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Bayesian and Madgraph

. Bayesian+MCMC can be used for the calculation of
cross sections by integration over multi-dimensional
phase space, e.g. Bayesian Neural Networks.

. Bayesian theory is a good tool to marginalize the
nuisance parameters and estimate background and
signal strength.



Bayesian and Madgraph

« BayesiantMCMC can be used for the calculation od
cross sections by integration over multi-dimensional
phase space, e.g. Bayesian Neural Networks.

- Bayesian theory is a good tool to marginalize the
nuisance parameters and estimate background and
signal strength.



direct detection

Too many free parameters in DM search!

Particle physics

Astrophysics

Other nuisance parameters

Indirect detection

1.

cross-section/decay-time

1. DM halo profile

1. background parameters

th

2. DM mass . velocity distributions Standard Model parameters
3. energy spectrum 3.  propagation models
Direct detection 1.  cross-section 1. DM local density 1. Hadronic parameters
2. DM mass 2. velocity distributions 2 Standard Model parameters
3. propagation models
Colliders 1. couplings
_ 2. masses 1.  Standard Model parameters
ermal freeze-out (early Univ.) R
3.  particle contents

indirect detection (now)
——————

DM \%S\l

(model dependent)

I)M/ \SM

——
production at colliders

The modern high energy experiments always report the result in energy
dependent event numbers. How do we interpret them?
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Recap chi-squared

Theoretical prediction per energy bin, P(M,E), function of
model parameters.

N data points from ONE experiment,

with central value D(E) and errors sigma(E).

The total chi-squared for this experiment is:

N . . R
2 = Z p(M, E;) — D(E;))?
0% (E;)

1=1

method

Positron fraction
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e* energy [GeV]

Sometimes, if one wants to compute the chi-squared by combining several data sets from different
experiment, the weight of each experiment has to be properly considered.

Xfof = z w; x X,-2 where i runs over the experiments, e.g., AMS02, Fermi, and PAMELA.

i




Recap chi-squared method

Weighted combination:
For Poisson distribution, with detected events, N(obs)>>1,
we define two experiments’' chi”2 as

N, — NoDS No — NObS
Y(Dy) = (1 )2; 53(Dy) = (—=——2 )2
o1 o
2(Dy + Dy) = of x x2(Dy) + o3 x x2(D3)
X 1 2 0'%+0’% X 1 O'E'I'D'% X 2

Nobs
2 _ . 2 - BS = _ 1,2
o= 2 inX 7= VN Wi = e vgss
i

Here, we ingnore systematic errors of two experiments.



Recap chi-squared method

Statistical & Systematic errors:

dN Gamma-rays
Nobs — + T/Oann. X —=X Aeff.dE Y//'
WIMP Dark>z?>< Ve
X W+Z/g

Matter Particles >;+_. ViVe

Systematic errors Ecm~100GeV u+
e+
Neutrinos

)
statistical errors 14/ Nops N Ve
u

~
VuVe
e

+ a few p/p, d/d
Agglysis Anti-matter



Wha’r is probabilty?

he excess: mass

CCCCCCCC To reduce model depen.dence, Exp
H-yy wnageed)ll  allow for free cross sections - i o
— F tag

Y ) .
Hozz in three channels

iliimif:? 3 and fit for the common mass:
%\ / | messasess 126, O no < m”’e"'” 126.0 + no

- Terminologically, one can say the prediction
with n sigma far away from the central value.
However, can we discribe this in terms of
probability?



What is probabilty?

Two schools in statistics: frequentists and Bayesians.

Thomas Bayes




We have two choices:
2

1. P(data|Model): P(data|model) ~ e =
Probability (data, given parameter), the probability
constructed "in the data", Frequentist approach.
2. P(Model|data):
Probability (parameter, given data), the probability
constructed "in the model”, Bayesian approach.

Model = male or female
Data = pregnant or not pregnant
P(female|pregnant) .ne. P(pregnant|female)
>>0.3 ~0.3

P(model|data) x P(data) = P(data|model) x P(model)



There is no single, "right” statistics...

e Bayesians: "probability” = degree of believability. Unknown
quantities are treated probabilistically and the state of the world
can always be updated. By Bayes (18th century).

e Frequentists: "probability” = long-run fraction having this
characteristic. Sampling is infinite. (19th century)

e Likelihoodists: Single sample inference based on maximizing the
likelihood function. By Fisher et al. (20th century).

Multipole moment /
100

Bayesian statistics is very popular in many branches of science o
(astronomy, cosmology, etc.).

For example, The Wilkinson Microwave Anisotropy Probe (WMAP)

b |
analysis of cosmic microwave background (CMB) spectrum:

o VATLE

Temperature Fluctuations [uK?]

i L . .
90" > 05 02"

Angular Size



Bayesian Statistics...
P(model|data) x P(data) = P(data|model) x P(model)

Bayes theorem:

. Prior x Likelihood
Posterior =

Evidence
Likelihood: the probability of obtaining data if hypothesis is true.

Prior: what we know about hypothesis BEFORE seeing the data.
Evidence: normalization constant, crucial for model comparison.

Posterior: the probability about hypothesis AFTER seeing the data.



Profile likelihood method
Mixed Frequentist - Bayesian

The main disadvantage of the frequentist method for current experiments
(such as XENONI100, LHC, IceCube, efc... ) is not able to repeat exactly the
same setting, for example a fixed background !!

Bayesian for nuisance parameters and approximate Frequentist to reduce
dimensions to just physics parameters

So,
some frequentist's point of view: PL method is minimal Bayesian.
some Bayesian's point of view: PL method is frequentist.

L(Yi=1,..r) = max L(m)
meR"™T



Profile Likelihood vs Marginal Posterior

Needs | Coverage | Inference update Combine Unphysical Systematic/
Prior beliefs data region theoretical
errors
Profile No No Easy profiled out
Likelihood | No very 1/0 hard cut | over the
important likelihood nuisance
parameters
Marginal Yes Unimporta | Yes Yes Hard Excluded by | intergrated
Posterior nt prior over prior

We will see later it is numerically easy to perform a scan by using Marginal Posterior.




Table for statistical methods in DM

searching experiments!

Fermi LAT LHC IceCube XENON100/LUX | PLANCK/WMAP
Marginal Posterior | Yes Yes NO NO Yes
Profile Likelihood Yes Yes Yes Yes NO

« More and more experiments adopt the Bayesian
(Marginal posterior) approach.

« Marginal posterior method gives a conservative result.

{ov} (em®s™)




Bayesian statistics:
Part I- Likelihood



Likelihood function

The probability of obtaining data if hypothesis is true.

In this talk, we will show 3 standard distributions of likelihood
function but there can be several distributions of likelihood, as long as
the distribution is "the probability of a given sample being randomly
drawn regarded as a function of the parameters of the population”.



Gaussian Likelihood

Take a single observable & (72) that has been measured

<
X

(e.g., Mw~)
c — central value, o — standard exptal error

define .
x2 — [s('n;)z— <]

assuming Gaussian distribution (d — (¢, o)):

£ = p(o.cle(m)) = F exp |—% |
when include theoretical error estimate + (assumed Gaussian):

o — s = Vo2 + 72
TH error “smears out” the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

£ = oxp [~ 5. ¥




Poisson Likelihood

Poisson distribution to characterize counting
?_EEE_'_E:'.:'] { B ol b.:}":"."
(& S
c—T1 L=
i

-1
{}I -
0; » observed events 1in LHC.

b, : expected SN background events.

.c:g—:.%——gixgx/L.

S i?\r?;(ﬂfT = 0.55)/1?\;101;&1
e — 1.2 %5.... 00



Poisson Likelihood:

the signal over background ratio

P 015 L L L
—m| M e
Pla)=e | —
a! 0.101 L
# The standard deviation of Poisson distribution is:  Z - hatf-width =
J—m 0.05
e—(sl-%—b") (Sz' + b/)o,
' .00 T T
0j;. a 5 10 15 20
# For a sjgf\al search # Fora nul! sigr!al (s:O) search # Here significance means
the significance is: the significance is: how many sigma the signal
sianifican S significance S excesses/reaches to the
ignimcance = = == background or
Vs+b vb

signhal+background?



Trick: Likelihood from limits

— Smeardng Bouwund
Stap functicn

Relatvg Lielhood

wh
-k
wh
d-
N
-k
|
wh
A

1 1 1
05 .7 a8 L =

« Use error function to smear the bound!
« Can add theory error as well.



Test Statistic or Chi Square

,2

TS = =2InL For £ exp(—%):TS = X~
# Test DM signals

8x% = x*(s + b) — x2n(b):
8Xrs = X°(5 + b) — Xain(s + B);

The first method is more conservative and
delta chi-squared can be negative!
For combined analysis, we are always using the
second method.



An example: Mono-jet Likelihood

E%“SS (GeV) — > 250 > 300 > 350 > 400 > 450 > 500 > 550
Z(vv)+jets 30600 £+ 1493 12119 £ 640 5286 =323 | 2569 +188 1394 =127 671 =81 370+ 58
Wjets 17625 + 681 6042 + 236 2457 +£102 | 1044 +51 516 + 31 269 =20 128 +13
tt 470 = 235 175 £ 87.5 72 £+ 36 32+ 16 13+ 6.5 6 + 3.0 3+1.5
Z(l0)+jets 127 £ 63.5 43 +21.5 18 £9.0 8§+40 4+20 2+1.0 1+0.5
Single t 156 + 78.0 52 +26.0 20 + 10.0 7 +35 2+1.0 1+0.5 0+0
QCD Multijets 177 £88.5 76 +£38.0 23 +11.5 3+1.5 2 +1.0 1+0.5 0+0
Total SM 49154 + 1663 18506 £ 690 7875 £ 341 | 3663 =196 [[931 =131 949 +83 501 £59
Data 50419 19108 8056 3677 1772 894 508
Exp. upper limit 3580 1500 773 04 229 165 125
Obs. upper limit 4695 2035 882 434 157 135 131
\—/
S,+b (5, ’)Of (b , b,- )2 o; : observed events 1in LHC.
L(O,‘ I bi + S,‘)) = qu{ | exp[_ ]} b; : expected SM background events.
b ot 26b’ 1 S; —€; X O X /L



SO WN =

An example: Mono-jet Likelihood

Feynrules -> vertex "~ CMS95% C.L. exclusion ——

1000 4
Madgraph-> cross section i Our MC ——— |
MadEvent-> reconstruction

Cut applied
likelihood computation
TS=2.71 <
(0]
O
<
TS — _2 111 £ _ .
O4 = (X ’S\K gq’ /549) ) (axial vector, s-channel)
100 e
10 100
m, (GeV)



CL, p-value, and Chi- -Square

File Edit View Search Terminal Tabs Help

Terminal X | Terminal

2.00 2.58 3.00 3.29 4.00
95.45% 99.00% 99.73% 99.90% 99.99%
0.04550 0.01000 0.00270 0.00100 0.00006
4.00 6.63 9.00 10.83 16.0v
6.18 2. 21 11.83 13.82 19.

.34 14.16 16.27 22.

Only vaild for Gaussian-like
likelihood!

(k=
(k=
(k=
(k=
(k=
(k=
(k=
(k=
(k=
(k=
(k=
(k=
(k=
(k=
(k=
(k=
(k=

3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1

)
)
)
)
)
)
)
)
)
)

12 (k=20)
smingtsal@smingtsal-InlnkKrad-i52v




CL, p-value, and Chi- -Square

File Edit View Search Terminal Tabs Help

Terminal x | Terminal

1.96 2.00 2.58 3.00 3.29 4.00
95.00% 95.45% 99.00% 99.73% 99.90% 99.99%
0.05000 0.04550 0.01000 0.00270 0.00100 0.00006

3.84 4,00 6.63 .

5.99 6.18 9.21 Ys=7TeV,L=51f"{s=8TeV,L=5.3fb"

o 1E
3 A
© -
K [ 16
_§10'1§
2 i / '___.-"" 26
10_2?~.- Q.---.~~ ’,u-n.._v"
- 30
107
E - Observed
C Y | easa Exp. for SM Higgs Boson
4|
10 E ——— 7 TeV Observed
= |40
- \4 —— 8 TeV Observed
10-5 PRI S S N S S S SN S S U NS ST SN S (N S S ST SN (TN S ST S SN S T S S ST S N
chi2 (k=20) 110 115 120 125 130 135 140 145 150
smlngtsal@smlngtsal -ThinkPad-T520 my (GeV)

evidence (3 sigma) but discovery (5 sigma)!



P-value in Global fitting

gs Hi ao, - .
Los === XxH'H Lpg = p(xmfrsx)(HT iD"H)
3
Lept 1 S
Lod® =Y S(xsx)(Guly*L'+greEly"ER)
i=1
L1
ua* . - - . - - - .
L =3 " S(Xnrx) (8@ @ + gre Uiy U’ + greDin* D)
=1
Constraints PLANCK | LUX X100 gamma- Mono- Mono- inv. Z inv. H
(relic) (Sh (SD) ray jet photon
constrained ALL agS Quark, | ALL Quark, Lepton, gD gS
couplings gD gb gb

Problem: we do not know how many d.o.f. precisely are.




P-value in Global fitting

We can always determine a p-value for
any experiment by repeating the psudo-
experiments. Howevr, we cannot decide a

p-value for a combined analysis from
several independent DM experiments
result.
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Bayesian statistics:
Part II- Prior

Prior: what we know about hypothesis BEFORE seeing the datq,
as “state of knowledge".



Prior choice

"The definition of "interesting” is different for different
investigators, and the way points are generated always
involves a prior in parameter space (even grid methods
can be said to have a prior, namely a series of Dirac
delta functions at each grid point). One could go to the
extreme of producing

any kind of results by choosing
appropriate priors."

Boudjema et al., arXiv:1003.4748

10 10 10 10 1 10! 102
Q,h?



Prior choice

« There is no "right"” choice of prior.

« There are wrong/dishonest choices, e.g., a delta-function for
a parameter that you know nothing about.

- Bayesian statistics is a calculus of beliefs.
It cannot tell you what your prior beliefs should be.

Question:

Given a interesting range, how do we map a random
seed, 0«<f<1, generated by computer, to a physical
parameter?

For example, we are interesting on scaning top mass.



mt.py (~/Dropbox/TaipeiMadgraph) - VIM

File Edit View Search Terminal Help . . . N
r : uniform random number in interval [0, 1]

ma'ﬁgndom f(z) : given probability density function

ans

(vmin,vmax, seed) ) ) ~O
ans=(vmax-vmin)*seed + vmin f: T e [_ 0. X\ - f(l) c [(), X\ / f(l) (lI =1

(vmin,vmax, seed):
ans=(logl0(vmax)-loglO(vmin))*seed + loglO(vmin) . . . . . \
ans=  **ans We define the following two monotone nondecreasing functions F'(z), G(x)

ans

ans=cv+width*sqrt(- *1log(seedl))*cos( *pi*seed2)

(cv,width,seedl, seed2): I / f I (1.1 F( — X) :(),F('X) =1
G(x)= G(0)=—o0,G(0) =00

Using this function &, map of uniform random numbers

y=G(r)
seed=random. random()

seedl=random. random() . . .
AT o yields density function f(x).

FlatPrior(vmin,vmax, seed),LogPrior(vmin,vmax,seed),GauPrior(cv,width,seedl, seed2)

) " 1
F'lat Prior : 1[) My 1()3
w(' !
- 1
LU;_’, prior : 1 < l();_»‘ [ - r’r] < 3
Ty

(Ganssian prior : Gaussian Distribution



Prior: what we know about
hypothesis BEFORE seeing the

data.

Log prior : 1 < log [

(Ganssian prior : Gaussian Distribution

Flat prior : 10 <

1y

< 10%

GeV

1y

GeV

]-313

1.0 1.0
=  Flat prior
..' L ..' e Log prior .-' ..' :'
- = Gaussian prior

08y ;' «* ,-’ 081 m, ~173 GeV |' ,-, ;' l
3 : - 3 !, :
3 . . a .’ N
g 06} an L d g 0.6} 1l ]
2 2
© /1 _." G A | _f
= & .~ o s $
% oal & 1 & % 0.4f & i )
T : R I
S 1 p— S ’ 1 7

. u . . at prior . n .
0.2 " J o R Log prior 0.2} ... ;' ) o®
. ) = Gaussian prior * . *
_?‘I" m,~173 GeV < L e
0.0 200 400 600 800 1000 0'30.1 = - 162 10°
m, (GeV) H H . m; (GeV)
Prior dependence is two-fold:™
o Prior range.
o Prior distribution.



PERSONAL PROBABILITIES

This 1s a story I originally heard from Nobel Prize winner Frank
Wilezek in a shightly different context, but it illustrates the way that
for Bayesians the assessment of probability can differ from person to
person.

A shy postdoc 1s attending a workshop on the topic of ‘Extra Dimen-
sions’. Each evening, after an intensive day’s work, he goes to the local
bar, sits next to an empty chair and orders two glasses of wine, one for
himself and the other for the empty chair. By the third evening, the
barman’s curiosity cannot be controlled and he asks the postdoc why
he always orders the extra glass of wine. ‘I work on the theory of ex-
tra dimensions’, explains the postdoc, ‘and it is possible that there are
beautiful girls out there in 12 dimensions, and maybe by quantum me-
chanical tunneling they might appear in our 3-dimensional world, and
perhaps one of them might materialise on this empty chair, and I would
be the first person talking to her, and then she might go out with me’.
‘Yes’, says the barman, ‘but there are three very attractive real girls
sitting over there on the other side of this bar. Why don’t you go and
ask them if they would go out with you?’ ‘There’s no point’, replies the
postdoc, ‘that would be very unlikely.’

Taken from: arXiv:
1301.1273v1
Louis Lyons



Bayesian statistics:
Part ITI- Posterior

Posterior: the probability about hypothesis AFTER seeing the data.
The probability constructed "in the model”, i.e., we think about only the data we
have, not pseudo-data from imaginary experiments!



. If the Likelihood is well-peaked, the

Posterior

1.0

T ——
Flat prior
.0‘“'.—‘. ) p H
_-.‘q. “ - 1, e Log prior
q._-.‘" . -~ =  Gaussian prior
08f R . m,~173 GeV
- L]
" - o 0,
| | .. .
0.6 ol '-"‘_ error=300 GeV |
L]
| ] - h.
L]
. _' '&.
0.4}
- ¥
. LN
L . A
‘ L ]
021 ¢ 4 . :“\, |
-
.?\ ' "\
L
[}
0.0 et s
200 400 600 800

posterior follows the Likelihood.
« Otherwise, it follows the prior.

Posterior

1.0 : :
e« Flat prior
- e Log prior
= = Gaussian prior
08r Atk m, ~173 GeV
i
0.6 :' = error=1.0 GeV
L]
*|
.l
0.4} ‘. n
s .
i | Posterior =
0.2} o .
[ ]
.
£
AR |
%960 165 170 175 180 185 190
m, (GeV)

L = exp(— [

2 X error

my, — 173} 3,]

Prior x Likelihood

Evidence



Confidence limits (Profile Likelihood)
and

Credible remon (Marginal Posterior)

0: observed events

b: background expected events |..... - 15 likelihood
s: signal expected events \q V/
. . : oC /
Profile Likelihood | max[L(o|s + b')]ds

1-CL=

f(;’c' max[L(o|s + b’)]ds

[ ds [37 P(s+ blo)db
Jo~ ds [3° P(s + blo)db

Posterior

Marginal Posterior 1-CR=



L3 ) s, el bl =g Mkl &

Numerical binning

0.0041,  [0.86, 0.62, e
0.25, 0.56, 0.79,
0.095 0.097 0.21 Marginalizing
o4, 0.54, 0.71, is s L et L
Y -axis |o.86, 0.041, 0.48,
0.51 0.052 0.54 feg o el
0.61, 0.91, 0.82,
0.27, 0.51, 0.63,
0.13 0.99 0.27
X-axis
Profiling
'
0.25 0.86 079 | 1_ o ds MaXLL(ols +D01ds | gse, | <egve | <68%
fo. max[£(o|s + p)]ds
0.86 0.54 0.71 <68% | <95% | <95%
Sort and find 68% and
0.61 0.99 0.82 95% C.L <95% | <68% | <68%

normalization factor=6.43

[g°ds [° P(s+blo)d

1-CR=
Jo°ds f5° s+b|o

normalization factor=12.83 |

Sort and find 68% !,
and 95% CL. |

>95% | <95% [§<68%

<68% [ <95% §<68%

<95% Q<68% J<68%




pmor dependence

Roszkowski, R . Trotta, Ts ai i & Varley (2009) Roszkowski, RUIZ Trotia, Tsa/ & Varley (2009)

CR_foodsf0 P(s+ blo)db
Jo~ds J3° P(s + blo)db

TeV)

m1/2(

Flat prior



Volume effect

Roszkowski, Ruiz, Trotta, Tsai & Varley (2009)

NUHM, 1t > 0

d)y from GC |

log prior |

)
f >
{ -
& \ AQ=1055r_
\ E, =10GeV
thr

15

0.5 1
mx (TeV)

The Volume effect can be very strong if the likelihood function is not
very stronge.

2

Roszkowski, Ruiz, Trotta, Tsai & Varley (2009)

X

CIJY from GC |
NUHM, p > 0
log prior |
[ Fermi LAT reach (1yn)
NFW
A
.ﬁ”!o E A
| AQ=107sr |
. . Ethr = 10 GeV
0.5 1 1.5 2
m (TeV)

1-CR=

Jg ds 37

P(s + blo)d

fo ds fo

P(s + blo)d



Bayesian statistics:
Part IV- Evidence



Evidence: normalization constant,
crucial for model comparison.

Z = / £(D|0)r(6)d"0

Evidence is probability of data given model. One model
in one scan only has one value of evidence.

It contains information from both likelihood and prior.
If evidence is small, model is fine-tuned, namely, prior
agrees with data only in small part of parameter space.
The ratio of two evidences reveals which model is
better.



Model comparsion

Bayes factor and p-value

Given two competing models, Mg and My, the
Bayes factor Bo; is the ratio of the models’ evidences

p(d|Mo)
p(dMy)’

Bo1 = (3)
where large values of Bpp denote a preference for
My, and small values of Byy denote a preference for
M. The “Jeffreys’ scale” (Table I) gives an empiri-
cal prescription for translating the values of Bo; into
strengths of belief.

riven two or more models, specified in terms of
their parameterisation and priors on the parame-

|In Boi| Odds Strength of evidence
<10 <3:1 Inconclusive

1.0 ~3:1 Weak evidence

2.5 ~12:1 Moderate evidence

5.0 ~ 150 : 1 Strong evidence
Taken from

0811.2415v1

Table 2. Relation between Fixed Sample Size P Values
and Minimum Bayes Factors and the Effect of
Such Evidence on the Probability of the Null

Hypothesis
P Value Minimum Decrease in Probability of Strength of
(Z Score) Bayes Factor the Null Hypothesis, % Evidence

From To No Less Than

0.10 0.26 75 44 Weak
(1.64) (1/3.8) 50 21
17 5
0.05 0.15 75 31 Moderate
(1.96) (1/6.8) 50 13
26 5
0.03 0.095 75 22 Moderate
(2.17) (1/11) 50 9
33 5
0.01 0.036 75 10 Moderate to strong
(2.58) (1/28) 50 35
60 S
0.001 0.005 75 1 Strong 10 very strong
(3.28) (1/216) 50 0.5
92 S

Goodness of fit



Connection between the Bayesian approach
and the fine-tuning measure

"A frequentist analysis is not sensitive to the fine-tuning. Fine-tuning has to do with
statistical weight and a frequentist analysis is based entirely on likelihood, i.e. the
ability to reproduce the experiment, and thus cannot see the fine-tuning. "

"It may happen that a point (or a region) in the parameter space can present an
optimal likelihood, but only after an extreme tuning of the unplotted parameters,
involving cancellations. Usually that point is considered very implausible or
disfavored since, a priori, cancellations are not likely unless there exists some known
theoretical reason for them. However, as long as the point is capable to reproduce
the experimental data, the fine-tuning considerations do not affect its privileged
condition in a frequentist analysis. This fact can favor points in the frequentist
approach, e.g. in the low-energy regions, which are suppressed in the Bayesian one."

Taken from Ref. 1212.4821 (Cabrera, Casas, and Ruiz de Austri)



Fine-tuning: Higgs masses

Higgs sector

BayesFITS (2012)

* Best fit |-

2400r CNMSSM, pi >0
m, o 126 GeV inner: 1g region
Post:‘ericr pdf, log priors auter: 2o regicn
20001 ¢ (s/m)
%1600
S
4
S
~1200+
800r
112 116 120 124 128

my, (GeV)

129;
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BayesFITS (2012)

| LHC (5/fb)

[+ Bestri)]

inner: 1o region
outer: 2« region

CNMSSM, p >0
my, o 126 GeV

Posterior pdf, log priors

114’

80 90 100 110

my, (GeV)

physical fileds(CP-even)
pseudoscalar (CP-odd)
charge scalar

&
@
@
@
@

Although best-fit point
is not the language of
Bayesian, we can still see
fine-tunning from the
relationship between the
location of best-fit and

120 poterior.



The "Barbieri-Giudice" measure

d1lnm?
A i) = Z |, Apg = max{A i)}
BG(Di) Ic‘?lnp? BG x{Apac(pi)}
my  (mi, +0omy ) — (my, +0omy )tan® B,

2 tan® 3 — 1 o



CNMSSM, p>0
my, ~ 126 GeV

BayesFITS (2012)

We are approaching the Higher fine-tuning region.



ine-tuning: relic density

=\ 2

i

1500

i

, 2

() In QX arXiv:hep-ph/0105004
=~ =~ J. Ellis and K. Olive
Jln P i

tan =50, u>0

Pi
tan 3 =10 >0
800~ .B. e l,l',.,
= 3100 /30 .
Higgsiresonanc 10 3 S
1 1

100 200 300 400 500 600 700 800 900

m; ), (GeV)

m, (GeV)

1000 100

m_\chi ~ m_h/2 (Higgs resonance)

m_\chi ~ m_A/2 (A-funnel)

« m_{stop,stau}-m_\chi ~ 10 GeV,
stop (stau) coannihilation.

« All the Sfermion mass light (Bulk)

We can see that fine-tuning due to the
mechianism.

1000 2000



Fine-tuning and Bayesian evidence

Fine-tuning measure where the likelihood changes by varying
input parameters in a small region.

Bayesian evidence tells us the how much prior and likelihood
agree each other.

The fine-tuning measure in Bayesian statistics is the
evidencel

Whether people believe fine-tuning in the nature or not, this
is issue of belief. One can introduce them in Bayesian prior
so that the evidence can be improved.

Should we take relic density and higgs mass distributions
into our prior?



How to perform
a Bayesian global scan,
a beginners quide.



Useful slides at PHYSTAT

http://indico.cern.ch/event/107747/other-view?view=standard

Bayesian Tools

Public Codes

SuperBayeS
ROOTStat
MultiNest

CosmoMC
SuperPy&SuperPlot
BAT

pippil

Non-Public Codes/groups

BayesFITS

Akula, and P. Nath
Allanach

AbdusSalam

Arina

Catena

Edsjo, and P. Gondolo

G O n W wm

There are many, many more to name here...



Useful slides at PHYSTAT
http://indico.cern.ch/event/107747/other-view?view=standard

Bayesian Tools

Public Codes

O[SuperBayeS]

ROOTStat .
MultiNest .
CosmoMC o
[SuperPy&SuperPlot] .

BRAT
. . ®
pippl o
®

Non-Public Codes/groups

O[BayesFITS ]

S.

g o Q nw

Akula, and P. Nath
Allanach

AbdusSalam

Arina

Catena

Edsjo, and P. Gondolo

There are many, many more to name here...



How does a scan run?

Sampling Skil P
(MCMC, Nested Sampling) -
Input SUSY parameters — Prior distribution
(Log/flat)

Data output Posterior distribution
(In chains)

Mass spectrum generator

(SoftSuUsY) _— Likelihood distribution
(Computation of chi-squared)
y

Observations
(DarkSUSY,Bdecay...)

Marginalization and Binning
(getplots)




Grid Scan v.s. MultiNest

Efficiency | nuisance Likelihood | Marginalisation | Global maxmum
parameters
Grid Scan + | very poor | increase No need No Not clear
hard cut if D>3. parameters
Bayesian+ much Simply Need Esay to use prior
MultiNest better include them dependency

e ;
BUREXSEEENE NTHU Compus Mop




Markov chain Monte Carlo:
Metropolis-Hasting Sampling

(initial point)

Fy=0.5

Step 1 )

B Y :
Step 2 ) Py
(Accept -> new initial point)

Py X
2 (Reject -> return to initial point)
(Accept -> new initial point)

Simulated Annealing can escape local minima with chaotic jumps

Global Maximum
Profit

Local Maximum
Parameter 2

Simulated
Annealing

1777 Jump 1 2222E

-

o . oL e =
R e

Parameter 1

It requires "Burn in” for local
Maximum.



Sampling skills: Nested-Sampling

0> | G, 1. Randomly sample in the parameter space.
i = 1 a) Get rid of points with TS>500.
RN :’ . b) Collect total number of living points equal to "nlive".
|| Sort all the likelihoods.
Get rid of the lowest likelihood.
Project the rest living points to parameter space
Find out the occupied region by living points.
Generate a new point within the occupied region, including a
enlargement factor.
Accept the point with likelihood great than the lowest living
points’ likelihood, otherwise reject this point.
8. Return to step of sorting (2.) and do it again until the stop
e, criteria satisfied.

L]
o ON B

N



The "MultiNest" algorithm

=== e e

_\—\_\_‘\I I:

By [

|
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f
|
|
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i |
: {
a |
3 e T :
i

MultiNest



The "MultiNest" algorithm:
stop criteria

0Z = Lmax * prior volume

One can always set the above converge criteria less than
some certain humber,

Taken from arXiv:0809.3437
F. Feroz, M.P. Hobson, M. Bridges



HwmnN

Challenges of Bayesian approach
in particle physics

. Pole/fine-tuning regions (if this is

interesting in physics).

. Prior dependency (weak likelihoods).
. Reusable datasets?
. Referees confused with

frequentist's approach.



Advertisement



l ) Galileo

eModels from symmetry

® Christensen, Salmon, Setzer, Stefanus

Validation How about the experimental constraints?
MadGraph
(micromegas) Slide taken from MadGraph School 2013 Taipei,

Neil Christensen



MadGraph

LikeDM code

in Collaboration with Q. Yuan and X. Huang

Galileo

eModels from symmetry
® Christensen, Salmon, Setzer, Stefa

" LikeDM —

R — 1 S—

=~ DM indirect detection and direct detection

v

including theoretical uncertainties

<

~  particle model-independent likelihood

We can more confidently and efficiently check every dark matter

model.

Can be extend to cosmology constraints.
Similar to "DMFIT"/“HiggsBound” but starting from data level



Fitting DM gamma rays
by using FermiTools

— 1. Halo models
2. DM model information o
3. Astrophysics sources ) FermiTools Likelihoods
4. Source locations

5 Background

Too much CPU time consuming to do particle model fitting




Fitting DM gamma rays
by using LikeDM

HDWN =

Halo models

Astrophysics sources
Source locations

Background

j\> FermiTools

" this work -
Fermi-LAT (4 yr) ———
Fermi-LAT (2yr) - - - -

e T

103

Energy-Residual
likelihood map

Likelihoods

uch fast to do particle model fitting

V

Y-L Sming Tsai, Qiang Yuan, Xiaoyuan Huang
Published in JCAP 1303 (2013) 018
e-Print: arXiv:1212.3990

2N

DM particle model information




