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Perturbative expansion ot

dGap—x (8, up, ur) Parton-level cross section

- The parton-level cross section can be computed as a
series in perturbation theory, using the coupling constant
as an expansion parameter, schematically'
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dGap—x (8, up, ur) Parton-level cross section

- The parton-level cross section can be computed as a
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dGap—x (8, up, ur) Parton-level cross section

- The parton-level cross section can be computed as a
series in perturbation theory, using the coupling constant
as an expansion parameter, schematically'
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Perturbative expansion woutm

dGap—x (8, up, ur) Parton-level cross section

 The parton-level cross section can be computed as a
series in perturbation theory, using the coupling constant
as an expansion parameter, schematically°

Ao Born | (1) ( ) (2) ( ) (3)
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o= 27T * 27T * 27T T
A A A A

4 ) 4 ) 4 ) 4 )
HO) N HO) NINIHO) NSL@® or NNNLE®
pl}”@;@‘ IGEIONS COLLECLIONS corrections COrrections
\_ J \_ J \_ J \_ J

* Including higher corrections improves predictions and
reduces theoretical uncertainties



~@  Improved predictions  ¥ex

do = Z/dmd@ fa X1, MF)fb(3727MF)dUab—>X(S HE, MR)

~ _ Born | (1) ( ) (2) ( ) (3)
14
o= ( 27’(’ * 2T * 2T T )

» Leading Order predictions can depend strongly on
the renormalization and factorization scales

* Including higher order corrections reduces the
dependence on these scales




Going NLO W Durham

* At NLO the dependence on the renormalization and factorization
scales 1s reduced

= [irst order where scale dependence
in the running coupling and the
PDF's 1s compensated for via the loop
corrections: first reliable estimate
of the total cross section 2

| 1 1 LIL | |

LA __ Top produstisn va g, vA=14Ta¥ ]
- LO, ctegBll, M )=0130 .

18 —

impact of extra radiation included - NG, ctog_m, au{id=0118

= Better description of final state:

(e.g. jets can have substructure)

= Opening of additional initial state
partonic channels




(D Going NNLO...7 W Durham

* NNLO is the current state-of-the-art. There are only a few
results available: Higgs, Drell-Yan, ttbar PP > (Z7)4X at Y=0
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* Why do we need it!

o
L
= control of the uncertainties in a ‘%
o,
calculation >
N,
. . . = -
= [t1s “mandatory” it NLO corrections £ | e
are very large to check the behavior  © =« e e ]

prp =M pg=p -

of the perturbative series
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= |t is needed for Standard Candles /M

and very precise tests of perturbation theory, exploiting

all the available information, e.g. for determining NNLO
PDF sets
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Let’s focus on NLO




D NLO corrections W Durham

* NLO corrections have three parts:
= The Born contribution, 1.e. the Leading order.

= Virtual (or Loop) corrections: formed by an amplitude with a
closed loop of particles interfered with the Born amplitudes

= Real emission corrections: formed by amplitudes with one
extra parton compared to the Born process

* Both Virtual and Real emission have one power of & extra
compared to the Born process

o LO doP + doV —+ doft

™m ™m m-+1




NLO predictions oo

* As an example, consider Drell-Yan Z/y* production
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* As an example, consider Drell-Yan Z/y* production
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* As an example, consider Drell-Yan Z/y* production
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* As an example, consider Drell-Yan Z/y* production
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* As an example, consider Drell-Yan Z/y* production
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* As an example, consider Drell-Yan Z/y* production
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Fixed Order calculations ¥
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Fixed Order calculations ¥t

6000 - vector boson pT >\/\/\/\/ _
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» Multiple steps
= Fix divergencies

= Virtual amplitudes: how to compute the loops
automatically in a reasonable amount of time

= How to deal with infra-red behavior for phase-space
integration

= How to match these processes to a parton shower
without double counting



~@>~ |nfrared cancellation  ¥oum

o0 / d*®,, B(P / d*® / LV (P / d°®,, 1 R(®pyp1)
loop

* The KLN theorem tells us that divergences from
virtual and real-emission corrections cancel in the sum
for observables insensitive to soft and collinear
radiation (“IR-safe observables™)

* When doing an analytic calculation in dimensional
regularization this can be explicitly seen in the
cancellation of the |/e and |/€? terms (with € the
regulator, e = 0)




~@> |nfrared safe observablegwout

* For an observable to be calculable in fixed-order
perturbation theory, the observable should be infrared safe,
i.e., it should be insensitive to the emission of soft or

collinear partons.

* In particular, if p; is a momentum occurring in the definition
of an observable, it most be invariant under the branching

Pi — Pj ¥ P
whenever p; and py are collinear or one of them is soft.

+ Examples

= “The number of gluons” produced in a collision 1s not
an infrared safe observable

= “The number of hard jets defined using the &7
algorithm with a transverse momentum above 40 GeV,”
produced in a collision 1s an infrared safte observable
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- Are all (IR-safe) observables that we can compute using a
NLO code correctly described at NLO? Suppose we have
a NLO code for pp — ttbar

g o t g i F g - t

LO Real E Virt
9 ~pooooo > t g rwaazga: . t 9 BT > t

= Total cross section

= Transverse momentum of the top quark

= Transverse momentum of the top-antitop pair
= Transverse momentum of the jet
= Top-antitop 1invariant mass

= Azimuthal distance between the top and anti-top
. Mmattelaeroliviee  NeTs=2014 43
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= Total cross section v
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f WEW . NLO?

= Total cross section v
= Transverse momentum of the top quark v
= Transverse momentum of the top-antitop pair X
= Transverse momentum of the jet X
= Top-antitop invariant mass 4

= Azimuthal distance between the top and anti-top
. Mmattelaeroliviee  NeTs=2014 43
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- Are all (IR-safe) observables that we can compute using a
NLO code correctly described at NLO? Suppose we have
a NLO code for pp — ttbar

g - t g i £ g - t

” 1O [ Real

9 BTTTTOT— ‘ gwa%;r

f WEW T NLO?

= Total cross section v
= Transverse momentum of the top quark v
= Transverse momentum of the top-antitop pair X
= Transverse momentum of the jet X
= Top-antitop invariant mass 4
= Azimuthal distance between the top and anti-top X
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one-loop integral  weur

» Consider this m-
point loop diagram
with n external
momenta

 The integral to
compute is

DoD1Dsy -+ Dy q




Integrand reduction  ¥eue

* Any one-loop integral can be decomposed in scalar integrals

- The task is to find these coefficients efficiently (analytically or
numerically)




~@-~ Basis of scalar integrals ¥eum

- Thea,b,c,dand R

A L-loop _ Z Liv i inin BOXic i1 i0in coefficients depend only on
B0 <t iy <is external parameters and
momenta
=+ Z Cigiyip Lriangle; . .
10<11 <12

-+ Z b’ioil BU_bbleZ‘Oil

1
Tadpole, = [ d%
10<1%1 AP / D;,
1
d
+ E aiOTadpoleiO Bubble; ;, = / d®l DDy
10 1
: - d
R4+ O(e) Triangle; ; ;. = /d lDz'oDiqu;Q
1
BoXiy i iviy = | d°l
OX 0¢1t2t3 Dio DilDiQ Di3

* All these scalar integrals are known and available in computer libraries (FF
[v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])



Divergences W D

1-1
MO = Z Aigivinis BOXigiyinis D; = (I +pi)* —m;]
10<11<12<13 d 1
. Tadpole; = / d®l
4+ Z Cioiyi, Lriangle; ; ;. i Dig
. . 4 1
10<11 <12 Bubble;y;, = ‘/alallD,L-oDi1
+ Z bioilBubbleiO’il Ty 1 441 !
10<1t1 rang Cigiria = DioDilDiz
| 1
" ; a;, Tadpole; BoXigirizis = ddlDio Di, D;, D,
0
+R + O(e)

= The coefficients d, c, b and a are finite and do not contain poles in |/e
= The |/e dependence is in the scalar integrals (and the UV renormalization)

=VWWhen we have solved this system (and included the UV renormalization) we have
the full dependence on the soft/collinear divergences in terms of coefficients in front
of the poles. These divergences should cancel against divergences in the real

emission corrections (according to KLN theorem)
: U1 U2

Virtual ~ vg - |
e €2




OPP Reduction W Durham

® The decomposition to scalar
integrals presented before works
at the level of the integrals

1-loo
MU =N i1, BOXigi i

10<11<12<13

_|_ E C/I:Oil 7:2 Trla;ngle,io,il ,1:2
10<11 <12

-+ E bioilBU—bblez’oil
10<1t1

+ E a;, Tadpole;
10

+R 4+ O(e)



OPP Reduction oo

® The decomposition to scalar ® |f we would know a similar relation at
integrals presented before works the integrand level, we would be able
at the level of the integrals to manipulate the integrands and

extract the coefficients without doing
the integrals

1-loop __
M b= E : di0i1i2i3BOXioi1i2‘i3

10<11<12<13

+ E Cigiyi, Lr1ANGlE; ; ;o
10<11 <12

+ g bioilBU—bbleioil
10<1t1

+ E a;, Tadpole;
10

+R + Ofe)
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integrals presented before works
at the level of the integrals

1-loo
MO = E igivinia BOXigi1inis
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_|_ § Cio’il’iQTrla’ngleioil’ig
10<11 <19
+ E bioilBU—bbleioil
10<1t1
+ E a;, Tadpole;
10

+R 4+ O(e)
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If we would know a similar relation at
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals

m—1 m—1

NO= ), [dioz‘lz‘gig + dioilz’gz’s(l)} D;
10<t1<12<13 1#10,11,12,13
m—1 m—1
+ Z |:Ci0i1i2 + Cigiyin (l)} H D;
10<11 <19 ’i;é’io,'il,ig
m—1 -~ m—1
+ 3 |bivia +bon 0] TT D
10<?%1 1#£10,11
m—1 m—1
+ Z |:ai0 + &io (l>:| H Dz
io i#io
~ m—1
+P(1) 1] D




® The decomposition to scalar
integrals presented before works
at the level of the integrals

1-loo
M b= E : di0i1i2i3BOXioi1i2‘i3
10<11<12<13
_|_ E CioiliQTrlangleioili2
10<11 <12
+ E bioilBU—bbleioil
10<1t1
+ E a;, Tadpole;
10

+R 4+ O(e)

OPP Reduction
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If we would know a similar relation at
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals

m—1

10<11<12<13

N(l) =

2
m—1
+ Z [C’io’iliz

10<11 <19

+ mz_l {bz’oil

10<11

m—1

+ Z {aio

10




HoOw It WOrKs... W Durham

To solve the OPP reduction,

m—1 m—1
7 choosing special values for
Ny =) [dz‘om‘zig +di0’i1i2i3(l)} D, & SP
io<iy<is<is i i i s the loop momenta helps a
m—1 m—1 lot
+ Z [Ci0i1i2 + Cigiyis (l)} ]
io<i1<io ii0 1.0 For example, choosing | such
Z ) H that
+ [b b ( } D, N N . .
10<t1 i#£10,11 DO(Z ) — Dl(l ) — DQ(Z ) — Dg(l ) — O
m—1
+3 {% +a, (l)} H D, sets a!l the terms in this
' iig equation to zero except the
- om—1 first line
+P(1) 1] D
i There are two (complex)

solutions to this equation
due to the quadratic nature
of the propagators



1 1 To solve the OPP reduction,
(S ; g choosing special values for
N(l) — Z {dioi1i2i3 + digiyisis (l)} D; & P
o <in <iz<is iio is 0.5 the loop momenta helps a
lot

For example, choosing | such
that

o(IF) = D1 (1%) = Dy(IF) = D3(1F) = 0

sets all the terms in this
equation to zero except the
first line

There are two (complex)
solutions to this equation
due to the quadratic nature
of the propagators
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e ™
m—1 _ m—1
N(l) = [dzzzz ‘|‘diiiz‘(l)] D;
7;0<7;1§<;2<7;3 o T o inings To solve the OPP reduction,
m—1 m—1 choosing special values for
+ > {Cz‘oilig + Cigiris (l)} 1] D the loop momenta helps a lot
10<11<12 i#’io 11,12

For example, choosing | such

m—1
+ 3 [puoi By (1) H D, that

10<11 1#£10,11

= Do(l') = D1(I') = Do (I") = 0
+ io T Q4o (! D;

; {a ol )} ZI;IO sets all the terms in this

o omel equation to zero except the
+P(1) 1] D first and second line




f m—1 m—1 A
N(l) = [dzzzz _|'szzzz(l):| D;
io<z'1§<;2<i3 o T tiosisinis To solve the OPP reduction,
m—1 m—1 choosing special values for
+ > [Cioillé + Cigiris (l)} 1] D the loop momenta helps a lot
10<11<12 17£10,11,12

For example, choosing | such
that

Do(1") = D1 (1") = Dy(1") =

sets all the terms in this
equation to zero except the
first and second line

-




HoOw It WOrKs... W Durham

To solve the OPP
reduction, choosing
special values for the loop
momenta helps a lot

For example, choosing |
such that

Do(1") = D1 (1") =0
sets all the terms in this
equation to zero except

the first, second and third
line
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To solve the OPP

- . ] A : .
m— _ = reduction, choosing
N(i) = Z [dioil’ms t igiigia (l)] D; special values for the loop
N T momenta helps a lot
/~ m—1 T— 1 ™\
+ Z {Cz‘oilig + Cigiris (l)] H D; For example, choosing |
i0<i1<i2 ’i;é'io,’il,’iz Such that

Do(1") = D1 (1") =0
sets all the terms in this
equation to zero except

the first, second and third
line




How It wWOrks... W Duham

- For each phase-space point we have to solve the system of equations

*  Due to the fact that the system reduces when picking special values for the
loop momentum, the system greatly reduces

*  We can decompose the system at the level of the squared matrix element,
amplitude, diagram or anywhere in between.As long as we provide the
corresponding numerator function. Since each reduction with CutTools is
computationally heavy, we directly reduce the squared element with

MadGraph.

- For a given phase-space point, we have to compute the numerator function
several times (~50 or so for a box loop)
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~@Gomplications in d dimensio

In the previous consideration | was very sloppy in considering
if we are working in 4 or d dimensions

In general, external momenta and polarization vectors are in 4
dimensions; only the loop momentum is in d dimensions

To be more correct, we compute the integral

7 l=1+1
/ddl— _]Y(l7l)_ f T \
DoD1D3 -+ Dypq

ddim 4 4o epsilon dim

Di=0+p)?—m?=(1+p)?>—m?+1>=D,; + [

. 1=0 [-p; =1 p; L l=1-1+1-1
B T T N



Implications WPt

The decomposition in
terms of scalar
integrals has to be
done in d dimensions

This is why the
rational part R is
needed
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Rational terms W Durham

generally called

R =R,

* In the OPP method, they are split into two contributions,

Ro

» Both have their origin in the UV part of the model, but only R

can be directly computed in the OPP reduction and is given by
the CutTools program




Rational terms W Durhar

* In the OPP method, they are split into two contributions,

generally called R : R,

» Both have their origin in the UV part of the model, but only R

can be directly computed in the OPP reduction and is given by
the CutTools program

= R1: originates from the propagator (calculate by CutTools)




Rational terms Woutan

* In the OPP method, they are split into two contributions,

generally called R =R, @

» Both have their origin in the UV part of the model, but only R

can be directly computed in the OPP reduction and is given by
the CutTools program

= R1: originates from the propagator (calculate by CutTools)

= R2: originates from the numerator (need in the model)
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* In the OPP method, they are split into two contributions,
enerally called
S NG

» Both have their origin in the UV part of the model, but only R
can be directly computed in the OPP reduction and is given by
the CutTools program

= R1: originates from the propagator (calculate by CutTools)

= R2: originates from the numerator (need in the model)
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= For a given phase-space point, we have to compute the

numerator function several times (~50 or so for a box loop)
per external phase-space point.
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~® Madloop

Remember:
= For a given phase-space point, we have to compute the

numerator function several times (~50 or so for a box loop)
per external phase-space point.

= Cut the Loop and use HELAS (with no denominator)

= (Generic
= recycling

* Need to upgrade MadGraph so to generate loop

diagrams and numerical code for the integrand N(q)
OpenlLoop: [S. Pozzorinit & al.(2011)]

N(W#) =7 Oy 101 - 11
r=0

5-10 times faster

v
coefficient computed iteratively by ALOHA
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~@- phase-space integration weur

o0 / d*®,, B(® / d*® / ALV (P / d°®,, 1 R(®pyp1)
loop

* For complicated processes we have to result to numerical phase-
space integration techniques (‘Monte Carlo integration’), which
can only be performed in an integer number of dimensions

= Cannot use a finite value for the dimensional regulator and
take the imit to zero 1in a numerical code

- But we still have to cancel the divergences explicitly

-+ Use a subtraction method to explicitly factor out the divergences
from the phase-space integrals

| skipped this interesting topic here!
el Neees . oam



NLO+PS MATCHING

4 4

Resums logs to all orders

Computationally cheap

No limit on particle multiplicity

. Valid when partons are collinear
and/or soft

5. Partial interference through

angular ordering
6. Needed for hadronization

|. Fixed order calculation

2. Computationally expensive

3. Limited number of particles

4. Valid when partons are hard and
well separated

5. Quantum interference correct

6. Needed for multi-jet description

S WP —

Approaches are complementary: merge them!

Difficulty: avoid double counting, ensure smooth distributions

TASI 2013, Boulder CO 30



NLO+PS MATCHING

h'Z4 4

|. Resums logs to all orders

2. Computationally cheap

3. No limit on particle multiplicity

4. Valid when partons are collinear
and/or soft

|. Fixed order calculation
2. Computationally expensive

4. Valid when partons are hard and
well separated

6: ede for multi-jet descriptio No Iongel" true at

Approaches are com NLO!

Difficulty: avoid double counting, ensure smooth distributions

TASI 2013, Boulder CO 30

oh
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~Ge> Matching NLO W putar

* At NLO one faces even more severe double-counting issues:

Parton shower

Born+Virtual: >’VVV\/ z“/v 2"”
Real emission: 2//\/\/» 2M

e And also part of the wirtual contribution 1s double counted

through the definition of the Sudakov factor A

MCENLO POWHEG
" 1. PSMC dependent O [ 1. PSMC independent h
2. Some negative weighted events 2. Only positive unit weight
3. Quantum interference exact 3. Can use existing NLO results via
4. Used by both MG5_aMC and the POWHEG-Box
_ Sherpa. 4. Used by HELAC y




~ &> Double counting Wouha

* The Sudakov factor A (which 1s responsible for the

resummation of all the radiation in the shower) 1s the no-
emission probability

* It's defined to be A =1 - P, where P 1s the probability for a

branching to occur

* By using this conservation of probability in this way, A
contains contributions from the virtual corrections
implicitly

* Because at NLO the virtual corrections are already

included via explicit matrix elements, A 1s double counting
with the virtual corrections

* In fact, because the shower 1s unitary, what we are double
counting 1n the real emission corrections 1s exactly equal to
what we are double counting in the virtual corrections
(but with opposite sign)!



~@-  MC@NLO procedure  wnutm

[Frixione & VWebber (2002)]

* To remove the double counting, we can add and subtract
the same term to the m and m+1 body configurations

dUNLOWPS _ d(I)m(B /V /d(I)lMC) IIS/IW(Lj)(O)
dO I loop -

+ | d® 1 (R-MCO) | Ije ™ (0)

* Where the J/C are defined to be the contribution of the
parton shower to get from the m body Born final state to
the m+1 body real emission final state




~e> Negative weignts W Durham

dO'NLOWPS _ dq) B—I—/ —|—/d(I)1MC) Ils/[TT(Lj)(O)
dO loop

+ dcpm+1 (R—MC) | I (0)

* We generate events for the two terms between the square
brackets (S- and H-events) separately

* There 1s no guarantee that these contributions are separately
positive (even though predictions for infra-red safe
observables should always be positive!)

* Therefore, when we do event unweighting we can only
unweight the events up to a sign. These signs should be
taken into account when doing a physics analysis (i.e.
making plots etc.)

* The events are only physical when they are showered.
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(D Conclusion W Durham

e Shower Monte Carlo
= QCD in colinear approximation
= key object 1s the Sudakov factor
e Matching/Merging at LO
= How to use 1t/check it
« NLO
= Automated for the SM
= All observable are not NLO accurate
= [Fixed Order computation are not definite positive

= NLO+PS events are not physical before the

ShOWGI’



Remark

* Never trust a code (even mine)
= Always check!
e Never use those as tull black box.
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