest energy jets.

p1

p2

p4

p3

χBZ

This quantity gives information on the presence 
and characteristics of the three-gluon vertex. 

Intermezzo: how did we “see” the 3g 
vertex?
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q

q

Jet algorithms

2-jets 3-jets 4-jets

Jets are in the eye of the beholder!

GavinSalam®

same event!!
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Jet algorithms

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K

p φ

GavinSalam®

72

Projection to jets must be resilient to QCD effects

A jet definition is a fully specified set of rules for projecting information from 
hundreds of hadrons, onto a handful of parton-like objects. 

In the projection a lot of information is lost. 
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•The precise definition of a procedure how to cut be 
three-jet (and multi-jet) events is called “jet algorithm”.	

!

•Which jet algorithm to use for a given measurement/
experiment needs to be found out. Different algorithms 
have very different behaviors both experimentally and 
theoretically. Of course, it is important that a complete 
information is given on the jet algorithm when 
experimental data are to be compared with theory 
predictions!	

!

•Weinberg-Sterman jets (intuitive definition):                     
“An event is identified as a 2-jets if one can find 2 cones 
with opening angle δ that contain all but a small fraction 
εE of the total energy E”.

Jet algorithms
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Jets (top-down) at e-e+
Let’s see when the various contributions add up to 
the Sterman-Weinberg 2-jet cross section:	

!
✸ The Born cross section contributes to the 2-jet 
cross section, INDEPENDENTLY of ε and δ.	

!
✸The SAME as above for the virtual corrections.	

!
✸The real corrections when k0<εE (soft).	

!
✸The real corrections when k0>εE AND θ<δ	

   (collinear).	


Born + Virtual + Real (a) + Real (b) = σ
Born

− σ
Born 4αSCF

2π

∫ E

ϵE

dk0

k0

∫ π−δ

δ

d cos θ

1 − cos2 θ

As long as  δ and ε are not too small, we find that the fraction of 2-jet cross section is almost 1! 
At high energy most of the events are two-jet events. As the energy increases the jets become 
thinner. 

= �Born

✓
1� 4↵SCF

2⇡
log ✏ log �

◆
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In our example 	

0<x1,x2<1-y, x1+x2>1+y     
y<1/3  

A very simple jet iterative algorithm 
(bottom-up)

1. Consider e+e- →N partons	

2. Consider all pairs i and j and 
calculate	

    IF 	


min (pi + pj)2 < ycut s 	

THEN  	

replace the two partons i,j by pij 

= pi + pj   and decrease N → 
N-1	


3.  IF N=1 THEN stop ELSE goto 2.	

4.  N = number of jets in the event 
using the “scale” y. 

The result of the algo can be calculated 	

analytically at NLO: 

�
2j = �Born

✓
1� ↵SCF

⇡
log

2 y + . . .

◆

�
3j = �Born

↵SCF

⇡
log

2 y + . . .
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Infrared safety and jet algo’s
GavinSalam®

76

•Take hardest particle as seed for cone axis	

!

•Draw cone around seed	

!

•Sum the momenta use as new seed direction, iterate until stable	

!

•Convert contents into a “jet” and remove from event
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Infrared safety and jet algo’s
GavinSalam®

77



Fabio MaltoniPavia Doctoral School - May 2015

Infrared safety and jet algo’s

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞
n

αs x (− )∞
n

αs x (+ )∞
n

αs x (− )∞
n

Collinear Safe Collinear Unsafe

Infinities cancel Infinities do not cancel

GavinSalam®
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Invalidates comparison with perturbation theory results
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Kt  algorithm at hadron 
colliders

Measure (dimensionful):

dij = min(p2ti, p
2
tj)

�R2
ij

R2

diB = p2ti

The algorithm proceeds by searching for the smallest of the dij and the diB. 	

If it is a then dij particles i and j  are recombined* into a single new particle. 	

If it is a diB then i is removed from the list of particles, and called a jet.	

!
This is repeated until no particles remain.	

!

kT algorigthm “undoes” the QCD shower
*a 4-momenta recombination scheme is needed (E-scheme)

GavinSalam®
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kT  algorithm at hadron 
colliders

Comments:

!
For the kT algorithm, the jets have irregular edges, because many of the soft particles cluster together 
early in the recombination sequence

As with cone algorithms, arbitrarily soft particles can 
form jets.  It is therefore standard to place a  pTMIN cutoff 
on the jets one uses for `hard' physics.	

!
TWO PARAMETERS R, PTMIN 
!
R in the kT algorithm plays a similar role to R in cone 
algorithms: if two particles i and j are within  R of each 
other, i.e., ΔRij < R, then dij < diB, djB and so i and j 
will prefer to recombine rather than forming separate 
jets.

GavinSalam®
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Anti-kT  algorithm

Measure (dimensionful):

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2

diB =
1

p2ti

Objects that are close in angle prefer to cluster early, but that clustering tends to occur with a hard 
particle (rather than necessarily involving soft particles). This means that jets `grow' in concentric 
circles out from a hard core, until they reach a radius R, giving circular jets.	

!
Unlike cone algorithms the `anti-kT' algorithm is collinear (and infrared) safe.	
!
This, (and the fact that it has been implemented efficiently in FastJet), has led to be the default jet 
algorithm at the LHC.	
!
It’s a handy algorithm but it does not provide internal structure information.

GavinSalam®
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What jet algo should I choose?

1/
N

 d
N

/d
bi

n

dijet mass [GeV]

 0

 0.01

 0.02

 0.03

 0.04

 1900  2000  2100

kt, R=0.5
Qw

f=0.13 = 152 GeV

dijet mass [GeV]
 1900  2000  2100

kt, R=1.0
Qw

f=0.13 = 80 GeV gg 2 TeV

dijet mass [GeV]
 1900  2000  2100

SISCone, R=1.0, f=0.75
Qw

f=0.13 = 58 GeV

1/
N

 d
N

/d
bi

n

dijet mass [GeV]

 0

 0.01

 0.02

 0.03

 0.04

 0.05
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It depends on what are you looking (Singlet or colored, resonance decaying to gg, qq, bb) for and 
which observable you want to accurately measure : see a sharp peak or measure the position of the 
peak...

H

Z

g

g

q

q

GavinSalam®
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q

q

More exclusive quantities

Number of particles in the final state?	

Number of particles per jet?	


Jet mass?
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?γ*,Z
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Summary

1. We have studied the problem of infrared divergences in the calculation of the 
fully inclusive cross section, with the help of the soft limit. 	

!
2. We have introduced the concept of an Infrared Safe quantity, i.e. an observable 
which is both computable at all orders in pQCD and has a well defined 
counterpart at the experimental level. 	

!
3. We have discussed more exclusive quantities, from shape functions to fully 
exclusive quantities and compared them with e+ e- data. We have introduced 
the method of exponentiation.	

!
4. We have introduced the idea of jet algorithms (top-down  and bottom-up) 
and discussed the most recent algorithms.
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QCD redux
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1. DIS and the parton model	


2. DIS with pQCD	


3. The idea of factorization 	


4. Q2 Evolution and PDF’s	


5. pp collisions

QCD in the initial state
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“deep inelastic” : Q2 >> 1 GeV2	

“scaling limit”: Q2 →∞, x fixed

The idea is that by measuring all the kinematics variables of the outgoing electron 
one can study the structure of the proton in terms of the probe characteristics, 
Q2,x,y... Very inclusive measurement from the QCD point of view.

cms energy2	

!
momentum transfer2	

!
scaling variable	

!
energy loss	

!
rel. energy loss	

!
recoil mass

s = (P + k)2

Q

2 = �(k � k

0)2

x = Q

2
/2(P · q)

⌫ = (P · q)/M = E � E

0

y = (P · q)/(P · k) = 1� E

0
/E

W

2 = (P + q)2 = M

2 +
1� x

x

Q

2

Deep-inelastic scattering: 
towards the parton model
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* Divide phase-space factor into a leptonic and a hadronic part:	

!
!
!
!
* Separate also the square of the Feynman amplitude, by defining:	

!
!
!
* The leptonic tensor can be calculated explicitly:	

!
!
!
* Combine the hadronic part of the amplitude and phase space into “hadronic tensor”  and 
use just Lorentz symmetry and gauge invariance to write	

!
!

q q

pp

Wµν(p, q) =

(

−gµν −

qµqν

q2

)

F1(x, Q2)+

(

pµ − qµ

p · q

q2

) (

pν − qν

p · q

q2

)

1

p · q
F2(x, Q2)

d� =
d

3
k

0

(2⇡)32E0 d�X =
ME

8⇡2
y dy dx d�X

1

4

X
|M|2 =

e4

Q4
Lµ⌫hXµ⌫

Lµ⌫ =
1

4
tr[k/�µk0/�⌫ ] = kµk0⌫ + k0µk⌫ � gµ⌫k · k0

Wµ⌫ =
X

X

Z
d�XhXµ⌫

Deep-inelastic scattering: 
towards the parton model
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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

*  Different y dependence can differentiate between F1 and F2	

*  The first term represents the absorption of a transversely polarized photon, 	

   the second of a longitudinal one.	

*  Bjorken scaling ⇒ F1 and F2  obey scaling themselves, i.e. they do not depend on Q.	

!

Comments:

Deep-inelastic scattering: 
towards the parton model

�ep!eX =
X

X

1

4ME

Z
d�

1

4

X

spin

|M|2
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We want to “watch” the scattering from a frame where the physics is clear. Feynman suggested 
that what happens can be best understood  in a reference frame where the proton moves very 
fast and Q>>mh is large.

(p+, p−, p⃗T )
1
√

2
(mh, mh, 0⃗)

1
√

2
(
Q

x
,
xm2

h

Q
, 0⃗)

(q+, q−, q⃗T ) 1
√

2
(−mhx,

Q2

mhx
, 0⃗)

1
√

2
(−Q, Q, 0⃗)

4-vector hadron 	

rest frame

Breit frame

(a+, a−, a⃗) → (eωa+, e−ωa−, a⃗) with eω = Q/(xmh)

You can check that a Lorentz transformation acts on a light-cone formulation of the four-
momentum:

91
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large

Now let’s see how the proton looks in this frame, and in the light-cone 
space coordinates (suitable for describing relativistic particles).

Lorentz transformation divides out the 
interactions. Hadron at rest has separation of 
order:	

!
Δx+~Δx- ~1/m, 	

!
while in the moving hadron has:	

!
Δx+~1/m x Q/m = Q/m2     LARGE	

!
Δx- ~1/m x m/Q = 1/Q,      SMALL	

!

92
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And now let the virtual photon hit the fast moving hadron:

S t r u c k q u a r k 
kicked into the x- 
direction

In this frame the time scale of a typical parton-parton interaction is much larger than the hard 
interaction time.	

!
So we can picture the hadron as an incoherent flux of partons (p+,p-,p⊥)i , each carrying a fraction 
0<ξi = pi+/p+<1 of the total available momentum.

Moving hadron has:	

!
Δx+~Q/m2, 	

!
interaction with photon q-~Q is 
localized within 	

!
Δx+ ~ 1/Q,      	

!
thus quarks and gluons are like 
partons and effectively free.
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p
⇠p short distance

long distance
94

Deep-inelastic scattering: 
towards the parton model

The space-time picture suggests the possibility of separating short- and long-distance physics ⇒ 
factorization! Turned into the language of Feynman diagrams DIS looks like:

d

2
�

dxdQ

2
=

Z 1

0

d⇠

⇠

X

i

fi(⇠)
d

2
�̂

dxdQ

2
(
x

⇠

, Q

2)

where
is the probability to find a 
parton with flavor i in an 
hadron h carrying a light-
cone momentum ξp+

is the cross section for 
electron-parton scattering

d

2
�̂

dxdQ

2
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dσ̂

dQ2
=

2πα2e2
q

Q4

[

1 + (1 − y)2
]

Notice that the outgoing quark is on its mass shell: 

ξ = x

d2σ̂

dQ2dx
=

4πα2

Q4

1

2

[

1 + (1 − y)2
]

δ(x − ξ)

This implies that               at LO!

We can now explain scaling within the parton model:	

!
Let’s take the LO computation we performed for e+e- → qq, cross it (which also mean to be 
careful with color), and use it the DIS variables to express the differential cross section in dQ2
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d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1(x, Q2) +
1 − y

x

[

F2(x, Q2) − 2xF1(x, Q2)
]

}

We can now compare with our “inclusive” description of DIS in terms of structure 
functions (which, BTW, are physical measurable quantities),

with our parton model formulas:

d2σ̂

dQ2dx
=

4πα2

Q4

1

2

[

1 + (1 − y)2
]

e2

q
δ(x − ξ)

we find (be careful to distinguish x and ξ) 

F2(x) = 2xF1 =
∑

i=q,q̄

∫ 1

0

dξfi(ξ) xe2

qδ(x − ξ) =
∑

i=q,q̄

e2

q xfi(x)

* So we find the scaling is true: no dependence on Q2.	

* q and qbar enter together : no way to distinguish them with NC. Charged currents are needed.	

* FL(x) =  F2(x) - 2 F1(x) vanishes at LO (Callan-Gross relation), which is a test that quarks are spin 
1/2 particles! In fact if the quarks where scalars we would have had F1(x) = 0 and F2=FL .

d2σ

dxdQ2
=

∫ 1

0

dξ

ξ

∑
i

fi(ξ)
d2σ

dx̂dQ2
(
x

ξ
, Q2) with
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Probed at scale Q, sea contains all quarks flavours with mq less than Q. 	

For Q ∼1 we expect

And experimentally one finds 

Thus quarks carry only about 50% of proton’s momentum. The rest is carried by gluons.  
Although not directly measured in DIS, gluons participate in other hard scattering 
processes such as large-pt and prompt photon production.
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Quark and gluon distribution functions

Comments:

The sea is NOT SU(3) flavor symmetric. 	

!
The gluon is huge at small x  
!
There is an asymmetry between the ubar 
and dbar quarks in the sea.	

!
Note that there are uncertainty bands!!
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Questions:

1. What has QCD to say about the naïve parton model?	


2. Is the picture unchanged when higher order corrections 
are included?	


3. Is scaling exact?
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Scaling violations

At HERA scaling violations were observed!

first ep collider
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Deep-inelastic scattering in QCD

We got a long way without even invoking QCD. Let’s do it now.	

!
The first diagram to consider is the same as in the parton model:	

!
At NLO we find again both real and virtual corrections:

Our experience so far : have to expect IR divergences! 	

In order to make the intermediate steps of the calculation finite, we introduce a 
regulator, which will be removed at the end.	

!
Dimensional regularization is the best choice to perform serious calculations.	

However for illustrative purposes other regulators (that cannot be easily used beyond 
NLO) are better suited. We’ll use here a small quark/gluon mass.

αS corrections to the LO process	
	
        photon-gluon fusion
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Once we compute the diagrams we indeed find that UV and soft divergences all cancel, 
but for a collinear divergence arising when the emitted gluon becomes collinear to the 
incoming quark:	


= e2

qx

[

δ(1 − x) +
αS

4π

[

Pqq(x) log
Q2

m2
g

+ Cq
2
(x)

]]

d2σ̂

dxdQ2
|F2

≡ F̂
q
2

d2σ̂

dxdQ2
|F2

≡ F̂
g
2

=
∑

q

e2

qx

[

0 +
αS

4π

[

Pqg(x) log
Q2

m2
q

+ C
g
2
(x)

]]

The presence of large logs is a clear sign that we have a 
residual infrared sensitivity that we have to deal with! 

IR cutoff

Deep-inelastic scattering in QCD
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Important observations:
1. Large logarithms of Q2/m2  or (1/ε in dim reg) incorporate ALL the RESIDUAL long-distance 
physics left after summing over all real and virtual diagram. This terms are of a collinear nature.	

!
2. The coefficients Pij(x) that multiply the log’s are UNIVERSAL and calculable in perturbative 
QCD.	

!
They are called SPLITTING FUNCTIONS and their physical meaning is easy to give:	

!
Pij(x) give the probability that a parton j splits collinearly into a parton i + something else carrying 
a momentum fraction x of the original parton j.

 Pqq(x)  Pgq(x)  Pqg(x)  Pgg(x)

Deep-inelastic scattering in QCD
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So the natural question is: what is it that is going wrong? Do we have IR sensitiveness in a 
physical observable? Well not yet!!	

!
To obtain the physical cross section we have to convolute our partonic results with the 
parton densities, as we have learned from the parton model. 	

!
For instance: 

And now comes the magic:  as long as the divergences are universal and do not depend on 
the hard scattering functions but only on the partons involved in the splitting, we can 
reabsorb the dependence on the IR cutoff (once for all!) into fq,0(x):

fq(x, µf ) ≡ fq,0(x) +
αS

2π

∫ 1

x

dξ

ξ
fq,0(ξ)Pqq(

x

ξ
) log

µ2
f

m2
g

+ zqq

“Renormalized” parton densities: we have factorized the IR collinear physics into a quantity 
that we cannot calculate but it is universal. So how does the final result looks like?

F q
2
(x, Q2) = x

∑

i=q,q̄

e2

q

[

fi,0(x) +
αS

2π

∫ 1

x

dξ

ξ
fi,0(ξ)

[

Pqq(
x

ξ
) log

Q2

m2
g

+ Cq
2
(
x

ξ
)

]]

Deep-inelastic scattering in QCD
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F q
2
(x, Q2) = x

∑

i=q,q̄

e2

q

∫ 1

x

dξ

ξ
fi(ξ, µ

2

f )

[

δ(1 −

x

ξ
) +

αS(µr)

2π

[

Pqq(
x

ξ
) log

Q2

µ2

f

+ (Cq
2
− zqq)(

x

ξ
)

]]

The structure function is a MEASURABLE object, 
therefore, at all orders, it cannot depend on the 
choice of scales.	

This will lead exactly to the same concepts of 
renormalization group invariance that we found 
in the UV.

Long distance physics is universally factorized into 
the parton distribution functions. These cannot 
be calculated in pQCD. They depend on μf in the 
exact way so as to cancel the overall 
dependence at all orders. 

Short-distance (Wilson coefficient), perturbative 
calculable and finite. It depends on the 
factorization scale. It also depends on finite terms 
which define the factorization scheme.

The final result depends of course also on αS 
and t he re fo re to t he cho i ce o f t he 
renormalization scale.

Deep-inelastic scattering in QCD
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F q
2
(x, Q2) = x

∑

i=q,q̄

e2

q

∫ 1

x

dξ

ξ
fi(ξ, µ

2

f )

[

δ(1 −

x

ξ
) +

αS(µr)

2π

[

Pqq(
x

ξ
) log

Q2

µ2

f

+ (Cq
2
− zqq)(

x

ξ
)

]]

Questions:	

!
1. Can we exploit the fact that physical quantities have to be scale independent to gain 
information on the pdfs?	

!
2. What exactly have we gained in hiding the large logs in the redefined pdf ’s?  Aren’t we 
just hiding the problem?

Factorization
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F2(x, Q2) ∼
∑

i

fi(x, µf ) ⊗ F̂2(x,
Q

µf
)

Evolution

As a first step  it is very convenient to transform the nasty convolution into a simple product. 
This can be done with the help of a Mellin transform:

f(N) ≡

∫ 1

0

dxxN−1f(x)

Let us show that a Mellin transform turns a convolution into a simple product:

=

∫ 1

0

dxxN−1

∫ 1

0

dy

∫ 1

0

dzδ(x − zy)f(y)g(z)

∫ 1

0

dxxN−1

[
∫ 1

x

dy

y
f(y)g(

x

y
)

]

=

=

∫ 1

0

dy

∫ 1

0

dz(zy)N−1f(y)g(z) = f(N)g(N)

Q2

increase

Q2

increase

u
u
u

g
g

gd
u
u

d d u
g

g
u u

107

small/large x ⇔small/large N



Fabio MaltoniPavia Doctoral School - May 2015 Fabio MaltoniPavia Doctoral School - May 2015

Let’s now apply it to F2

we get:

dF2(x, Q2)

d log µf
= 0

dq(N,µf )

d log µf
F̂2(N,

µf

Q
) + q(N,µf )

dF̂2(N,
µf

Q
)

d log µf
= 0

These are called anomalous 
dimensions and are just the 
Mellin transform of the 
corresponding spl itt ing 
function

whose solution is:

The pdf  “evolves” with the scale!

Evolution

F2(x, Q2) ∼
∑

i

fi(x, µf ) ⊗ F̂2(x,
Q

µf
)

Q2

increase

Q2

increase

u
u
u

g
g

gd
u
u

d d u
g

g
u u
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q(N,µ) = q(N,µ
0

)ek log(

µf
µ0

)

d log ˆF2(N, Q
µf

)

d log Q
µf

=
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Scaling violations

Now dqq(1)=0 and dqq(N) <0 for N>1. Thus as t 
increases V decreases at large x and increases at small x. 
Physically this is due to an increase in the phase space 
for gluon emission by quarks as t increases, leading to a 
loss of momentum.

where

The solution for V can be rewritten in terms of t and αS 
as follows:

Q2

increase

Q2

increase

u
u
u

g
g

gd
u
u

d d u
g

g
u u
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Q2

increase

Q2

increase

u
u
u

g
g

gd
u
u

d d u
g

g
u uEvolution

In fact the equations are a bit more complicated as quarks and gluons do mix.	

It is convenient to introduce two linear combinations, the singlet Σ and the non-singlet qNS to 	

separate the piece that mixes with that that does not:

⌃(x,Q2) =

nfX

i=1

(qi(x,Q
2) + q̄i(x,Q

2))

q

NS(x,Q2) = qi(x,Q
2)� q̄j(x,Q

2)

this is coupled to the gluon

these evolve independently

d

dt

✓
�⌃(N,Q2)
�g(N,Q2)

◆
=

↵S(t)

2⇡

✓
�S
qq 2nf�S

qg

�S
gq �S

gg

◆ ✓
�⌃(N,Q2)
�g(N,Q2)

◆

d

dt
�qNS(N,Q2) =

↵S(t)

2⇡
�NS
qq (N,↵S(t))�qNS(N,Q2)

The complete evolution equations (in Mellin space)  to solve are: 
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Evolution Q2

increase

Q2

increase

u
u
u

g
g

gd
u
u

d d u
g

g
u u

•As Q2  increases, pdf ’s decrease at large x and increase at small x due to radiation 
and momentum loss.	

•Gluon singularity at N=1 ⇒ it grows more at small x.	


•γqq(1)=0  ⇒ number of quarks conserved.
111
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MSTW2008

Q2

increase

Q2

increase

u
u
u

g
g

gd
u
u

d d u
g

g
u u

MSTW2008

112

Evolution



Fabio MaltoniPavia Doctoral School - May 2015 Fabio MaltoniPavia Doctoral School - May 2015

Modern PDF sets

There are now several collaborations providing 
PDF sets via a common interface (LHAPDF). 	

!
Three of them are global fits. 	

!
They provide uncertainties (be careful different	

procedures for each set!)	

!
Several of them are now at NNLO and include 
HQ matched.	

!
CTEQ6.6: GLOBAL, NLO, VFN, several αs	

MSTW08: GLOBAL, NNLO, VFN, several αs	

NNPDF2.1: GLOBAL, NNLO, VFN, several αs	

!
Plus other sets: Alekhin, HERAPDF, GRV/GJR...
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!
We now have a strategy to get a reliable result in perturbation theory:	

!
1. Calculate the short distance coefficient in pQCD corresponding to an 
observable. All divergences will cancel except those due to the collinear splitting 
of initial partons.	

!
2. Re-absorbe such divergences in the pdf ’s and introduce a factorization scale.	

!
3. Extract from experiment the initial condition for the pdf ’s at a given reference 
scale.	

!
4. Evolve the pdf ’s at the scale of the process we are interested it. In so doing all 
large logs of the factorization scale over a small scale are resummed.

Final strategy for qcd predictions
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p

LHC master formula

× σ̂ab→X(x1, x2, αS(µ2

R),
Q2

µ2

F

,
Q2

µ2

R

)σX =
∑
a,b

∫ 1

0

dx1dx2 fa(x1, µ
2

F )fb(x2, µ
2

F )

p

µFµF

x1E x2E

`+ `�
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Remark on our master formula

● By calculating the short distance coefficient at tree-level we obtain  the first 
estimate of rates for inclusive final states.	

 	

● Even at LO extra radiation is included: it is described by the PDF’s in the 
initial state and by the definition of a final state parton, which at LO represents 
all possible final state evolutions. 	

!
● Due to the above approximations a cross section at LO can strongly depend 
on the factorization and renormalization scales.	

!
● Predictions can be systematically improved, at NLO and NNLO, by including 
higher order corrections in the short distance and in the evolution of the PDF’s.	


× σ̂ab→X(x1, x2, αS(µ2

R),
Q2

µ2

F

,
Q2

µ2

R

)σX =
∑
a,b

∫ 1

0

dx1dx2 fa(x1, µ
2

F )fb(x2, µ
2

F )
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We describe the collision in terms of parton	

energies	

!
E1= x1 Ebeam	

E2= x2 Ebeam	

!
!
!
!
Obviously the partonic c.m.s. frame will be in 	

general boosted. Let us say that the two partons	

annihilate into a particle of mass M.   

pp kinematics

M
2

= x1x2S = x1x24E
2
beam

y =
1

2
log

x1

x2

x1 =

M
√

S
e
y

x2 =

M
√

S
e
−y
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QCD in the initial state

1. We have introduced the physics of Deep Inelastic Scattering and the associated kinematics. We 
interpreted scaling in the parton model framework, trying to give a description of the physics 
involved by choosing a suitable frame.	

!
2. We have shown that the parton model survives to QCD corrections, which affect the scaling 
picture only with logarithmic corrections.	

!
3. In order to make prediction in pQCD, we have introduced the idea of factorization, which stands 
as a pillar for all interesting applications of pQCD.	

!
4. The idea is to separate short-distance physics from long-distance one.	

The first is calculable in pQCD. The second in non-perturbative and therefore not calculable but 
universal. So it can be measured in one experiment and used in another.	

!
5. We have introduced the DGLAP equations that regulate the evolution of the pdf with the scale 
and allow the resummation of large logs.	

!
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