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Perturbative expansion

• The parton-level cross section can be computed as a 
series in perturbation theory, using the coupling constant 
as an expansion parameter, schematically:  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Mattelaer Olivier NCTS 2014

Perturbative expansion

• The parton-level cross section can be computed as a 
series in perturbation theory, using the coupling constant 
as an expansion parameter, schematically:  
 
 
 
 
 

• Including higher corrections improves predictions and 
reduces theoretical uncertainties

2

NLO 
corrections

NNLO 
corrections

N3LO or NNNLO 
corrections

⇤̂ = ⇤Born

⇤
1 +

�s

2⇥
⇤(1) +

��s

2⇥

⇥2
⇤(2) +

��s

2⇥

⇥3
⇤(3) + . . .

⌅

LO 
predictions

Parton-level cross sectiond⇥̂ab�X(ŝ, µF , µR)
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Improved predictions

• Leading Order predictions can depend strongly on 
the renormalization and factorization scales	


• Including higher order corrections reduces the 
dependence on these scales

3

⇤̂ = ⇤Born

⇤
1 +

�s

2⇥
⇤(1) +

��s

2⇥

⇥2
⇤(2) +

��s

2⇥

⇥3
⇤(3) + . . .

⌅

fa(x1, µF )fb(x2, µF )
�

a,b

�
dx1dx2d� = d⇥̂ab�X(ŝ, µF , µR)
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Going NLO

• At NLO the dependence on the renormalization and factorization 
scales is reduced	

➡ First order where scale dependence  

in the running coupling and the  
PDFs is compensated for via the loop  
corrections: first reliable estimate 
of the total cross section	


➡ Better description of final state: 
 impact of extra radiation included  
(e.g. jets can have substructure)	


➡ Opening of additional initial state 
partonic channels

4
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Going NNLO...?
• NNLO is the current state-of-the-art. There are only a few 

results available: Higgs, Drell-Yan, ttbar	


• Why do we need it?	

➡  control of the uncertainties in a  

calculation	

➡ It is “mandatory” if NLO corrections 

are very large to check the behavior  
of the perturbative series	


➡ It is needed for Standard Candles  
and very precise tests of perturbation theory, exploiting 
all the available information, e.g. for determining NNLO 
PDF sets
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Predictions at NNLO

Why?

● A NNLO computation gives control on the 
uncertainties of a perturbative calculation.

● It’s “mandatory” if NLO corrections are very large to 
check the behaviour of the perturbative series

● It’s the best we have! It is needed for Standard Candles 
and for really exploiting all the available information, for 
example that of NNLO PDF’s.
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Higgs at NNLO

• LO calculation is not 
reliable,	


• but the perturbative series 
stabilizes at NNLO	


• NLO estimation of the 
uncertainties (by scale 
variation) works reasonably 
well

6Fabio Maltoni CERN Academic Training Lectures - May 2012 48

Higgs predictions at NNLO

• LO  calculation is not reliable.

• The perturbative series stabilizes. 

•NLO estimation of higher orders 
effects by scale uncertainty works 
reasonably well.

Wednesday 2 May 2012
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Higgs predictions at NNLO

• LO  calculation is not reliable.

• The perturbative series stabilizes. 

•NLO estimation of higher orders 
effects by scale uncertainty works 
reasonably well.

Wednesday 2 May 2012

Let’s focus on NLO
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NLO corrections

• NLO corrections have three parts:	

➡ The Born contribution, i.e. the Leading order.	

➡ Virtual (or Loop) corrections: formed by an amplitude with a 

closed loop of particles interfered with the Born amplitudes	

➡ Real emission corrections: formed by amplitudes with one 

extra parton compared to the Born process	


• Both Virtual and Real emission have one power of αs extra 
compared to the Born process
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NLO predictions
• As an example, consider Drell-Yan Z/γ* production
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NLO predictions
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NLO predictions
• As an example, consider Drell-Yan Z/γ* production
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Fixed Order calculations

9
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Fixed Order calculations
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Difficulties

• Multiple steps	

➡ Fix divergencies	

➡ Virtual amplitudes: how to compute the loops 

automatically in a reasonable amount of time	

➡ How to deal with infra-red behavior for phase-space 

integration	

➡ How to match these processes to a parton shower 

without double counting

10
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Infrared cancellation

• The KLN theorem tells us that divergences from 
virtual and real-emission corrections cancel in the sum 
for observables insensitive to soft and collinear 
radiation (“IR-safe observables”)	


• When doing an analytic calculation in dimensional 
regularization this can be explicitly seen in the 
cancellation of the 1/є and 1/є2 terms (with є the 
regulator, є ➞ 0)

11
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Infrared safe observables
• For an observable to be calculable in fixed-order 

perturbation theory, the observable should be infrared safe, 
i.e., it should be insensitive to the emission of soft or 
collinear partons.	


• In particular, if pi is a momentum occurring in the definition 
of an observable, it most be invariant under the branching 
      pi ⟶ pj + pk,  
whenever pj and pk are collinear or one of them is soft.	


• Examples	

➡ “The number of gluons” produced in a collision is not 

an infrared safe observable	

➡ “The number of hard jets defined using the kT 

algorithm with a transverse momentum above 40 GeV,” 
produced in a collision is an infrared safe observable

12
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NLO...?

!

➡ Total cross section	

➡ Transverse momentum of the top quark	

➡ Transverse momentum of the top-antitop pair	

➡ Transverse momentum of the jet	

➡ Top-antitop invariant mass	

➡ Azimuthal distance between the top and anti-top

13

LO VirtReal

• Are all (IR-safe) observables that we can compute using a 
NLO code correctly described at NLO? Suppose we have 
a NLO code for pp ⟶ ttbar
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Loop Computation

14
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one-loop integral

• Consider this m-
point loop diagram 
with n external 
momenta	


!

• The integral to 
compute is

15
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Integrand reduction

• Any one-loop integral can be decomposed in scalar integrals	


• The task is to find these coefficients efficiently (analytically or 
numerically)

16
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Basis of scalar integrals
• The a, b, c, d and R 

coefficients depend only on 
external parameters and 
momenta

17

M1-loop =
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• All these scalar integrals are known and available in computer libraries (FF 
[v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])
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Divergences

18

➡The coefficients d, c, b and a are finite and do not contain poles in 1/є	


➡The 1/є dependence is in the scalar integrals (and the UV renormalization)	


➡When we have solved this system (and included the UV renormalization) we have 
the full dependence on the soft/collinear divergences in terms of coefficients in front 
of the poles. These divergences should cancel against divergences in the real 
emission corrections (according to KLN theorem)
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2 �m2
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✏

+
v2
✏2
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OPP Reduction

19

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
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How it works...
To solve the OPP reduction, 
choosing special values for 
the loop momenta helps a 
lot	


For example, choosing l such 
that 
 
 
sets all the terms in this 
equation to zero except the 
first line	


There are two (complex) 
solutions to this equation 
due to the quadratic nature 
of the propagators

20
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How it works...

To solve the OPP reduction, 
choosing special values for 
the loop momenta helps a lot	


For example, choosing l such 
that 
 
 
sets all the terms in this 
equation to zero except the 
first and second line	
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ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

D0(l
i) = D1(l

i) = D2(l
i) = 0



Mattelaer Olivier NCTS 2014

How it works...

To solve the OPP reduction, 
choosing special values for 
the loop momenta helps a lot	


For example, choosing l such 
that 
 
 
sets all the terms in this 
equation to zero except the 
first and second line	


21

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)
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How it works...
To solve the OPP 
reduction, choosing 
special values for the loop 
momenta helps a lot	


For example, choosing l 
such that 
 
 
sets all the terms in this 
equation to zero except 
the first, second and third 
line	
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How it works...

• For each phase-space point we have to solve the system of equations	


• Due to the fact that the system reduces when picking special values for the 
loop momentum, the system greatly reduces	


• We can decompose the system at the level of the squared matrix element, 
amplitude, diagram or anywhere in between. As long as we provide the 
corresponding numerator function. Since each reduction with CutTools is 
computationally heavy, we directly reduce the squared element with 
MadGraph.	


• For a given phase-space point, we have to compute the numerator function 
several times (~50 or so for a box loop)

23
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Complications in d dimensions
• In the previous consideration I was very sloppy in considering 

if we are working in 4 or d dimensions	


• In general, external momenta and polarization vectors are in 4 
dimensions; only the loop momentum is in d dimensions	


• To be more correct, we compute the integral

24

Z
ddl

N(l, l̃)

D̄0D̄1D̄2 · · · D̄m�1

D̄i = (l̄ + pi)
2 �m2

i = (l + pi)
2 �m2

i + l̃2 = Di + l̃2

l̄ = l + l̃

4 dim epsilon dimd dim

l̄ · pi = l · pi l̄ · l̄ = l · l + l̃ · l̃l · l̃ = 0
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Implications

• The decomposition in 
terms of scalar 
integrals has to be 
done in d dimensions	


• This is why the 
rational part R is 
needed

25

k n

k 1

k 1

k 2

k 3

D 2
k 2k 1 k 3

D 0  

k 4

k 5

k 6

k 6

D 3

D m−1

l l+

D1

+l+ +

l+...+

Figure 1: An n-point one-loop diagram with m propagators in the loop. The dark blob represents
a tree structure.

The values of the integers Mi depend on the particular diagram considered (e.g. in fig. 1

we have M1 = 1, M2 = 3, M3 = 6), but they must always fulfill the following conditions:

1 ≤ Mi < Mi+1 , Mm = n =⇒ p0 = 0 , (3.5)

where the last equality of eq. (3.5) follows from eq. (3.2). The inverses of the loop propa-

gators in d and four dimensions we denote by D̄ and D respectively. Hence:

D̄i = (ℓ̄+ pi)
2 −m2

i = Di + ℓ̃2 ≡ (ℓ+ pi)
2 −m2

i + ℓ̃2 , 0 ≤ i ≤ m− 1 , (3.6)

which follows from eq. (3.3), and from the fact that the (−2ϵ)-dimensional parts of the

external four-vectors are equal to zero, since the ’t Hooft-Veltman scheme is adopted. Note

that mi is the mass of the particle flowing in the ith propagator, and therefore in general

p2i ̸= m2
i . As is known [14], the one-loop integral C can be expressed as a cut-constructible

part, i.e. a linear combination of scalar boxes, triangles, bubbles, and tadpoles, plus a (non

cut-constructible) remainder term R, called rational part:

C =
m−1∑

0≤i0<i1<i2<i3

d(i0i1i2i3)

∫
ddℓ̄

1

D̄i0D̄i1D̄i2D̄i3

+
m−1∑

0≤i0<i1<i2

c(i0i1i2)

∫
ddℓ̄

1

D̄i0D̄i1D̄i2

+
m−1∑

0≤i0<i1

b(i0i1)

∫
ddℓ̄

1

D̄i0D̄i1

+
m−1∑

i0=0

a(i0)

∫
ddℓ̄

1

D̄i0

+ R . (3.7)

The essence of the OPP method is that of computing C by determining (in a numerical

manner) the set of coefficients and the rational part

d(i0i1i2i3), c(i0i1i2), b(i0i1), a(i0), R, (3.8)

– 10 –
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Rational terms

26

R = R1 +R2
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Rational terms

• In the OPP method, they are split into two contributions, 
generally called 

• Both have their origin in the UV part of the model, but only R1 
can be directly computed in the OPP reduction and is given by 
the CutTools program

26

R = R1 +R2
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R = R1 +R2

Celine Degrande

How does it work?

FeynRules
Renormalize the Lagrangian

FeynArts
Write the amplitudes

NLO.m
Compute the NLO vertices

model.mod
model.gen model.nlo
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MadLoop

27

Remember:

N (lµ) =
r
maxX

r=0

C(r)
µ0µ1···µr

lµ0 lµ1 · · · lµrd

d~

c

c~
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MadLoop

27

Remember:
➡ For a given phase-space point, we have to compute the 

numerator function several times (~50 or so for a box loop) 
per external phase-space point.

N (lµ) =
r
maxX

r=0

C(r)
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lµ0 lµ1 · · · lµrd

d~

c
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MadLoop

27

Remember:
➡ For a given phase-space point, we have to compute the 

numerator function several times (~50 or so for a box loop) 
per external phase-space point.

➡ Cut the Loop and use HELAS (with no denominator)

➡ Generic

➡ recycling

N (lµ) =
r
maxX

r=0

C(r)
µ0µ1···µr

lµ0 lµ1 · · · lµrd

d~

c

c~

g g
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MadLoop

• Need to upgrade MadGraph so to generate loop 
diagrams and numerical code for the integrand N(q)	
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OpenLoop: [S. Pozzorini & al.(2011)]

coefficient computed iteratively by ALOHA
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Remember:
➡ For a given phase-space point, we have to compute the 

numerator function several times (~50 or so for a box loop) 
per external phase-space point.

➡ Cut the Loop and use HELAS (with no denominator)
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OpenLoop: [S. Pozzorini & al.(2011)]

coefficient computed iteratively by ALOHA

5-10 times faster
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FKS
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phase-space integration

• For complicated processes we have to result to numerical phase-
space integration techniques (“Monte Carlo integration”), which 
can only be performed in an integer number of dimensions	


➡ Cannot use a finite value for the dimensional regulator and 
take the limit to zero in a numerical code	


• But we still have to cancel the divergences explicitly	


• Use a subtraction method to explicitly factor out the divergences 
from the phase-space integrals

29

�NLO �
�

d4�m B(�m) +
�

d4�m

�

loop
ddl V (�m) +

�
dd�m+1 R(�m+1)

I skipped this interesting topic here!



Fabio MaltoniFabio Maltoni  TASI 2013, Boulder CO

Difficulty: avoid double counting, ensure smooth distributions

Approaches are complementary: merge them!

ME

1. Fixed order calculation	

2. Computationally expensive	

3. Limited number of particles	

4. Valid when partons are hard and 

well separated	

5. Quantum interference correct	

6. Needed for multi-jet description

Shower MC

1. Resums logs to all orders	

2. Computationally cheap	

3. No limit on particle multiplicity	

4. Valid when partons are collinear 

and/or soft	

5. Partial interference through 

angular ordering	

6. Needed for hadronization

30

NLO+PS matching
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NLO+PS matching

No longer true at 
NLO!
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Matching NLO

31

• At NLO one faces even more severe double-counting issues:
Parton shower

...

...Born+Virtual:

Real emission:

• And also part of the virtual contribution is double counted 
through the definition of the Sudakov factor Δ

MC@NLO
1. PSMC dependent	

2. Some negative weighted events	

3. Quantum interference exact	

4. Used by both MG5_aMC and 

Sherpa.

Powheg
1. PSMC independent	

2. Only positive unit weight	

3. Can use existing NLO results via 

the POWHEG-Box	

4. Used by HELAC
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Double counting
• The Sudakov factor Δ (which is responsible for the 

resummation of all the radiation in the shower) is the no-
emission probability	


• It’s defined to be Δ = 1 - P, where P is the probability for a 
branching to occur	


• By using this conservation of probability in this way, Δ 
contains contributions from the virtual corrections 
implicitly	


• Because at NLO the virtual corrections are already 
included via explicit matrix elements, Δ is double counting 
with the virtual corrections	


• In fact, because the shower is unitary, what we are double 
counting in the real emission corrections is exactly equal to 
what we are double counting in the virtual corrections 
(but with opposite sign)!

32
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MC@NLO procedure

• To remove the double counting, we can add and subtract 
the same term to the m and m+1 body configurations 

!

!

!

• Where the MC are defined to be the contribution of the 
parton shower to get from the m body Born final state to 
the m+1 body real emission final state

33

d�NLOwPS

dO
=


d�m(B +

Z

loop

V +

Z
d�1MC)

�
I
(m)
MC (O)

+


d�m+1(R�MC)

�
I
(m+1)
MC (O)

[Frixione & Webber (2002)]
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Negative weights

• We generate events for the two terms between the square 
brackets (S- and H-events) separately	


• There is no guarantee that these contributions are separately 
positive (even though predictions for infra-red safe 
observables should always be positive!)	


• Therefore, when we do event unweighting we can only 
unweight the events up to a sign. These signs should be 
taken into account when doing a physics analysis (i.e. 
making plots etc.)	


• The events are only physical when they are showered.

34

d�NLOwPS

dO
=


d�m(B +

Z

loop

V +

Z
d�1MC)

�
I
(m)
MC (O)

+


d�m+1(R�MC)

�
I
(m+1)
MC (O)
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Marco Zaro, 19-05-2014 LHCPhenoNet

• Use suitable counterterms to avoid double counting the emission 
from shower and ME, keeping the correct rate at order αs:!
!
!
!

• MC depends on the PSMC’s Sudakov:!
!
!

• Available for Herwig6, Pythia6 (Q2-ordered), Herwig++, Pythia8!
• MC acts as local counterterm!
• Unweighted event generation possible!
• Some weights can be negative (unweighting up to sign)!
• Only affects statistics

8

Matching in !
MC@NLO

d�MC@NLO

dO
=

✓
B + V +

Z
d�1MC

◆
d�n InMC(O) + (R�MC) d�n d�1 In+1

MC (O)

MC =

�����
⌅
�
tMC , zMC ,⇤

�

⌅�1

�����
1

tMC

�s

2⇥

1

2⇥
P
�
zMC
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Figure 11: Third-jet observables in Higgs VBF+0j and VBF+1j production, both at the

NLO+PS, with Pythia8, HERWIG6, and Pythia6(Q2).

the signal of an unsatisfactory predictive capability, which is restored by considering these

observables in VBF+1j production.

! Top-pair production

While differential distributions relevant to tt̄ production measured at the LHC by the AT-

LAS (at 7 TeV in lepton+jets events [344]) and the CMS (at 7 and 8 TeV, in lepton+jets

and dilepton events [345–347]) collaborations are generally in very good agreement with

theoretical predictions, the CMS data for the reconstructed transverse momentum of the

top quark (pT (t)) are visibly softer than NLO+PS predictions, and in disagreement with

those of ATLAS for pT (t) < 200 GeV (ATLAS data are harder). Given this inconsistency

between measurements it is premature to speculate on the origin of a possible discrepancy

between data and theory; it is however of some interest to discuss the theoretical systemat-

ics that affect the NLO+PS spectrum. Among these, those due to scale, PDFs, and choice

of top-quark mass have been studied by the experimental collaborations, and shown to be

smaller than the disagreement between data and theory [345]. Here, we therefore concen-

trate on other sources of systematics. One of these is due to missing higher orders, since

the NLO+PS predictions used by the experiments include only up to O(α3
S) terms, namely

tt̄ + 0j samples at the NLO. While the impact of missing higher orders in perturbation

theory is estimated by scale variations, an important and independent check of this assess-

ment may be obtained by considering NLO-merged prections. In the left panel of fig. 12

we thus compare the unmerged tt̄ + 0j prediction with the FxFx one, where the tt̄ + 0j

and tt̄+1j samples are combined with µQ = 100 GeV. Both merged and unmerged results

have been obtained with HERWIG6, by setting the collider energy equal to 8 TeV; the

– 94 –
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Conclusion
• Shower Monte Carlo	


➡ QCD in colinear approximation	

➡ key object is the Sudakov factor	


• Matching/Merging at LO	

➡ How to use it/check it	


• NLO	

➡ Automated for the SM	

➡ All observable are not NLO accurate	

➡ Fixed Order computation are not definite positive	

➡ NLO+PS events are not physical before the 

shower

36
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Remark

• Never trust a code (even mine)	

➡ Always check!	


• Never use those as full black box.

37


