MadGraph5 (II)

Olivier Mattelaer

Aim of the Lecture

- Get you acquainted with the concepts and techniques used in event generation
- Give you hands-on experience
- Answer as many of your questions as I can

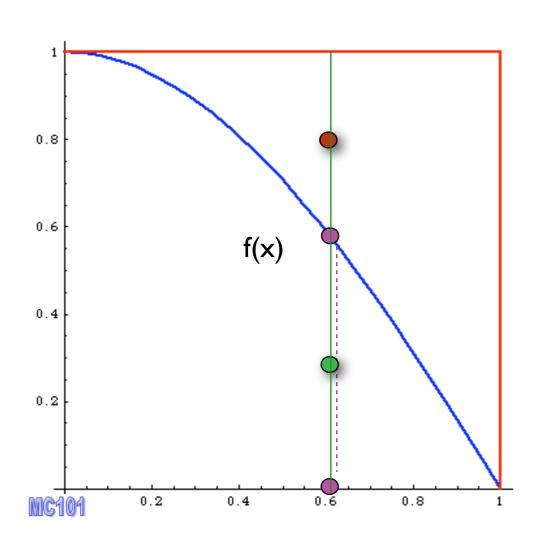
Lecture I

- Evaluation of Matrix Element
- Integration of the cross-section/ events generation

Lecture II

- Shower Monte-Carlo
- Matching/Merging
- •NLO

Event generation



- I. pick x
- 2. calculate f(x)
- 3. pick 0<y<fmax
- 4. Compare:

if f(x)>y accept event

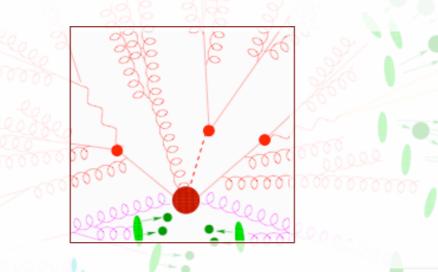
else reject it.

What are the MC for?

I. High-Q² Scattering

2. Parton Shower

where new physics lies



process dependent

first principles description

it can be systematically improved

3. Hadronization

4. Underlying Event

Summary

$$\int \hat{\sigma}_{ab\to X}(\hat{s},\ldots) f_a(x_1) f_b(x_2) dx_1 dx_2 d\Phi_{FS}$$

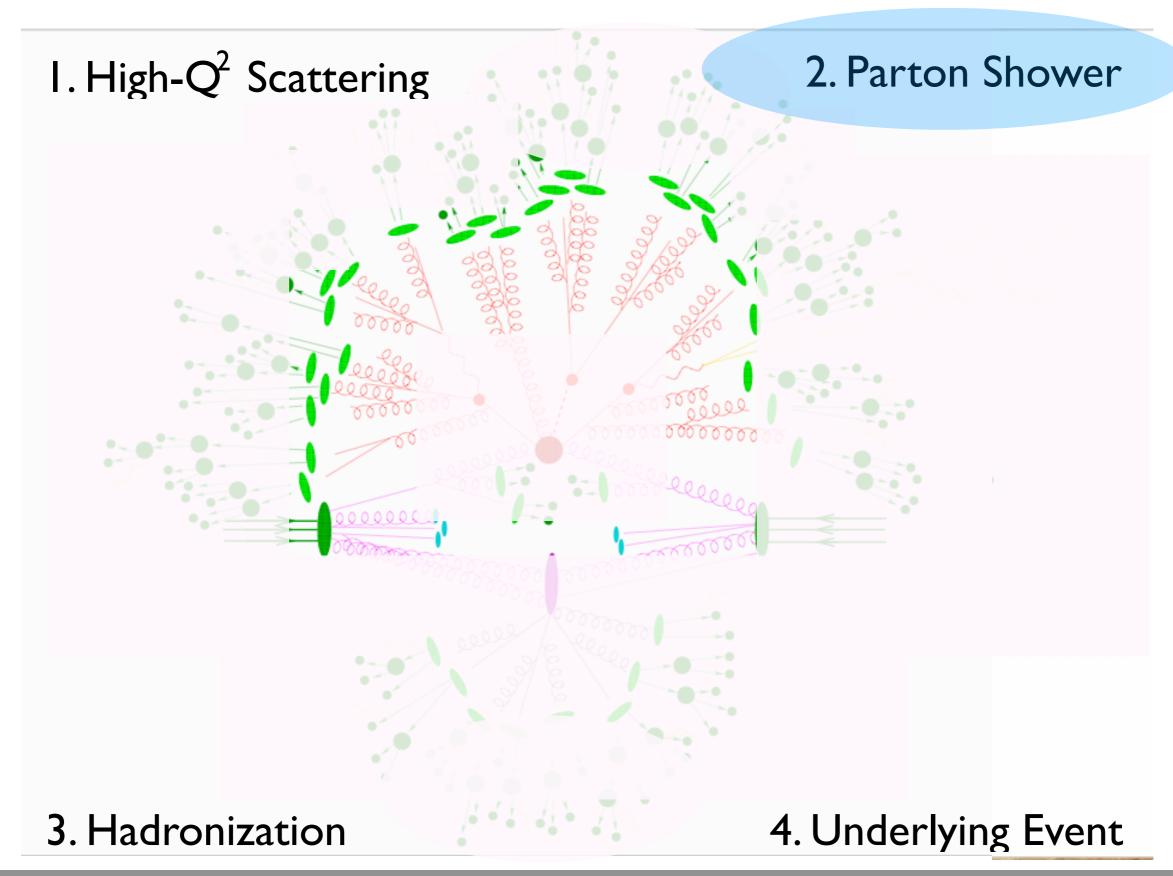
cross section

Parton level Parton density Phase space functions

integral

- MadGraph use Numerical method for the matrix element
 - → Faster than analytical formula
 - → Available For ANY BSM (thanks to UFO/ALOHA)
- Numerical integration is not trivial
 - → We use Monte-Carlo integration
 - → Return physical sample of events!
- MG5
 - → decay chains
 - → nice interface
 - → several output formats

What are the MC for?



Matrix elements involving $q \rightarrow q$ g or $g \rightarrow gg$ are strongly enhanced when the final state particles are close in the phase space:

Matrix elements involving $q \rightarrow q$ g or $g \rightarrow gg$ are strongly enhanced when the final state particles are close in the phase space:

Matrix elements involving $q \rightarrow q$ g or $g \rightarrow gg$ are strongly enhanced when the final state particles are close in the phase space:

$$\frac{1}{(p_b + p_c)^2} \simeq \frac{1}{2E_bE_c(1 - \cos\theta)} = \frac{1}{t} \qquad \text{M}_p \qquad \text{a} \qquad \text{b} \qquad \text{z} = E_b/E_a$$

soft and collinear divergencies

Matrix elements involving $q \rightarrow q$ g or $g \rightarrow gg$ are strongly enhanced when the final state particles are close in the phase space:

$$\frac{1}{(p_b + p_c)^2} \simeq \frac{1}{2E_bE_c(1 - \cos\theta)} = \frac{1}{t}$$

$$z = E_b/E_a$$

soft and collinear divergencies

Collinear factorization:

$$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_S}{2\pi} P_{a \to bc}(z)$$

when θ is small.

The spin averaged (unregulated) splitting functions for the various types of branching are:

$$\hat{P}_{qq}(z) = C_F \left[\frac{1+z^2}{(1-z)} \right],$$

$$\hat{P}_{gq}(z) = C_F \left[\frac{1+(1-z)^2}{z} \right],$$

$$\hat{P}_{qg}(z) = T_R \left[z^2 + (1-z)^2 \right],$$

$$\hat{P}_{gg}(z) = C_A \left[\frac{z}{(1-z)} + \frac{1-z}{z} + z(1-z) \right].$$

$$C_F = \frac{4}{2}, C_A = 3, T_R = \frac{1}{2}.$$

The spin averaged (unregulated) splitting functions for the various types of branching are:

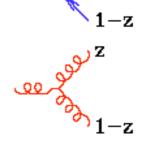
$$\hat{P}_{qq}(z) = C_F \left[\frac{1+z^2}{(1-z)} \right],$$

$$\hat{P}_{gq}(z) = C_F \left[\frac{1+(1-z)^2}{z} \right],$$

$$\hat{P}_{qg}(z) = T_R \left[z^2 + (1-z)^2 \right],$$

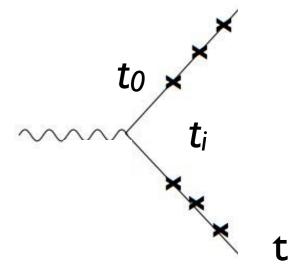
$$\hat{P}_{gg}(z) = C_A \left[\frac{z}{(1-z)} + \frac{1-z}{z} + z(1-z) \right].$$

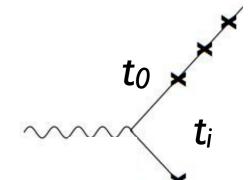
$$C_F = \frac{4}{3}, C_A = 3, T_R = \frac{1}{2}.$$



Comments:

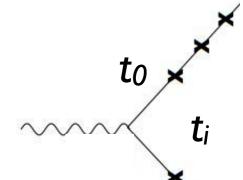
- * Gluons radiate the most
- *There are soft divergences in z=1 and z=0.
- * P_{qg} has no soft divergences.





• Now, consider the non-branching probability for a parton at a given virtuality t_i :

$$\mathcal{P}_{\text{non-branching}}(t_i) = 1 - \mathcal{P}_{\text{branching}}(t_i) = 1 - \frac{\delta t}{t_i} \frac{\alpha_s}{2\pi} \int dz \hat{P}(z)$$



• Now, consider the non-branching probability for a parton at a given virtuality t_i :

$$\mathcal{P}_{\text{non-branching}}(t_i) = 1 - \mathcal{P}_{\text{branching}}(t_i) = 1 - \frac{\delta t}{t_i} \frac{\alpha_s}{2\pi} \int dz \hat{P}(z)$$

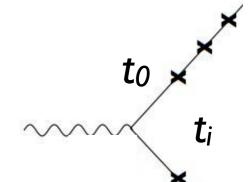
• The total non-branching probability between virtualities t and t_0 :

$$\mathcal{P}_{\text{non-branching}}(t,t_0) \simeq \prod_{i=0}^{N} \left(1 - \frac{\delta t}{t_i} \frac{\alpha_s}{2\pi} \int dz \hat{P}(z) \right)$$

$$\simeq e^{\sum_{i=0}^{N} \left(-\frac{\delta t}{t_i} \frac{\alpha_s}{2\pi} \int dz \hat{P}(z) \right)}$$

$$\simeq e^{-\int_{t}^{t_0} \frac{dt'}{t'} \frac{\alpha_s}{2\pi} \int dz \hat{P}(z)} = \Delta(t,t_0)$$

Mattelaer Olivier NCTS 2014



• Now, consider the non-branching probability for a parton at a given virtuality t_i :

$$\mathcal{P}_{\text{non-branching}}(t_i) = 1 - \mathcal{P}_{\text{branching}}(t_i) = 1 - \frac{\delta t}{t_i} \frac{\alpha_s}{2\pi} \int dz \hat{P}(z)$$

• The total non-branching probability between virtualities t and t_0 :

$$\mathcal{P}_{\text{non-branching}}(t, t_0) \simeq \prod_{i=0}^{N} \left(1 - \frac{\delta t}{t_i} \frac{\alpha_s}{2\pi} \int dz \hat{P}(z) \right)$$

$$\simeq e^{\sum_{i=0}^{N} \left(-\frac{\delta t}{t_i} \frac{\alpha_s}{2\pi} \int dz \hat{P}(z) \right)}$$

$$\simeq e^{-\int_{t}^{t_0} \frac{dt'}{t'} \frac{\alpha_s}{2\pi} \int dz \hat{P}(z)} = \Delta(t, t_0)$$

This is the famous "Sudakov form factor"

With the Sudakov form factor, we can now implement a final-state parton shower in a Monte Carlo event generator!

1. Start the evolution at the virtual mass scale t_0 (e.g. the mass of the decaying particle) and momentum fraction $z_0 = 1$

- 1. Start the evolution at the virtual mass scale t_0 (e.g. the mass of the decaying particle) and momentum fraction $z_0 = 1$
- 2. Given a virtual mass scale t_i and momentum fraction x_i at some stage in the evolution, generate the scale of the next emission t_{i+1} according to the Sudakov probability $\Delta(t_i,t_{i+1})$ by solving $\Delta(t_{i+1},t_i)=R$ where R is a random number (uniform on [0,1]).

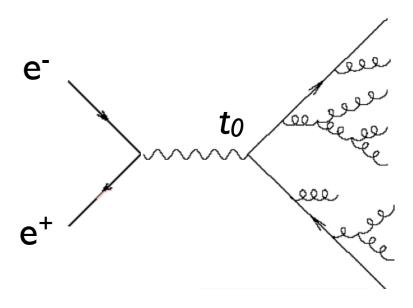
- 1. Start the evolution at the virtual mass scale t_0 (e.g. the mass of the decaying particle) and momentum fraction $z_0 = 1$
- 2. Given a virtual mass scale t_i and momentum fraction x_i at some stage in the evolution, generate the scale of the next emission t_{i+1} according to the Sudakov probability $\Delta(t_i,t_{i+1})$ by solving $\Delta(t_{i+1},t_i)=R$ where R is a random number (uniform on [0,1]).
- 3. If $t_{i+1} < t_{cut}$ it means that the shower has finished.

- 1. Start the evolution at the virtual mass scale t_0 (e.g. the mass of the decaying particle) and momentum fraction $z_0 = 1$
- 2. Given a virtual mass scale t_i and momentum fraction x_i at some stage in the evolution, generate the scale of the next emission t_{i+1} according to the Sudakov probability $\Delta(t_i,t_{i+1})$ by solving $\Delta(t_{i+1},t_i)=R$ where R is a random number (uniform on [0,1]).
- 3. If $t_{i+1} < t_{cut}$ it means that the shower has finished.
- 4. Otherwise, generate $z = z_i/z_{i+1}$ with a distribution proportional to $(\alpha_s/2\pi)P(z)$, where P(z) is the appropriate splitting function.

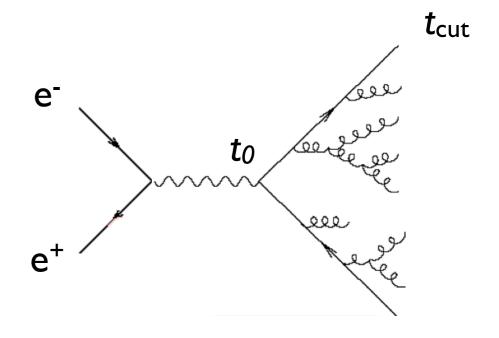
- 1. Start the evolution at the virtual mass scale t_0 (e.g. the mass of the decaying particle) and momentum fraction $z_0 = 1$
- 2. Given a virtual mass scale t_i and momentum fraction x_i at some stage in the evolution, generate the scale of the next emission t_{i+1} according to the Sudakov probability $\Delta(t_i,t_{i+1})$ by solving $\Delta(t_{i+1},t_i)=R$ where R is a random number (uniform on [0,1]).
- 3. If $t_{i+1} < t_{cut}$ it means that the shower has finished.
- 4. Otherwise, generate $z = z_i/z_{i+1}$ with a distribution proportional to $(\alpha_s/2\pi)P(z)$, where P(z) is the appropriate splitting function.
- 5. For each emitted particle, iterate steps 2-4 until branching stops.

Mattelaer Olivier NCTS 2014

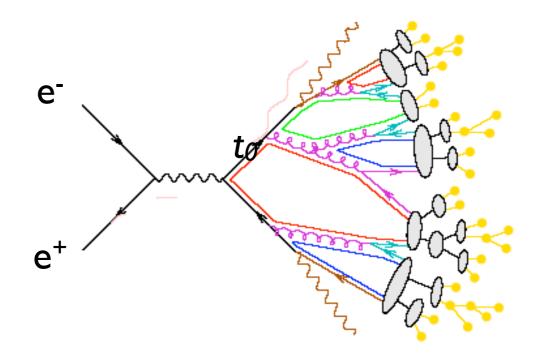
• The result is a "cascade" or "shower" of partons with ever smaller virtualities.



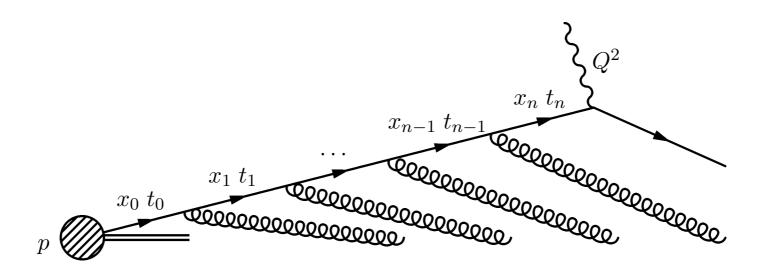
- The result is a "cascade" or "shower" of partons with ever smaller virtualities.
- The cutoff scale t_{cut} is usually set close to 1 GeV, the scale where non-perturbative effects start dominating over the perturbative parton shower.



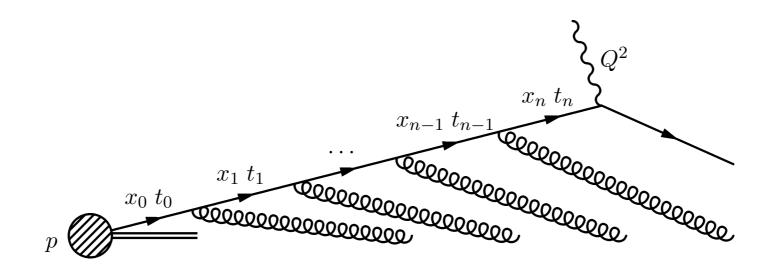
- The result is a "cascade" or "shower" of partons with ever smaller virtualities.
- The cutoff scale t_{cut} is usually set close to 1 GeV, the scale where non-perturbative effects start dominating over the perturbative parton shower.
- At this point, phenomenological models are used to simulate how the partons turn into color-neutral hadrons.
 Hadronization not sensitive to the physics at scale t₀, but only t_{cut}! (can be tuned once and for all!)



- So far, we have looked at final-state (time-like) splittings
- For initial state, the splitting functions are the same
- However, there is another ingredient the parton density (or distribution) functions (PDFs)
 - Probability to find a given parton in a hadron at a given momentum fraction $x = p_z/P_z$ and scale t
- How do the PDFs evolve with increasing t?

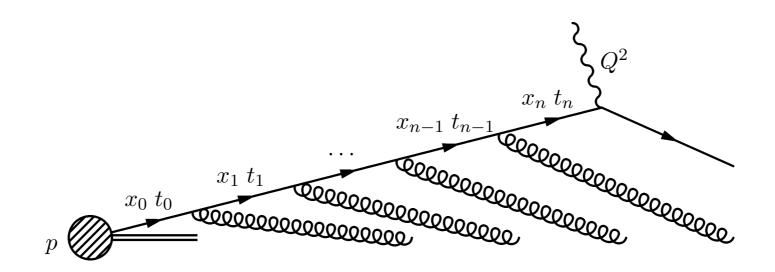


13



• Start with a quark PDF $f_0(x)$ at scale t_0 . After a single parton emission, the probability to find the quark at virtuality $t > t_0$ is

$$f(x,t) = f_0(x) + \int_{t_0}^t \frac{dt'}{t'} \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P(z) f_0\left(\frac{x}{z}\right)$$

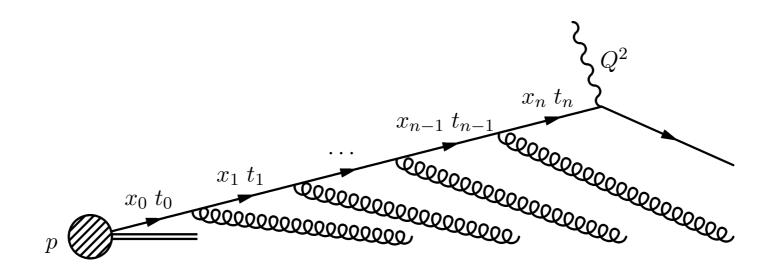


• Start with a quark PDF $f_0(x)$ at scale t_0 . After a single parton emission, the probability to find the quark at virtuality $t > t_0$ is

$$f(x,t) = f_0(x) + \int_{t_0}^t \frac{dt'}{t'} \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P(z) f_0\left(\frac{x}{z}\right)$$

After a second emission, we have

$$f(x,t) = f_0(x) + \int_{t_0}^t \frac{dt'}{t'} \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P(z) \Big\{ f_0\left(\frac{x}{z}\right) + \int_{t_0}^{t'} \frac{dt''}{t''} \frac{\alpha_s}{2\pi} \int_{x/z}^1 \frac{dz'}{z'} P(z') f_0\left(\frac{x}{zz'}\right) \Big\}$$

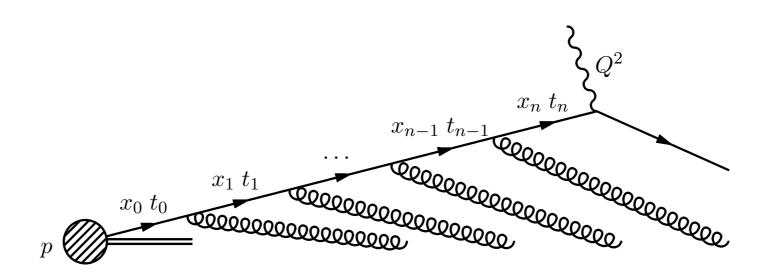


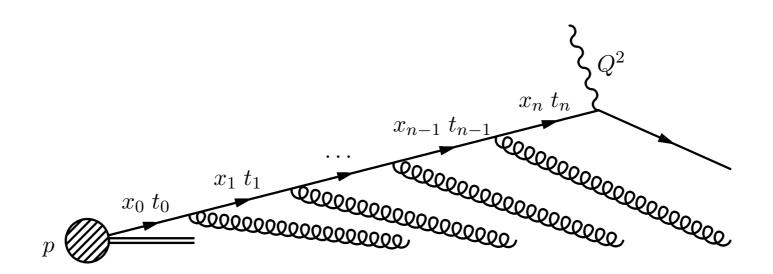
• Start with a quark PDF $f_0(x)$ at scale t_0 . After a single parton emission, the probability to find the quark at virtuality $t > t_0$ is

$$f(x,t) = f_0(x) + \int_{t_0}^t \frac{dt'}{t'} \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P(z) f_0\left(\frac{x}{z}\right)$$

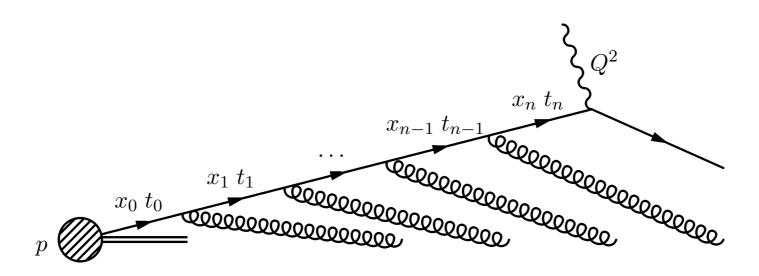
After a second emission, we have

$$f(x,t) = f_0(x) + \int_{t_0}^t \frac{dt'}{t'} \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P(z) \left\{ f_0\left(\frac{x}{z}\right) \right\} \int_{t_0}^t \frac{f(x/z, t')}{t''} \frac{dz''}{2\pi} \int_{x/z}^1 \frac{dz'}{z'} P(z') f_0\left(\frac{x}{zz'}\right) \right\}$$



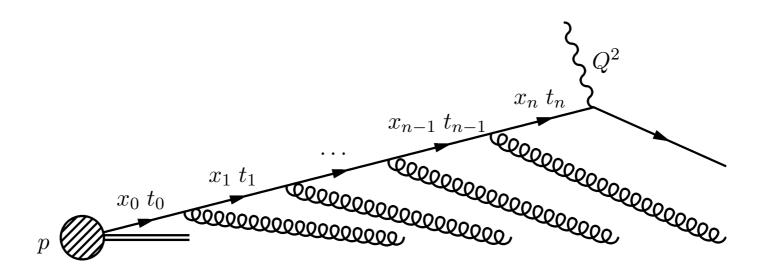


 So for multiple parton splittings, we arrive at an integral equation:



 So for multiple parton splittings, we arrive at an integral equation:

$$t\frac{\partial}{\partial t}f_i(x,t) = \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P_{ij}(z) f_j\left(\frac{x}{z}\right)$$

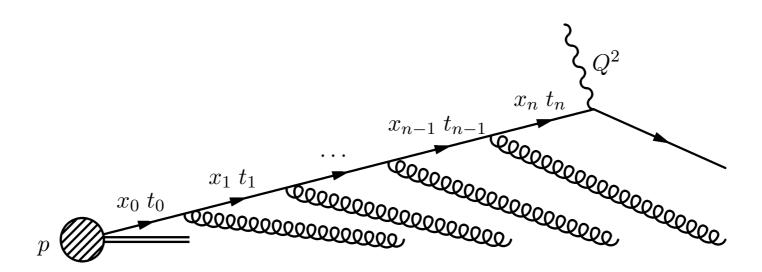


 So for multiple parton splittings, we arrive at an integral equation:

$$t\frac{\partial}{\partial t}f_i(x,t) = \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P_{ij}(z) f_j\left(\frac{x}{z}\right)$$

• This is the famous DGLAP equation (where we have taken into account the multiple parton species i, j). The boundary condition for the equation is the initial PDFs $f_{i0}(x)$ at a starting scale t_0 (again around 1 GeV).

The DGLAP equation



 So for multiple parton splittings, we arrive at an integral equation:

$$t\frac{\partial}{\partial t}f_i(x,t) = \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P_{ij}(z) f_j\left(\frac{x}{z}\right)$$

- This is the famous DGLAP equation (where we have taken into account the multiple parton species i, j). The boundary condition for the equation is the initial PDFs $f_{i0}(x)$ at a starting scale t_0 (again around 1 GeV).
- These starting PDFs are fitted to experimental data.

Initial-state parton showers

- To simulate parton radiation from the initial state, we start with the hard scattering, and then "devolve" the DGLAP evolution to get back to the original hadron: Backwards evolution!
- In backwards evolution, the Sudakovs include also the PDFs this follows from the DGLAP equation and ensures conservation of probability:

$$\Delta_{Ii}(x, t_1, t_2) = \exp\left\{-\int_{t_1}^{t_2} dt' \sum_{j} \int_{x}^{1} \frac{dx'}{x'} \frac{\alpha_s(t')}{2\pi} P_{ij} \left(\frac{x}{x'}\right) \frac{f_i(x', t')}{f_j(x, t')}\right\}$$

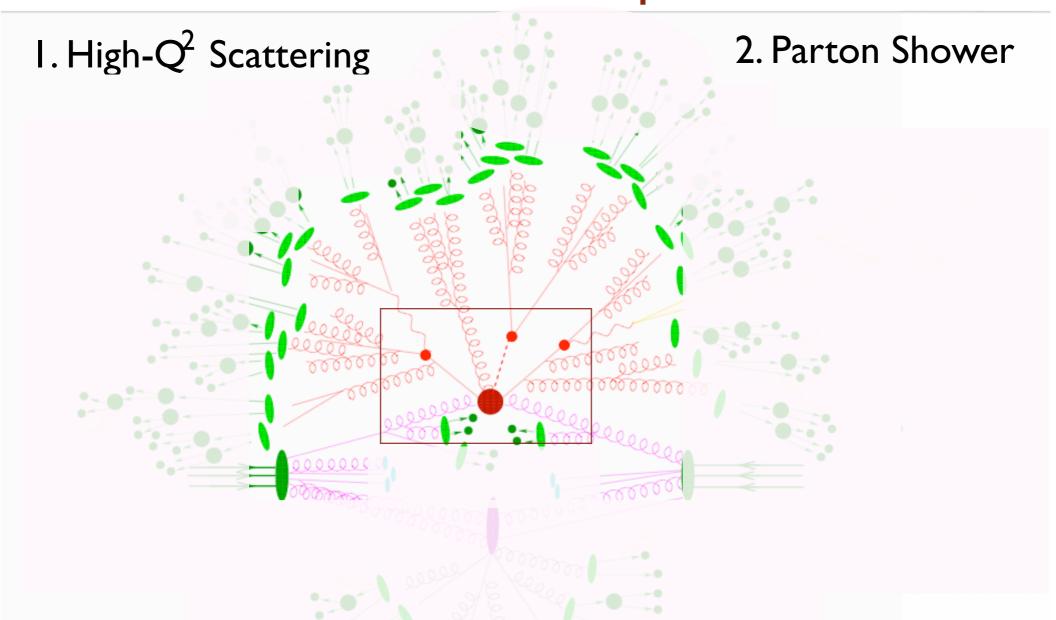
This represents the probability that parton i will stay at the same x (no splittings) when evolving from t_1 to t_2 .

• The shower simulation is now done as in FS shower!

Parton Shower MC event generators

- In both initial-state and final-state showers, the definition of t is not unique, as long as it has the dimension of scale:
- Different parton shower generators have made different choices:
 - → Ariadne: "dipole p_T"
 - \rightarrow Herwig: E $\cdot \theta$
 - \rightarrow Pythia (old): virtuality q^2
 - → Pythia 6.4 and Pythia 8: pT
 - ⇒ Sherpa: v. I.I virtuality q^2 , v. I.2 "dipole p_T "
- Note that all of the above are complete MC event generators with matrix elements, parton showers, hadronization, decay, and underlying event simulation.

Back to our favorite piece of art!

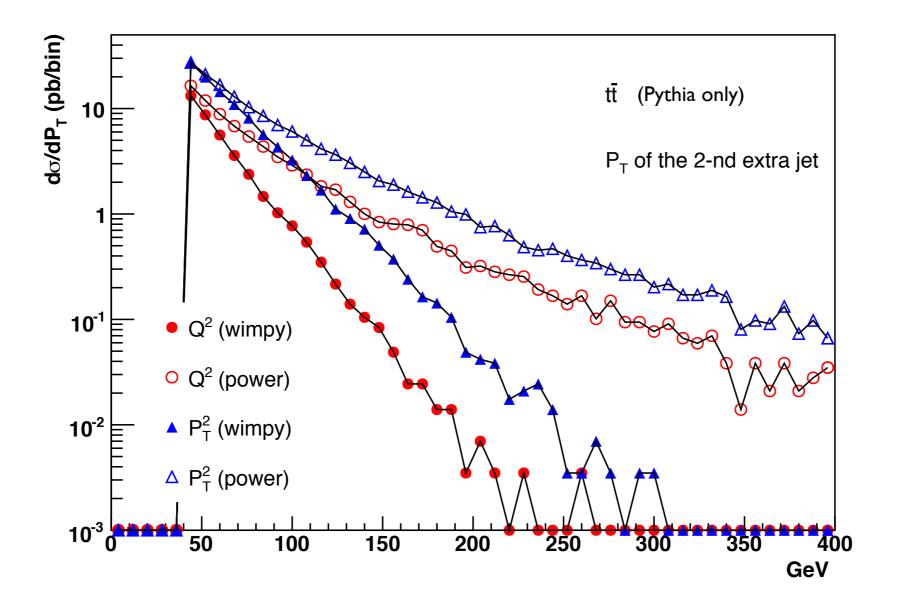


How do we define the limit between parton shower and matrix element?

Mattelaer Olivier NCTS 2014

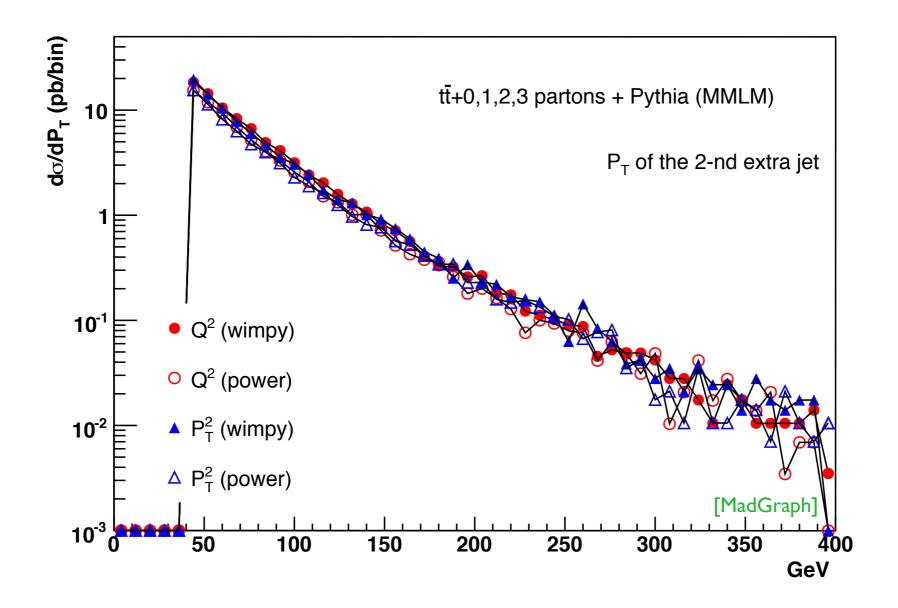
PS alone vs matched samples

In the soft-collinear approximation of Parton Shower MCs, parameters are used to tune the result \Rightarrow Large variation in results (small prediction power)

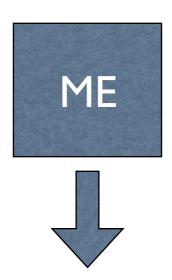


PS alone vs ME matching

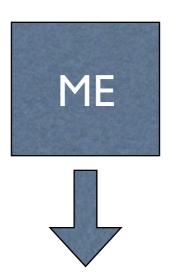
In a matched sample these differences are irrelevant since the behavior at high pt is dominated by the matrix element.



Mattelaer Olívier NCTS 2014

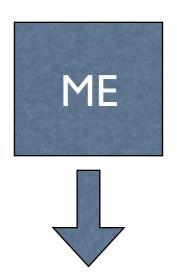


- I. Fixed order calculation
- 2. Computationally expensive
- 3. Limited number of particles
- 4. Valid when partons are hard and well separated
- 5. Quantum interference correct
- 6. Needed for multi-jet description



- I. Fixed order calculation
- 2. Computationally expensive
- 3. Limited number of particles
- 4. Valid when partons are hard and well separated
- 5. Quantum interference correct
- 6. Needed for multi-jet description

- I. Resums logs to all orders
- 2. Computationally cheap
- 3. No limit on particle multiplicity
- 4. Valid when partons are collinear and/or soft
- 5. Partial interference through angular ordering
- 6. Needed for hadronization

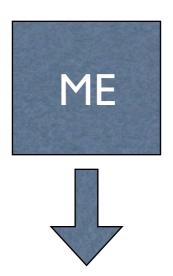


- I. Fixed order calculation
- 2. Computationally expensive
- 3. Limited number of particles
- 4. Valid when partons are hard and well separated
- 5. Quantum interference correct
- 6. Needed for multi-jet description

Shower MC

- I. Resums logs to all orders
- 2. Computationally cheap
- 3. No limit on particle multiplicity
- 4. Valid when partons are collinear and/or soft
- 5. Partial interference through angular ordering
- 6. Needed for hadronization

Approaches are complementary: merge them!



- I. Fixed order calculation
- 2. Computationally expensive
- 3. Limited number of particles
- 4. Valid when partons are hard and well separated
- 5. Quantum interference correct
- 6. Needed for multi-jet description

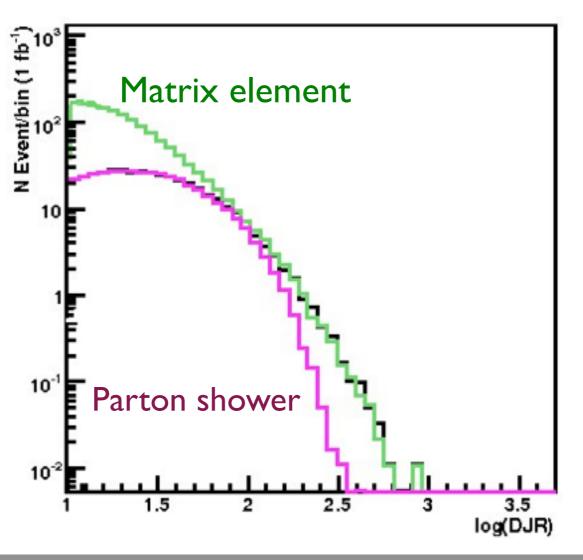
Shower MC

- I. Resums logs to all orders
- 2. Computationally cheap
- 3. No limit on particle multiplicity
- 4. Valid when partons are collinear and/or soft
- 5. Partial interference through angular ordering
- 6. Needed for hadronization

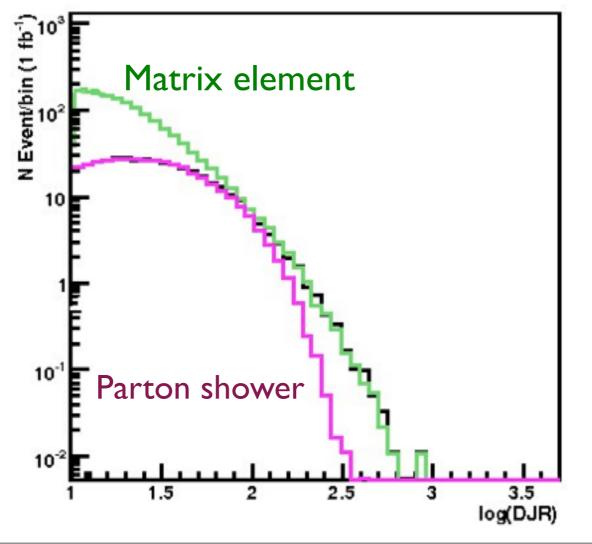
Approaches are complementary: merge them!

Difficulty: avoid double counting, ensure smooth distributions

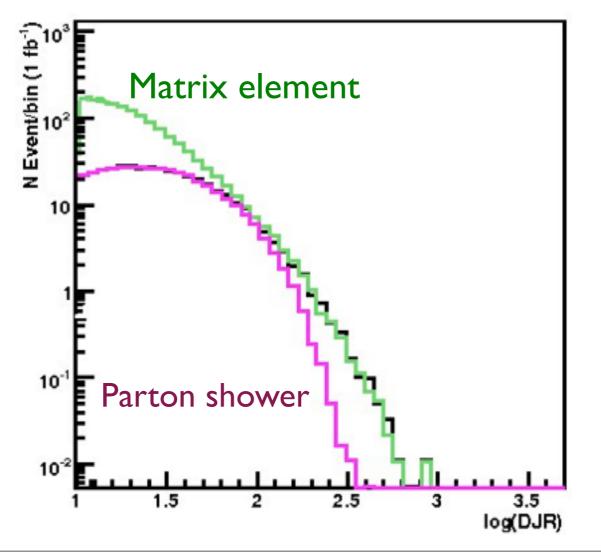
Mattelaer Olivier NCTS 2014



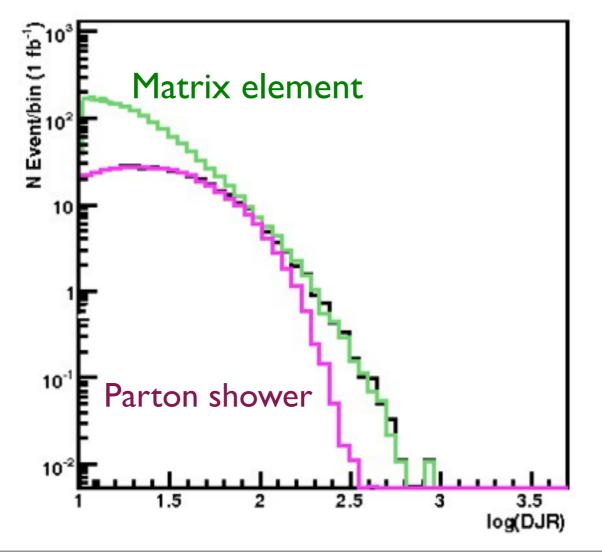
Regularization of matrix element divergence



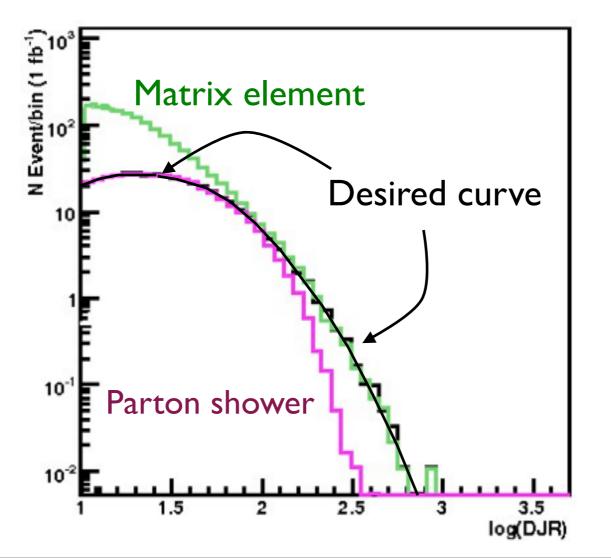
- Regularization of matrix element divergence
- Correction of the parton shower for large momenta



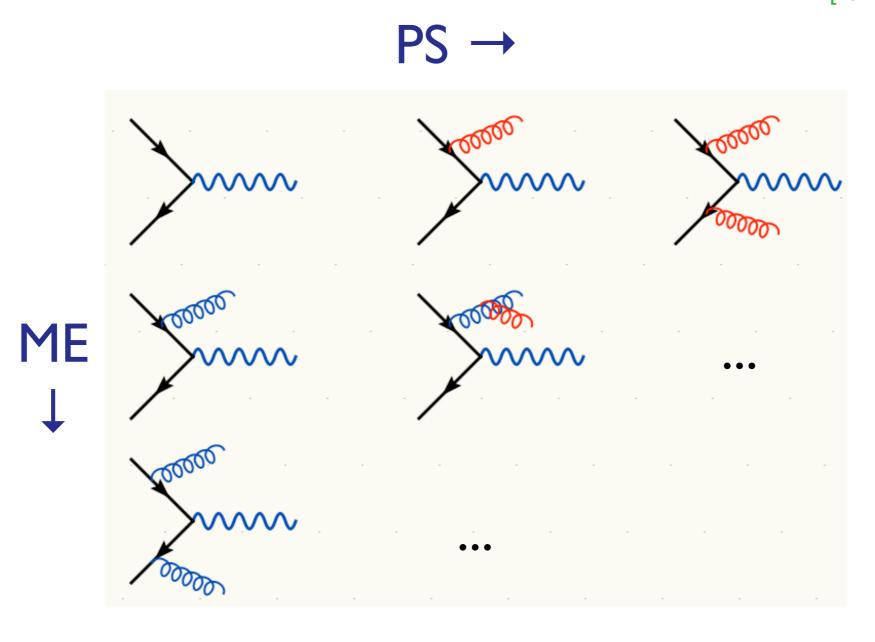
- Regularization of matrix element divergence
- Correction of the parton shower for large momenta
- Smooth jet distributions



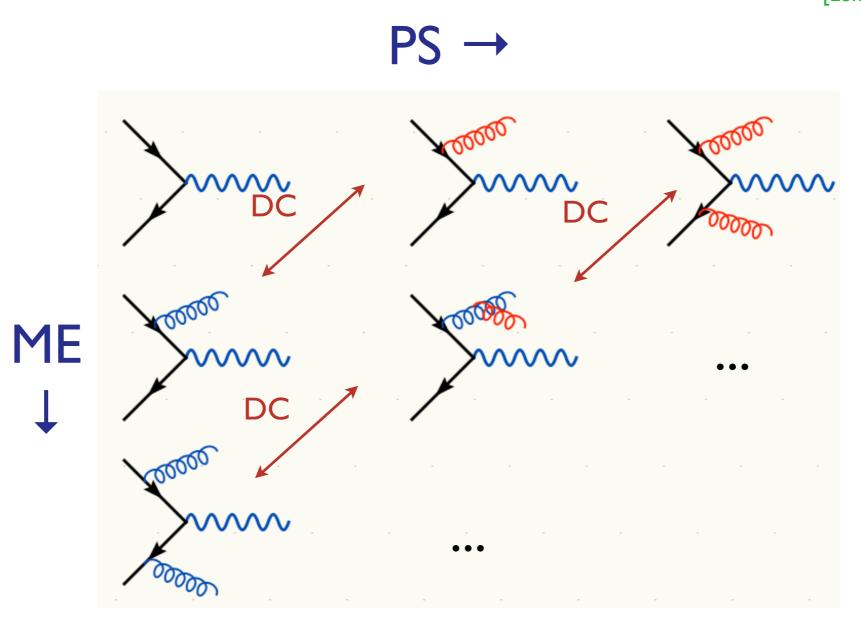
- Regularization of matrix element divergence
- Correction of the parton shower for large momenta
- Smooth jet distributions



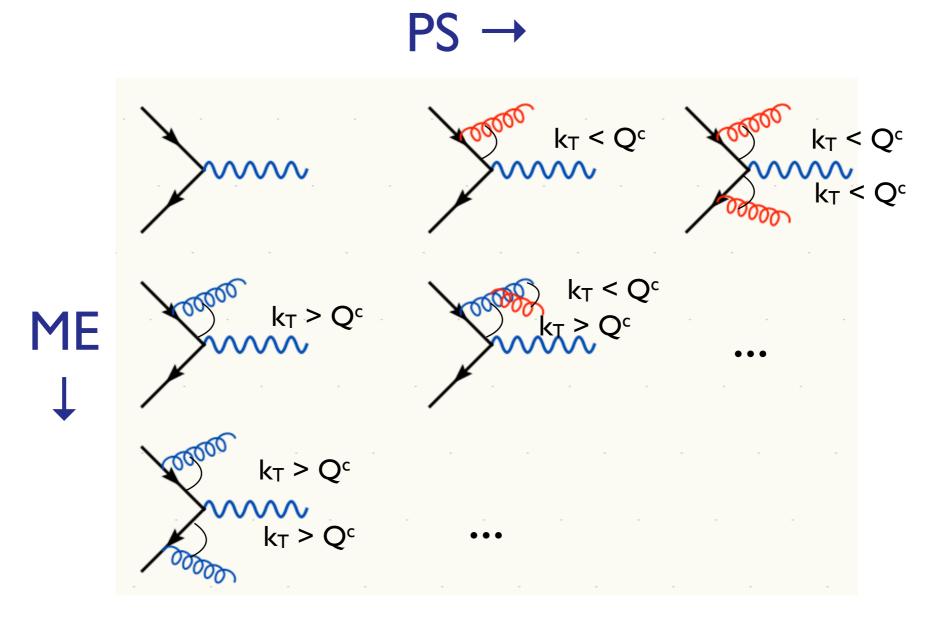
[Mangano]
[Catani, Krauss, Kuhn, Webber]
[Lönnblad]



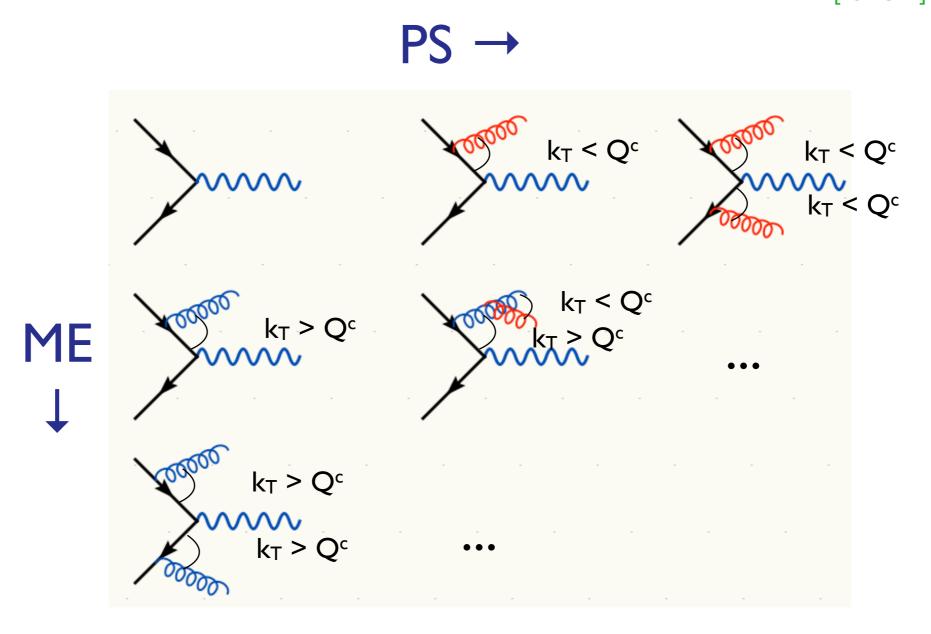
[Mangano]
[Catani, Krauss, Kuhn, Webber]
[Lönnblad]



[Mangano]
[Catani, Krauss, Kuhn, Webber]
[Lönnblad]

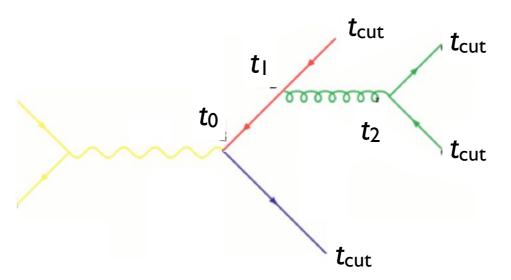


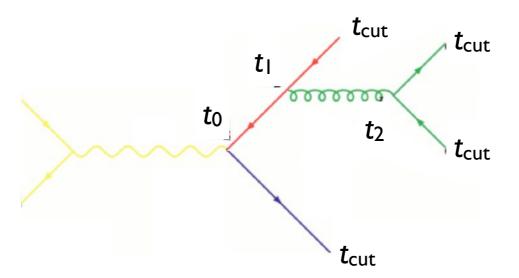
[Mangano]
[Catani, Krauss, Kuhn, Webber]
[Lönnblad]



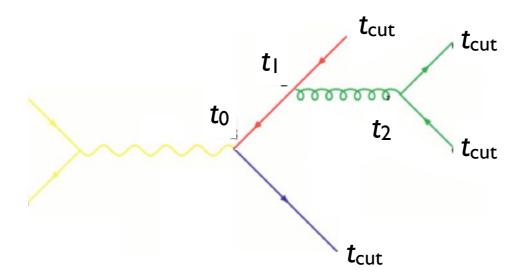
Double counting between ME and PS easily avoided using phase space cut between the two: PS below cutoff, ME above cutoff.

- So double counting problem easily solved, but what about getting smooth distributions that are independent of the precise value of Q^c?
- Below cutoff, distribution is given by PS
 need to make ME look like PS near cutoff
- Let's take another look at the PS!



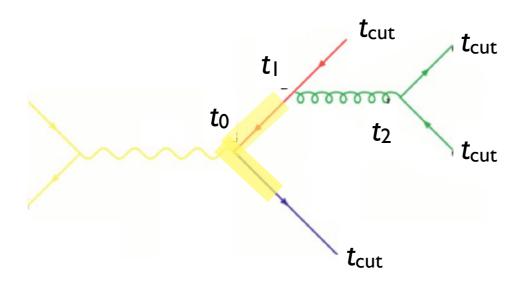


• How does the PS generate the configuration above?



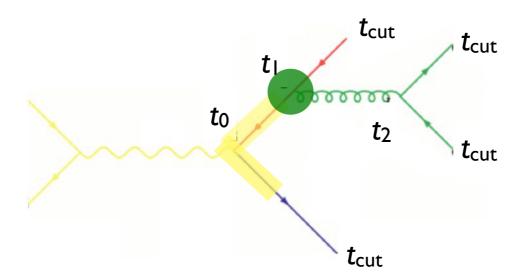
- How does the PS generate the configuration above?
- Probability for the splitting at t₁ is given by

$$(\Delta_q(t_1, t_0))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z)$$



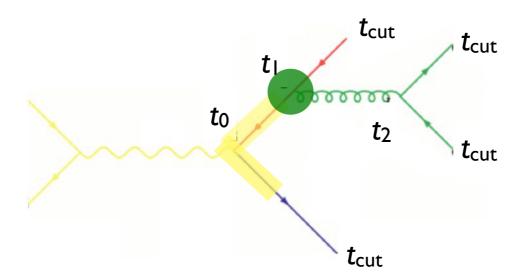
- How does the PS generate the configuration above?
- Probability for the splitting at t₁ is given by

$$\left(\Delta_q(t_1, t_0)\right)^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z)$$



- How does the PS generate the configuration above?
- Probability for the splitting at t₁ is given by

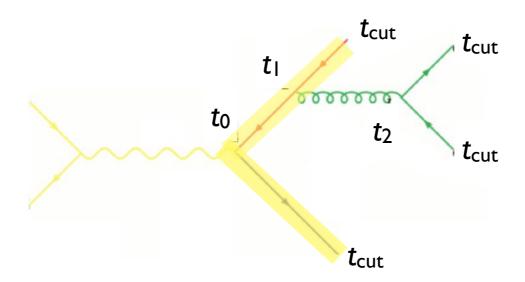
$$(\Delta_q(t_1, t_0))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z)$$



- How does the PS generate the configuration above?
- Probability for the splitting at t₁ is given by

$$(\Delta_q(t_1, t_0))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z)$$

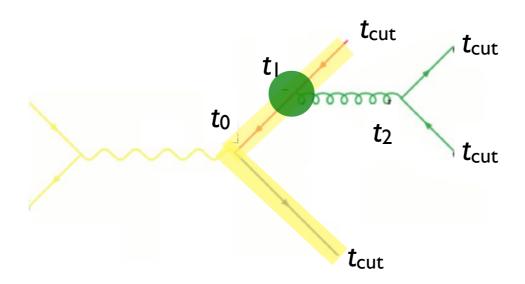
$$(\Delta_q(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z) \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$



- How does the PS generate the configuration above?
- Probability for the splitting at t₁ is given by

$$(\Delta_q(t_1, t_0))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z)$$

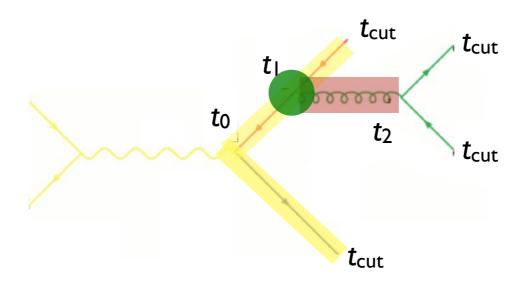
$$\frac{(\Delta_q(t_{\text{cut}}, t_0))^2}{2} \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z) \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$



- How does the PS generate the configuration above?
- Probability for the splitting at t₁ is given by

$$(\Delta_q(t_1, t_0))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z)$$

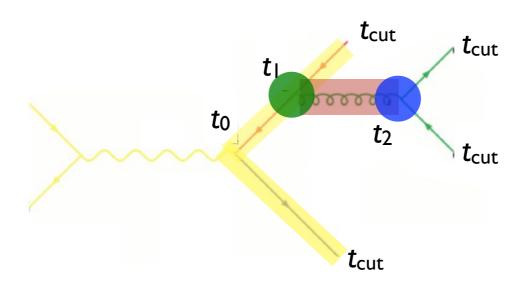
$$\frac{(\Delta_q(t_{\text{cut}}, t_0))^2}{2} \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z) \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$



- How does the PS generate the configuration above?
- Probability for the splitting at t₁ is given by

$$(\Delta_q(t_1, t_0))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z)$$

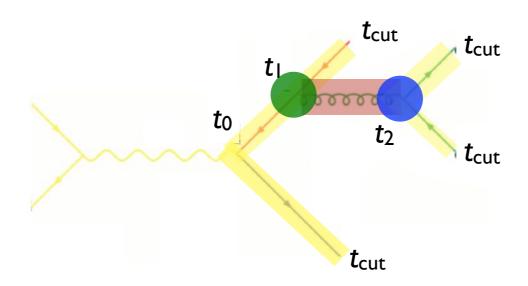
$$\frac{(\Delta_q(t_{\rm cut},t_0))^2}{2\pi}\Delta_g(t_2,t_1)(\Delta_q(t_{\rm cut},t_2))^2\frac{\alpha_s(t_1)}{2\pi}P_{gq}(z)\frac{\alpha_s(t_2)}{2\pi}P_{qg}(z')$$



- How does the PS generate the configuration above?
- Probability for the splitting at t₁ is given by

$$(\Delta_q(t_1, t_0))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z)$$

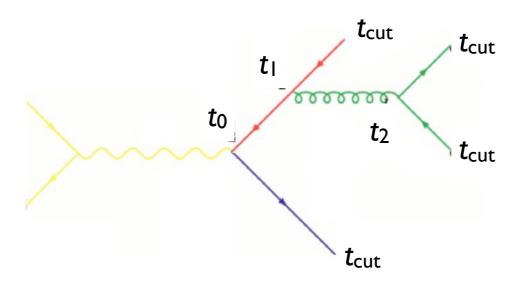
$$\frac{(\Delta_q(t_{\rm cut},t_0))^2}{2\pi}\Delta_g(t_2,t_1)(\Delta_q(t_{\rm cut},t_2))^2\frac{\alpha_s(t_1)}{2\pi}P_{gq}(z)\frac{\alpha_s(t_2)}{2\pi}P_{qg}(z')$$



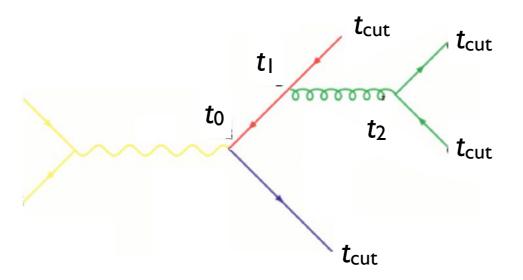
- How does the PS generate the configuration above?
- Probability for the splitting at t₁ is given by

$$(\Delta_q(t_1, t_0))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z)$$

$$\frac{(\Delta_q(t_{\rm cut},t_0))^2}{(\Delta_q(t_{\rm cut},t_1))^2} \Delta_g(t_2,t_1) (\Delta_q(t_{\rm cut},t_2))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z) \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

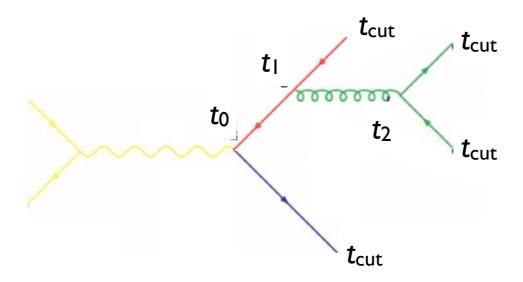


$$(\Delta_q(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z) \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$



$$(\Delta_q(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z) \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

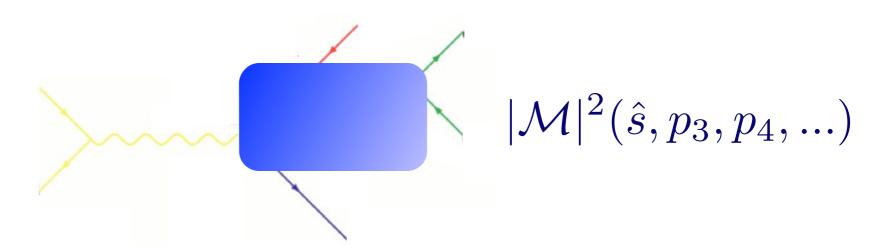
Corresponds to the matrix element BUT with α_s evaluated at the scale of each splitting

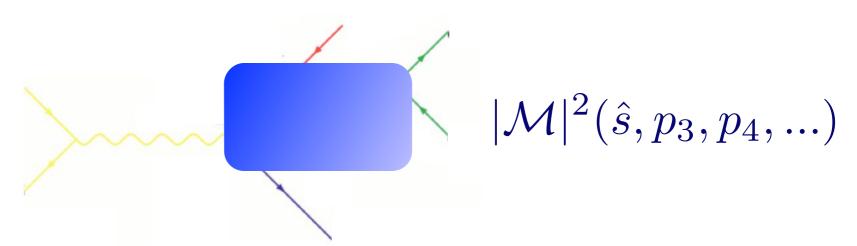


$$\left(\Delta_q(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} P_{gq}(z) \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z') \right)$$

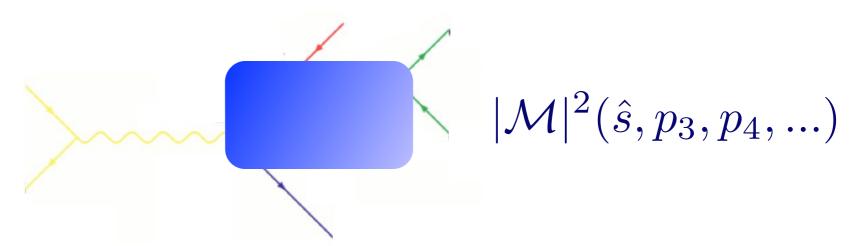
Corresponds to the matrix element BUT with α_s evaluated at the scale of each splitting

Sudakov suppression due to disallowing additional radiation above the scale t_{cut}

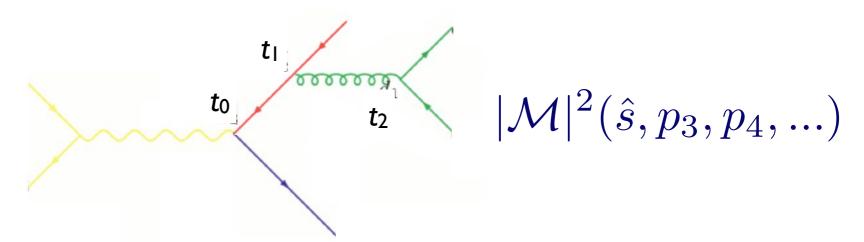




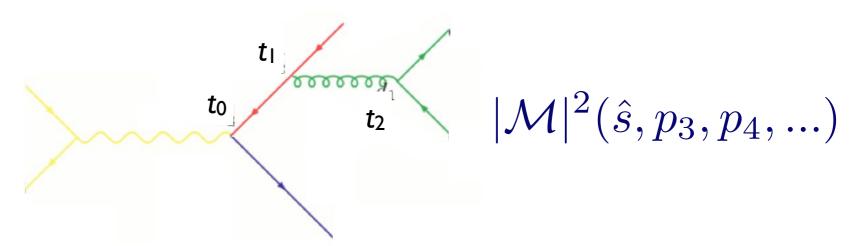
 To get an equivalent treatment of the corresponding matrix element, do as follows:



- To get an equivalent treatment of the corresponding matrix element, do as follows:
 - 1. Cluster the event using some clustering algorithm
 - this gives us a corresponding "parton shower history"

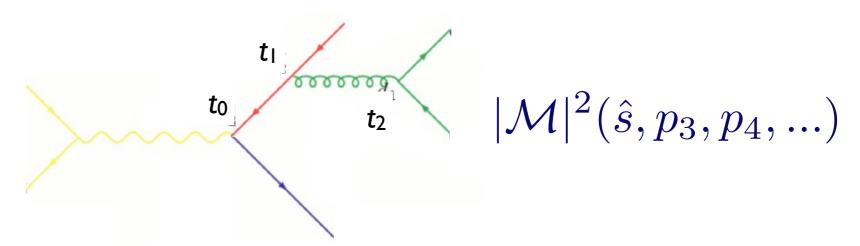


- To get an equivalent treatment of the corresponding matrix element, do as follows:
 - 1. Cluster the event using some clustering algorithm
 - this gives us a corresponding "parton shower history"



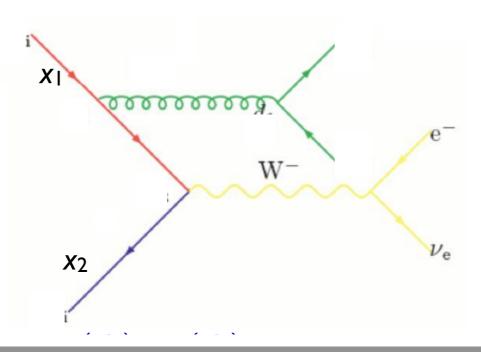
- To get an equivalent treatment of the corresponding matrix element, do as follows:
 - I. Cluster the event using some clustering algorithmthis gives us a corresponding "parton shower history"
 - 2. Reweight α_s in each clustering vertex with the clustering scale

 $|\mathcal{M}|^2 \to |\mathcal{M}|^2 \frac{\alpha_s(t_1)}{\alpha_s(t_0)} \frac{\alpha_s(t_2)}{\alpha_s(t_0)}$

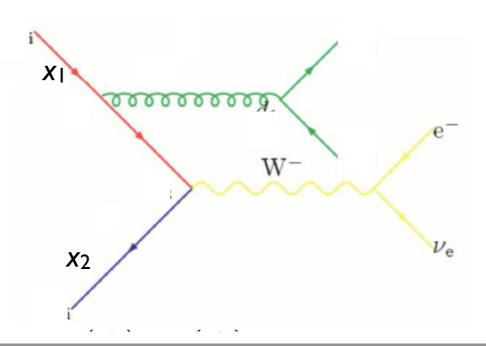


- To get an equivalent treatment of the corresponding matrix element, do as follows:
 - I. Cluster the event using some clustering algorithmthis gives us a corresponding "parton shower history"
 - 2. Reweight α_s in each clustering vertex with the clustering scale $|\mathcal{M}|^2 \to |\mathcal{M}|^2 \frac{\alpha_s(t_1)}{\alpha_s(t_0)} \frac{\alpha_s(t_2)}{\alpha_s(t_0)}$

3. Use some algorithm to apply the equivalent Sudakov suppression $(\Delta_q(t_{\rm cut},t_0))^2\Delta_q(t_2,t_1)(\Delta_q(t_{\rm cut},t_2))^2$



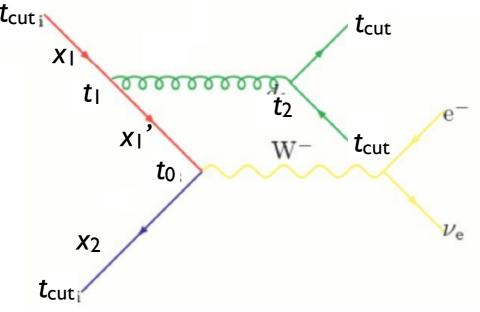
- We are of course not interested in e⁺e⁻ but p-p(bar)
 - what happens for initial state radiation?



- We are of course not interested in e⁺e⁻ but p-p(bar)
 - what happens for initial state radiation?
- Let's do the same exercise as before:

$$\mathcal{P} = (\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1, t_1)}{f_q(x_1', t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z') \\ \times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s}, ...) f_q(x_1', t_0) f_{\bar{q}}(x_2, t_0)$$

$$t_{\text{cut}}$$



- We are of course not interested in e⁺e⁻ but p-p(bar)
 - what happens for initial state radiation?
- Let's do the same exercise as before:

tcuti

$$\mathcal{P} = \frac{(\Delta_{Iq}(t_{\rm cut},t_0))^2}{\Delta_g(t_2,t_1)(\Delta_q(t_{\rm cut},t_2))^2} \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1,t_1)}{f_q(x_1',t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z') \\ \times \hat{\sigma}_{q\bar{q}\to e\nu}(\hat{s},...) f_q(x_1',t_0) f_{\bar{q}}(x_2,t_0) \\ t_{\rm cut} \\ t_1 \\ t_2 \\ t_2 \\ t_3 \\ t_4 \\ t_6 \\ t_{1} \\ t_{2} \\ t_{2} \\ t_{2} \\ t_{3} \\ t_{4} \\ t_{4} \\ t_{5} \\ t_{6} \\ t_{6} \\ t_{7} \\ t_{8} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{2} \\ t_{3} \\ t_{4} \\ t_{5} \\ t_{6} \\ t_{7} \\ t_{8} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{3} \\ t_{4} \\ t_{5} \\ t_{6} \\ t_{7} \\ t_{8} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{3} \\ t_{4} \\ t_{5} \\ t_{6} \\ t_{7} \\ t_{8} \\ t_{8} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{3} \\ t_{4} \\ t_{6} \\ t_{7} \\ t_{8} \\ t$$

- We are of course not interested in e⁺e⁻ but p-p(bar)
 - what happens for initial state radiation?
- Let's do the same exercise as before:

tcut

$$\mathcal{P} = \frac{(\Delta_{Iq}(t_{\mathrm{cut}},t_0))^2}{\Delta_g(t_2,t_1)(\Delta_q(t_{\mathrm{cut}},t_2))^2} \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1,t_1)}{f_q(x_1',t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

$$\times \hat{\sigma}_{q\bar{q}\to e\nu}(\hat{s},...) f_q(x_1',t_0) f_{\bar{q}}(x_2,t_0)$$

$$t_{\mathrm{cut}}$$

$$t_1$$

$$t_2$$

$$t_3$$

$$t_4$$

$$t_4$$

$$t_5$$

$$t_6$$

$$t_7$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{5}$$

$$t_{6}$$

$$t_{7}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{6}$$

$$t_{7}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{6}$$

$$t_{7}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{6}$$

$$t_{7}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{6}$$

$$t_{7}$$

$$t_{7}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{6}$$

$$t_{7}$$

$$t_{7}$$

$$t_{7}$$

$$t_{8}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{6}$$

$$t_{7}$$

$$t_{7}$$

$$t_{8}$$

$$t_{8}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{6}$$

$$t_{7}$$

$$t_{8}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{6}$$

$$t_{7}$$

$$t_{8}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{6}$$

$$t_{7}$$

$$t_{8}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{4}$$

$$t_{5}$$

$$t_{6}$$

$$t_{7}$$

$$t_{8}$$

$$t_{8}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{4}$$

$$t_{5}$$

$$t_{6}$$

$$t_{7}$$

$$t_{7}$$

$$t_{8}$$

$$t_{8}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{4}$$

$$t_{5}$$

$$t_{7}$$

$$t_{8}$$

$$t_{8}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{4}$$

$$t_{4}$$

$$t_{4}$$

$$t_{4}$$

$$t_{4}$$

$$t_{5}$$

$$t_{4}$$

$$t_{5}$$

$$t_{6}$$

$$t_{7}$$

$$t_{8}$$

$$t_{7}$$

$$t_{8}$$

$$t_{8}$$

$$t_{8}$$

$$t_{8}$$

$$t_{9}$$

$$t_{9}$$

$$t_{9}$$

$$t_{9}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{1}$$

$$t_{2}$$

$$t_{3}$$

$$t_{4}$$

$$t_{4}$$

$$t_{4}$$

$$t_{5}$$

$$t_{7}$$

$$t_{8}$$

$$t_{8}$$

$$t_{8}$$

$$t_{1}$$

$$t_{1}$$

$$t_{1}$$

$$t_{2}$$

$$t_$$

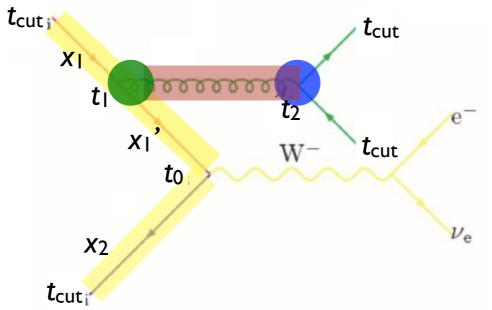
- We are of course not interested in e⁺e⁻ but p-p(bar)
 - what happens for initial state radiation?
- Let's do the same exercise as before:

tcuti

$$\mathcal{P} = \frac{(\Delta_{Iq}(t_{\mathrm{cut}},t_0))^2}{\Delta_g(t_2,t_1)} \Delta_g(t_2,t_1) (\Delta_q(t_{\mathrm{cut}},t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1,t_1)}{f_q(x_1',t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z') \\ \times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s},\ldots) f_q(x_1',t_0) f_{\bar{q}}(x_2,t_0) \\ t_{\mathrm{cut}} \\ t_1 \\ t_2 \\ t_2 \\ t_3 \\ t_4 \\ t_6 \\ t_{1} \\ t_{2} \\ t_{2} \\ t_{3} \\ t_{4} \\ t_{2} \\ t_{2} \\ t_{3} \\ t_{4} \\ t_{5} \\ t_{6} \\ t_{6} \\ t_{6} \\ t_{6} \\ t_{7} \\ t_{7} \\ t_{8} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{2} \\ t_{3} \\ t_{4} \\ t_{5} \\ t_{6} \\ t_{6} \\ t_{7} \\ t_{8} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{3} \\ t_{4} \\ t_{5} \\ t_{6} \\ t_{6} \\ t_{6} \\ t_{7} \\ t_{8} \\ t_{1} \\ t_{8} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{3} \\ t_{4} \\ t_{5} \\ t_{6} \\ t_{6} \\ t_{6} \\ t_{7} \\ t_{8} \\ t$$

- We are of course not interested in e⁺e⁻ but p-p(bar)
 - what happens for initial state radiation?
- Let's do the same exercise as before:

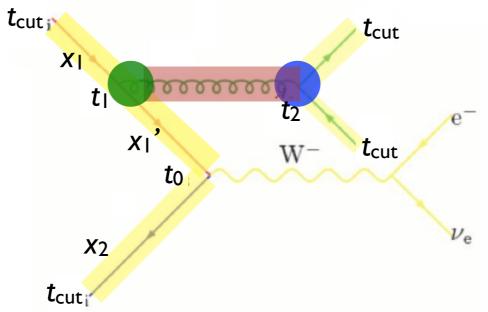
$$\mathcal{P} = \frac{(\Delta_{Iq}(t_{\text{cut}}, t_0))^2}{\Delta_g(t_2, t_1)} (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1, t_1)}{f_q(x_1', t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z') \\ \times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s}, ...) f_q(x_1', t_0) f_{\bar{q}}(x_2, t_0)$$



- We are of course not interested in e⁺e⁻ but p-p(bar)
 - what happens for initial state radiation?
- Let's do the same exercise as before:

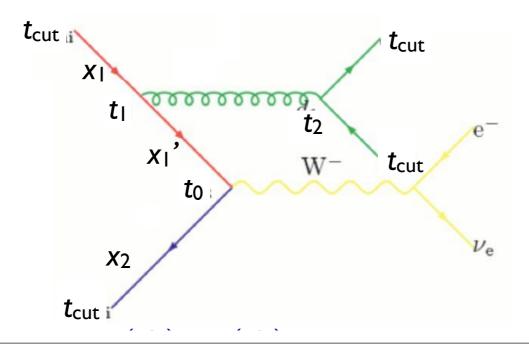
$$\mathcal{P} = \frac{(\Delta_{Iq}(t_{\text{cut}}, t_0))^2}{\Delta_g(t_2, t_1)} \frac{\Delta_g(t_2, t_1)}{(\Delta_q(t_{\text{cut}}, t_2))^2} \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1, t_1)}{f_q(x_1', t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

$$\times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s}, ...) f_q(x_1', t_0) f_{\bar{q}}(x_2, t_0)$$



$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1, t_1)}{f_q(x_1', t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

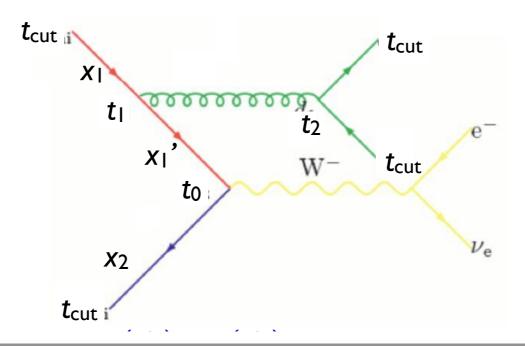
$$\times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s}, ...) f_q(x_1', t_0) f_{\bar{q}}(x_2, t_0)$$



$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{|f_q(x_1, t_1)|}{|f_q(x_1', t_1)|} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

$$\times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s}, ...) f_q(x_1', t_0) f_{\bar{q}}(x_2, t_0)$$

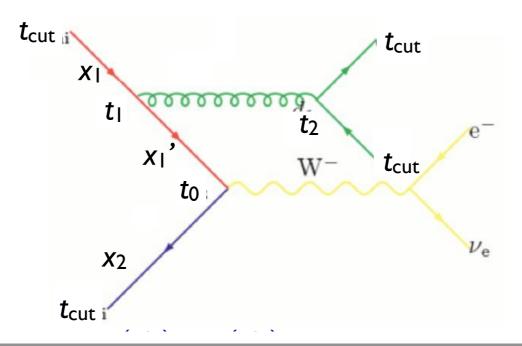
ME with α_s evaluated at the scale of each splitting



$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1, t_1)}{f_q(x_1', t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

$$\times \hat{\sigma}_{q\bar{q} \to e\nu}(\hat{s}, ...) f_q(x_1', t_0) f_{\bar{q}}(x_2, t_0)$$

ME with α_s evaluated at the scale of each splitting PDF reweighting

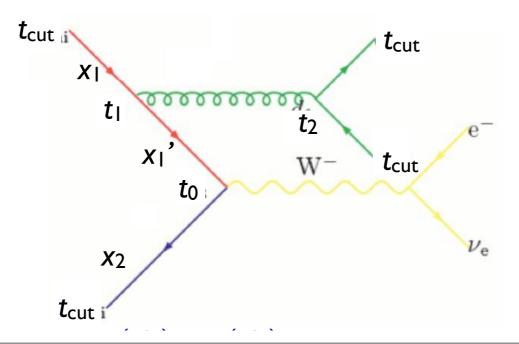


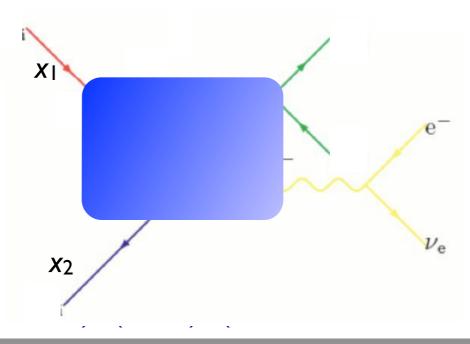
$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2 \frac{\alpha_s(t_1)}{2\pi} \frac{P_{gq}(z)}{z} \frac{f_q(x_1, t_1)}{f_q(x_1', t_1)} \frac{\alpha_s(t_2)}{2\pi} P_{qg}(z')$$

$$\times \hat{\sigma}_{q\bar{q}\to e\nu}(\hat{s},\ldots) f_q(x_1',t_0) f_{\bar{q}}(x_2,t_0)$$

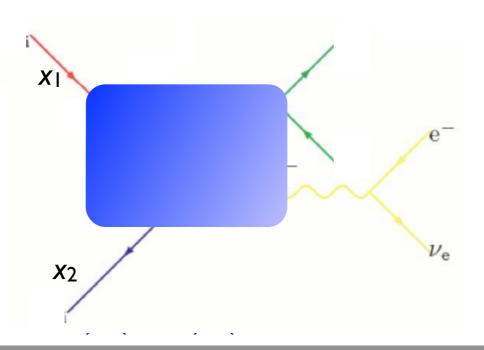
ME with α_s evaluated at the scale of each splitting PDF reweighting

Sudakov suppression due to non-branching above scale t_{cut}

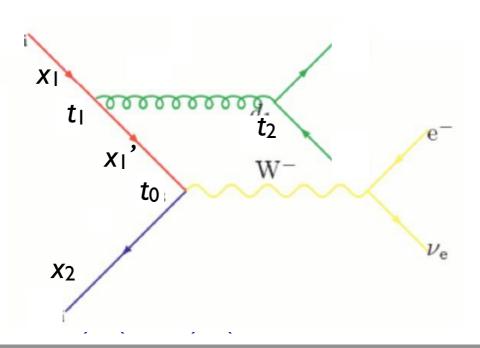




Again, use a clustering scheme to get a parton shower history

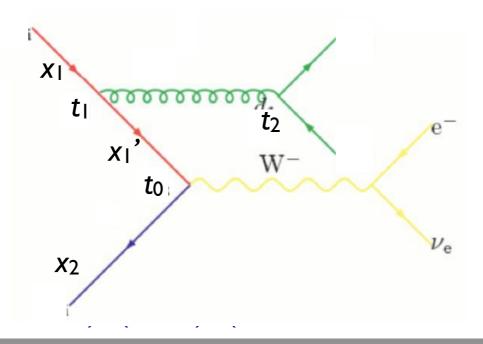


• Again, use a clustering scheme to get a parton shower history



- Again, use a clustering scheme to get a parton shower history
- Now, reweight both due to α_s and PDF

$$|\mathcal{M}|^2 \to |\mathcal{M}|^2 \frac{\alpha_s(t_1)}{\alpha_s(t_0)} \frac{\alpha_s(t_2)}{\alpha_s(t_0)} \frac{f_q(x_1', t_0)}{f_q(x_1', t_1)}$$

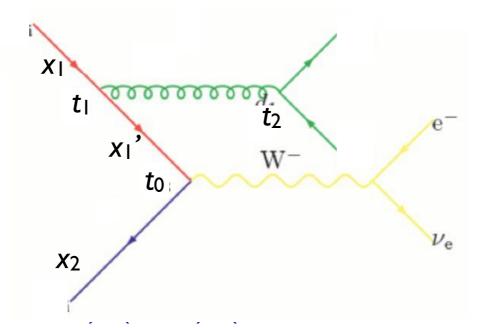


- Again, use a clustering scheme to get a parton shower history
- Now, reweight both due to α_s and PDF

$$|\mathcal{M}|^2 \to |\mathcal{M}|^2 \frac{\alpha_s(t_1)}{\alpha_s(t_0)} \frac{\alpha_s(t_2)}{\alpha_s(t_0)} \frac{f_q(x_1', t_0)}{f_q(x_1', t_1)}$$

• Remember to use first clustering scale on each side for PDF scale:

$$\mathcal{P}_{\text{event}} = \hat{\sigma}(x_1, x_2, p_3, p_4, \dots) f_q(x_1, t_1) f_{\bar{q}}(x_2, t_0)$$



K_T clustering schemes

The default clustering scheme used (in MG/Sherpa/AlpGen)to determine the parton shower history is the Durham k_T scheme. For e^+e^- :

$$k_{Tij}^2 = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})$$

and for hadron collisions, the minimum of:

$$k_{Tibeam}^2 = m_i^2 + p_{Ti}^2 = (E_i + p_{zi})(E_i - p_{zi})$$

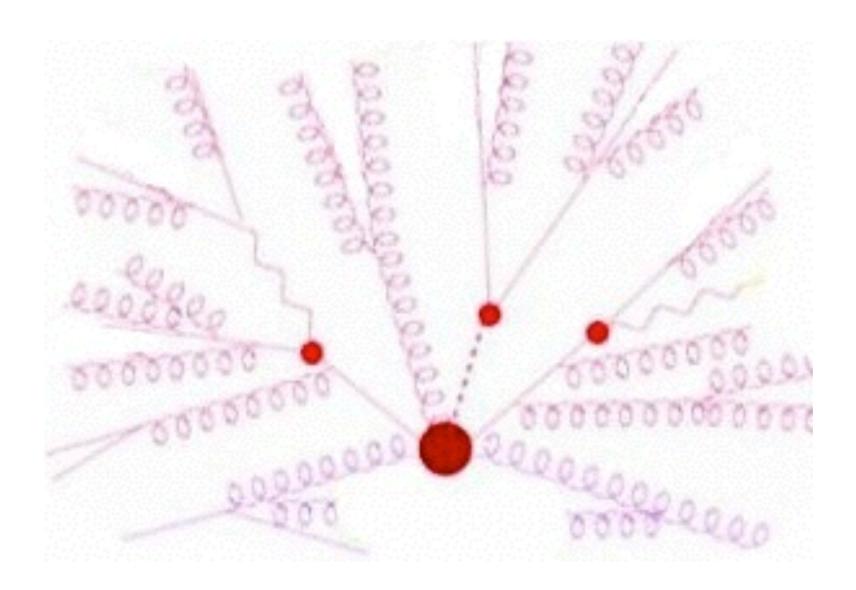
and

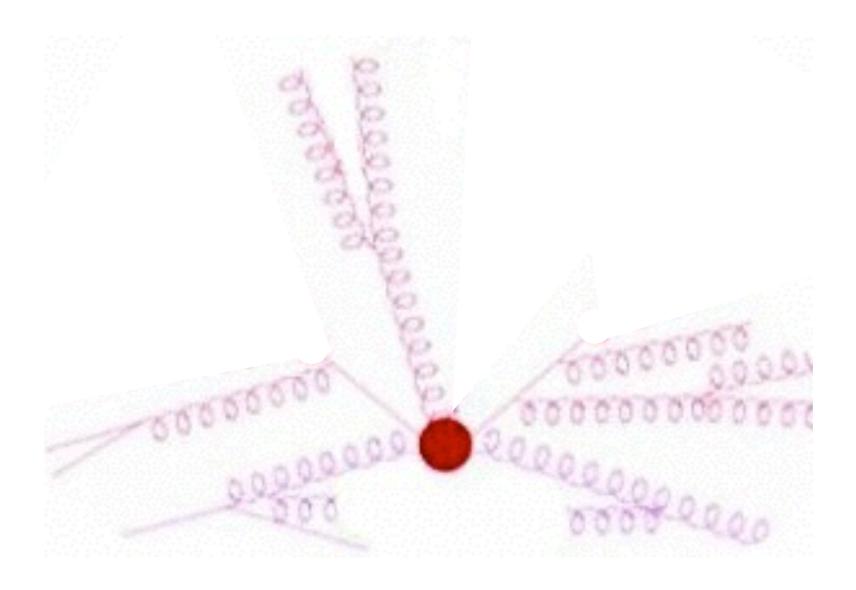
$$k_{Tij}^2 = \max(m_i^2, m_2^2) + \min(p_{Ti}^2, p_{Tj}^2) R_{ij}$$

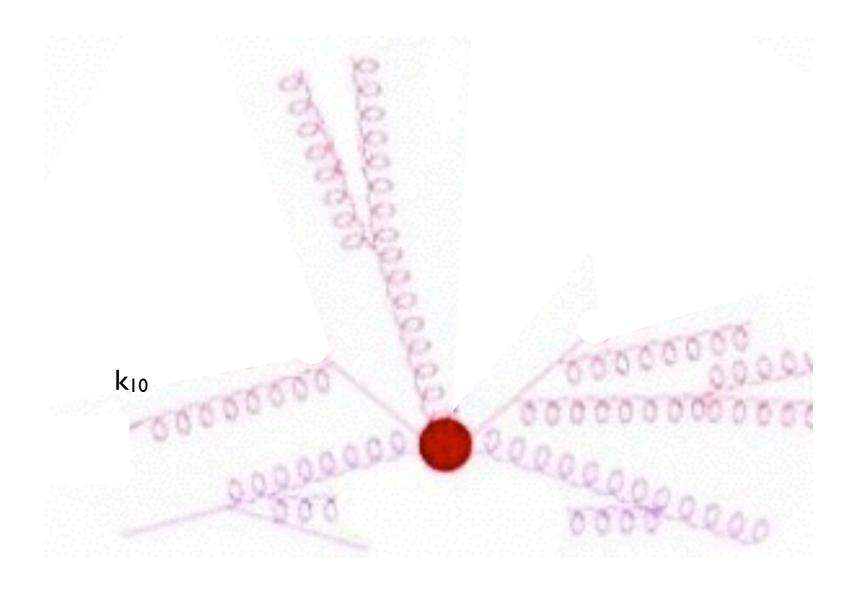
with

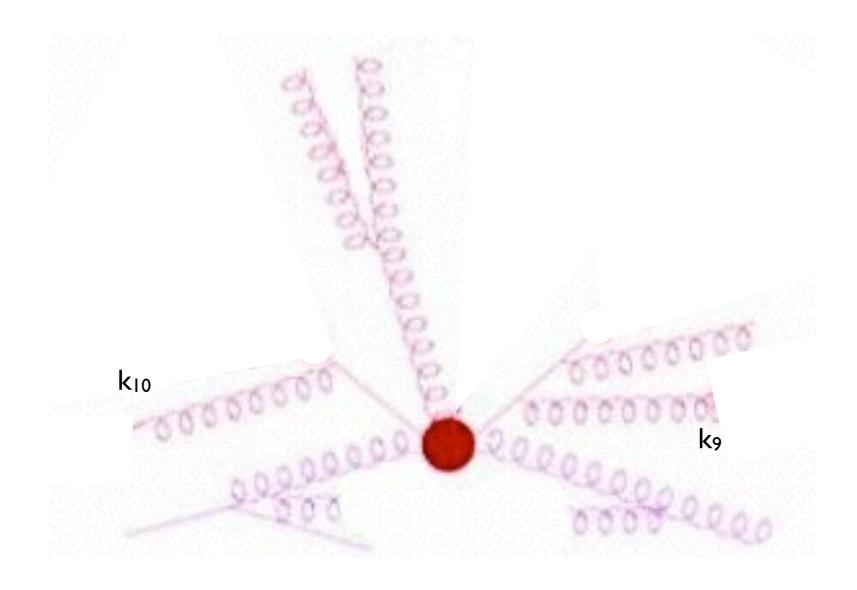
$$R_{ij} = 2[\cosh(y_i - y_j) - \cos(\phi_i - \phi_j)] \simeq (\Delta y)^2 + (\Delta \phi)^2$$

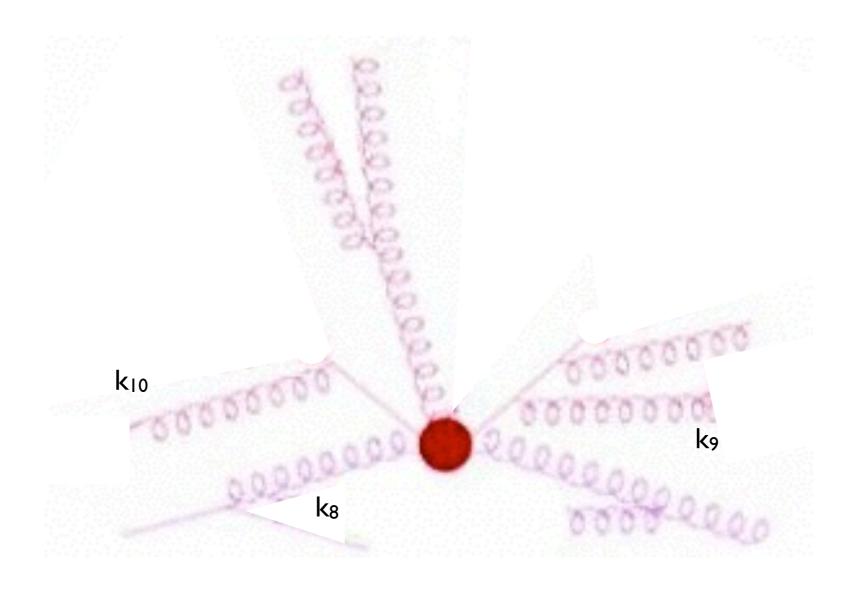
Find the smallest k_{Tij} (or k_{Tibeam}), combine partons i and j (or i and the beam), and continue until you reach a $2 \rightarrow 2$ (or $2 \rightarrow 1$) scattering.

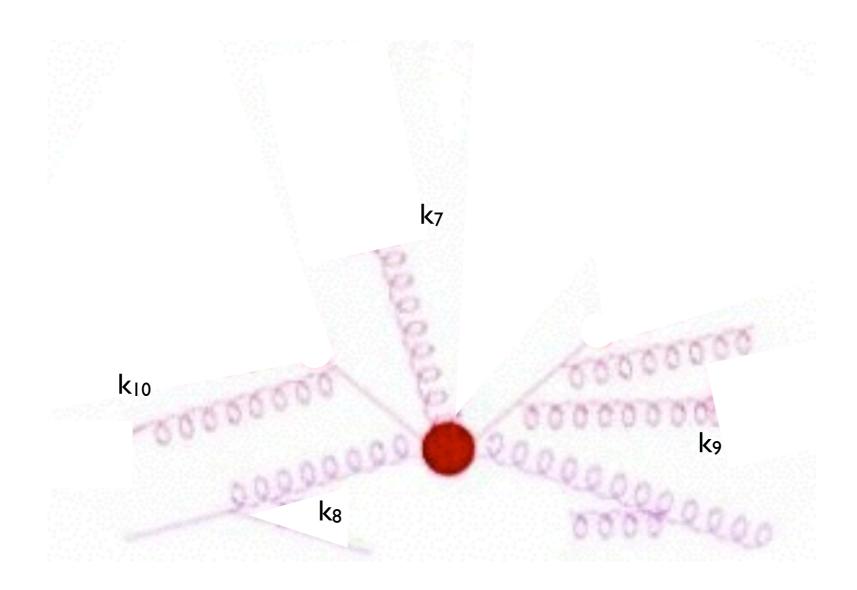


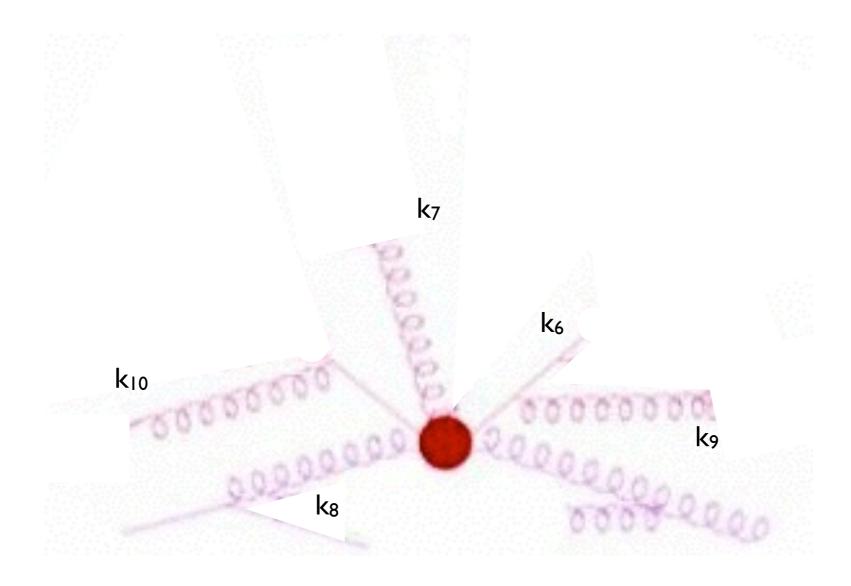


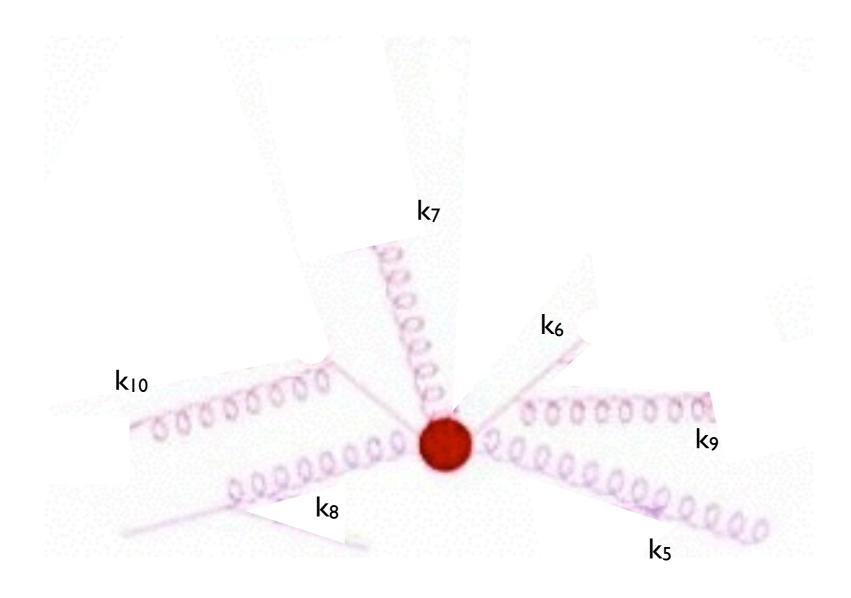


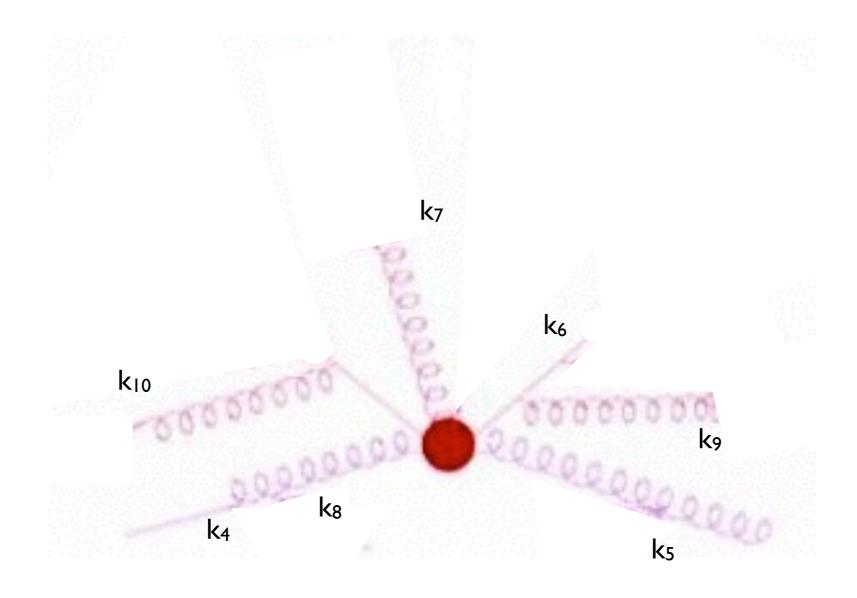


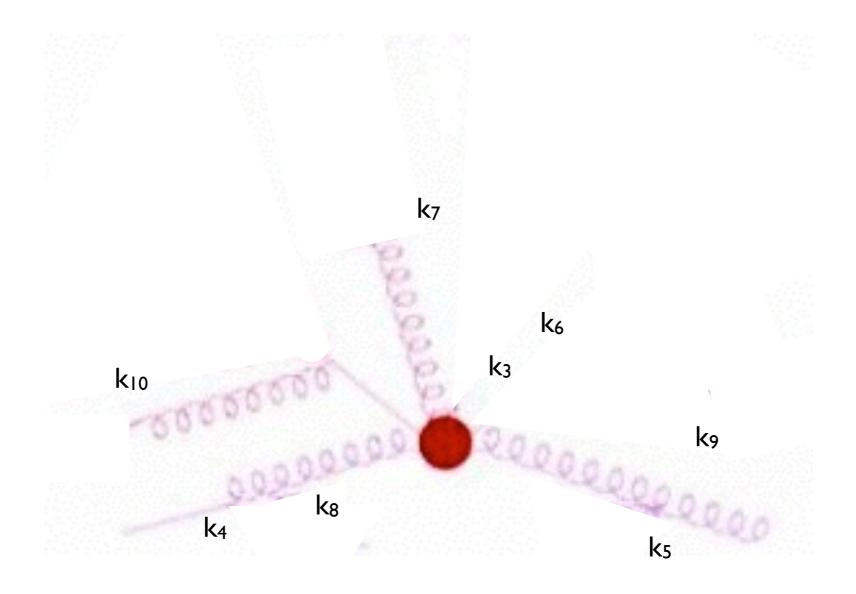


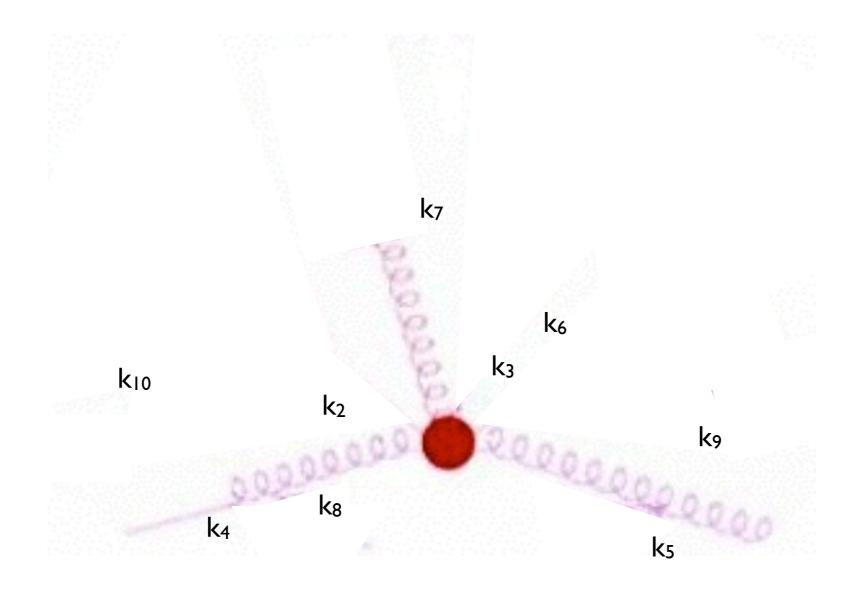


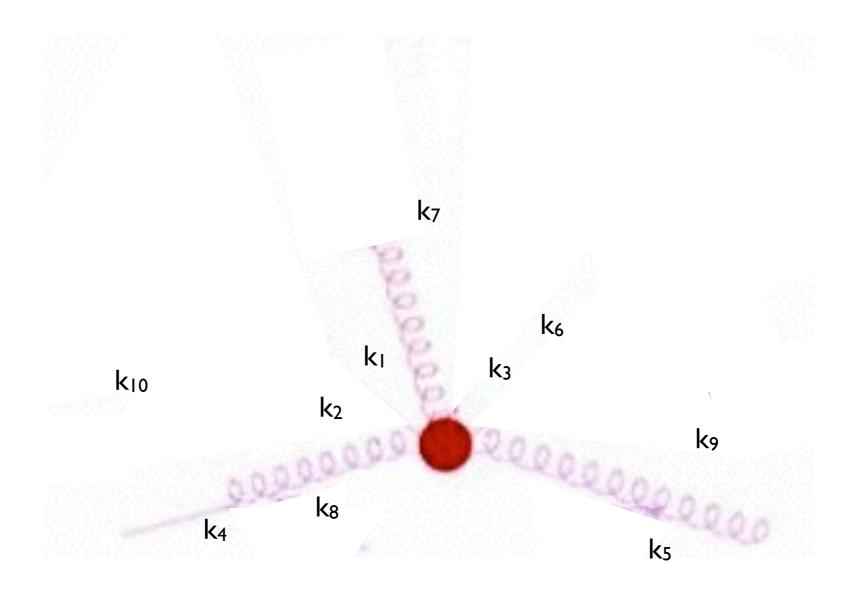












Matching schemes

- We still haven't specified how to apply the Sudakov reweighting to the matrix element
- Three general schemes available in the literature:
 - → CKKW scheme [Catani, Krauss, Kuhn, Webber 2001; Krauss 2002]
 - → Lönnblad scheme (or CKKW-L) [Lönnblad 2002]
 - → MLM scheme [Mangano unpublished 2002; Mangano et al. 2007]

[Catani, Krauss, Kuhn, Webber 2001] [Krauss 2002]

[Catani, Krauss, Kuhn, Webber 2001] [Krauss 2002]

Apply the required Sudakov suppression

$$(\Delta_{Iq}(t_{\text{cut}},t_0))^2 \Delta_g(t_2,t_1) (\Delta_q(t_{\text{cut}},t_2))^2$$

analytically, using the best available (NLL) Sudakovs.

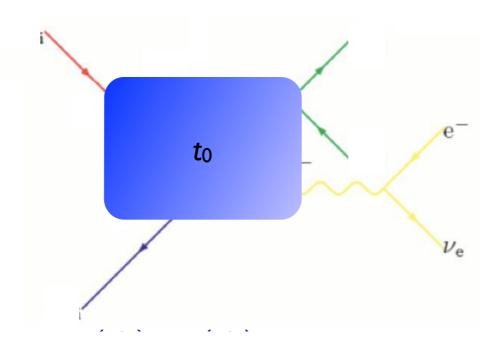
[Catani, Krauss, Kuhn, Webber 2001] [Krauss 2002]

Apply the required Sudakov suppression

$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2$$

analytically, using the best available (NLL) Sudakovs.

• Perform "truncated showering": Run the parton shower starting at t_0 , but forbid any showers above the cutoff scale t_{cut} .



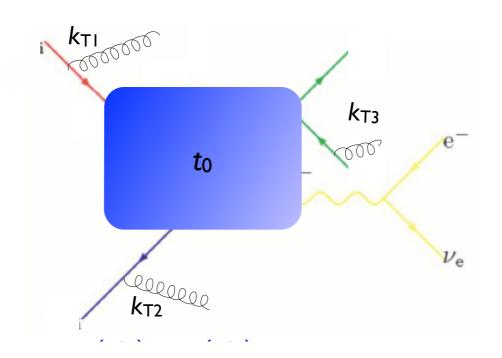
[Catani, Krauss, Kuhn, Webber 2001] [Krauss 2002]

Apply the required Sudakov suppression

$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2$$

analytically, using the best available (NLL) Sudakovs.

• Perform "truncated showering": Run the parton shower starting at t_0 , but forbid any showers above the cutoff scale t_{cut} .



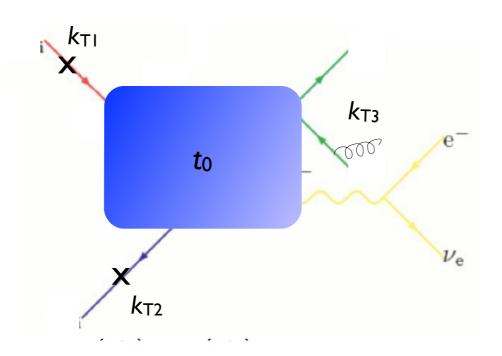
[Catani, Krauss, Kuhn, Webber 2001] [Krauss 2002]

Apply the required Sudakov suppression

$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2$$

analytically, using the best available (NLL) Sudakovs.

• Perform "truncated showering": Run the parton shower starting at t_0 , but forbid any showers above the cutoff scale t_{cut} .



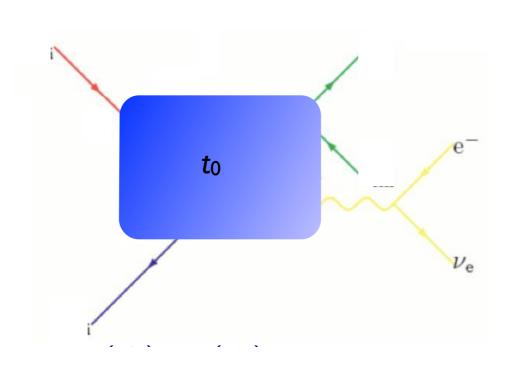
[Catani, Krauss, Kuhn, Webber 2001] [Krauss 2002]

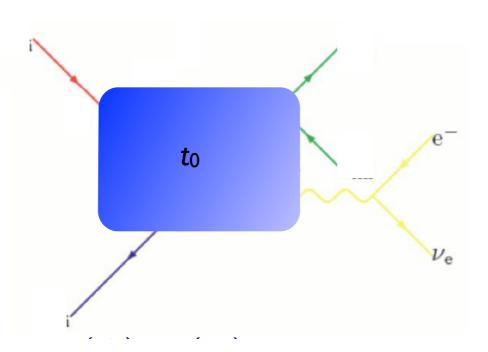
Apply the required Sudakov suppression

$$(\Delta_{Iq}(t_{\text{cut}}, t_0))^2 \Delta_g(t_2, t_1) (\Delta_q(t_{\text{cut}}, t_2))^2$$

analytically, using the best available (NLL) Sudakovs.

- Perform "truncated showering": Run the parton shower starting at t_0 , but forbid any showers above the cutoff scale t_{cut} .
 - √ Best theoretical treatment of matrix element
 - Requires dedicated PS implementation
 - Mismatch between analytical Sudakov and (non-NLL) shower
 - Implemented in Sherpa (v. 1.1)





Cluster back to "parton shower history"

 t_0 v_e

[Lönnblad 2002] [Hoeche et al. 2009]

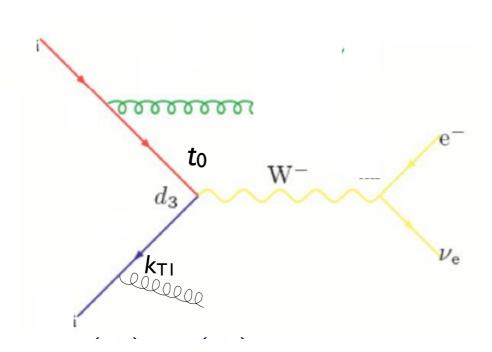
Cluster back to "parton shower history"

 t_0 $w^ \nu_{\rm e}$

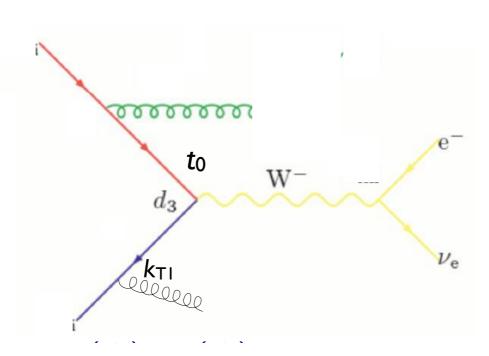
- Cluster back to "parton shower history"
- Perform showering step-by-step for each step in the parton shower history, starting from the clustering scale for that step

 t_0 $w^ v_e$

- Cluster back to "parton shower history"
- Perform showering step-by-step for each step in the parton shower history, starting from the clustering scale for that step



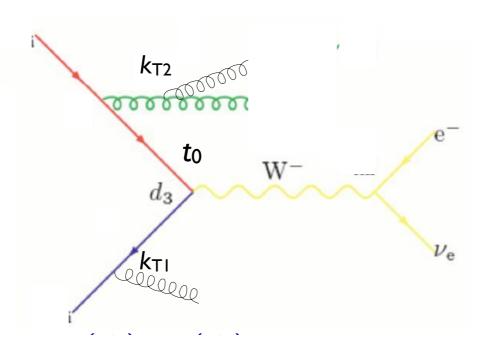
- Cluster back to "parton shower history"
- Perform showering step-by-step for each step in the parton shower history, starting from the clustering scale for that step



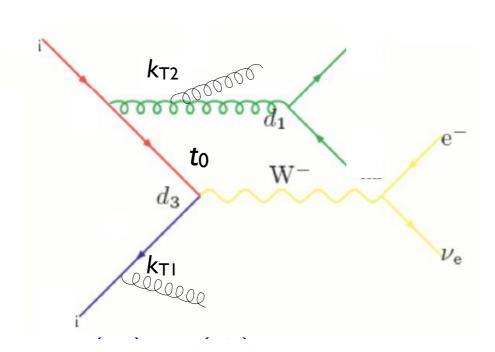
- Cluster back to "parton shower history"
- Perform showering step-by-step for each step in the parton shower history, starting from the clustering scale for that step
- Veto the event if any shower is harder than the clustering scale for the next step (or t_{cut} , if last step)

tο w- ν_e

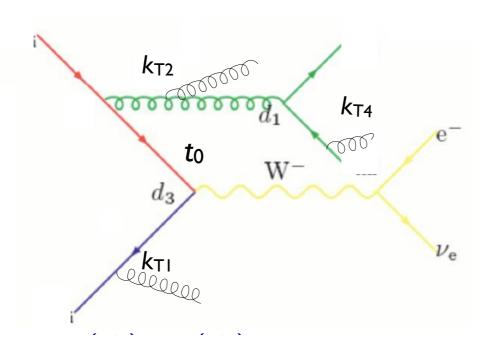
- Cluster back to "parton shower history"
- Perform showering step-by-step for each step in the parton shower history, starting from the clustering scale for that step
- Veto the event if any shower is harder than the clustering scale for the next step (or t_{cut} , if last step)
- Keep any shower emissions that are softer than the clustering scale for the next step



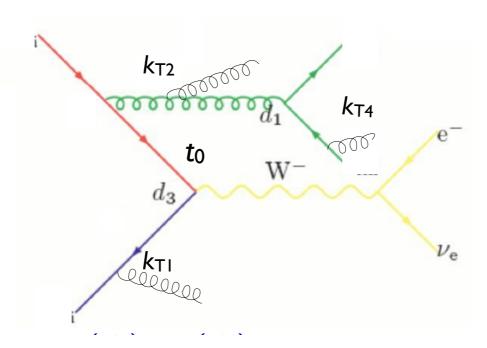
- Cluster back to "parton shower history"
- Perform showering step-by-step for each step in the parton shower history, starting from the clustering scale for that step
- Veto the event if any shower is harder than the clustering scale for the next step (or t_{cut} , if last step)
- Keep any shower emissions that are softer than the clustering scale for the next step



- Cluster back to "parton shower history"
- Perform showering step-by-step for each step in the parton shower history, starting from the clustering scale for that step
- Veto the event if any shower is harder than the clustering scale for the next step (or t_{cut} , if last step)
- Keep any shower emissions that are softer than the clustering scale for the next step

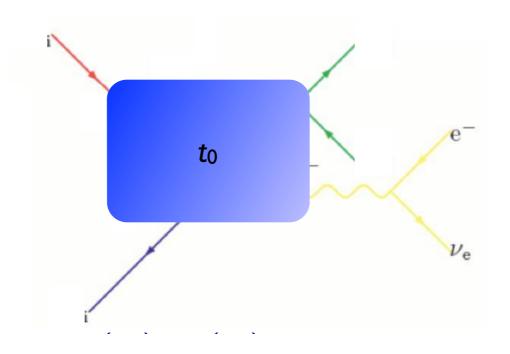


- Cluster back to "parton shower history"
- Perform showering step-by-step for each step in the parton shower history, starting from the clustering scale for that step
- Veto the event if any shower is harder than the clustering scale for the next step (or t_{cut} , if last step)
- Keep any shower emissions that are softer than the clustering scale for the next step



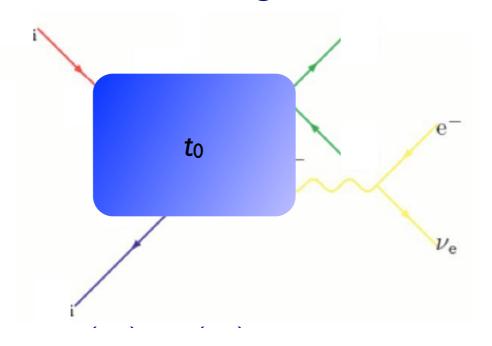
- Cluster back to "parton shower history"
- Perform showering step-by-step for each step in the parton shower history, starting from the clustering scale for that step
- ✓ Automatic agreement between Sudakov and shower
- Requires dedicated PS implementation
 - Need multiple implementations to compare between showers
- Implemented in Ariadne, Sherpa (v. 1.2), and Pythia 8

[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]



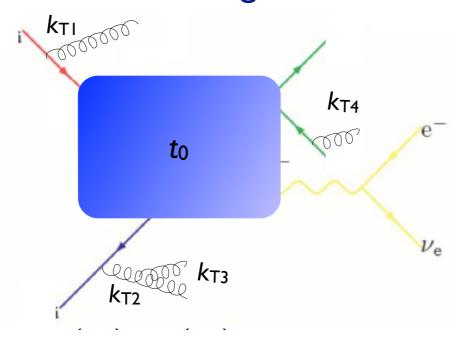
[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

• The simplest way to do the Sudakov suppression is to run the shower on the event, starting from t_0 !



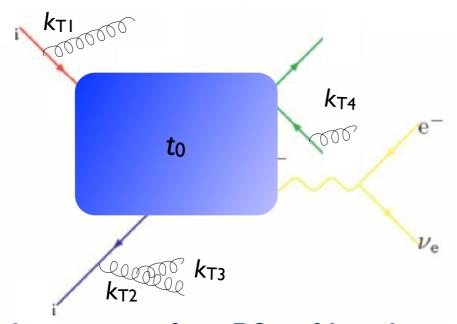
[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

• The simplest way to do the Sudakov suppression is to run the shower on the event, starting from t_0 !



[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

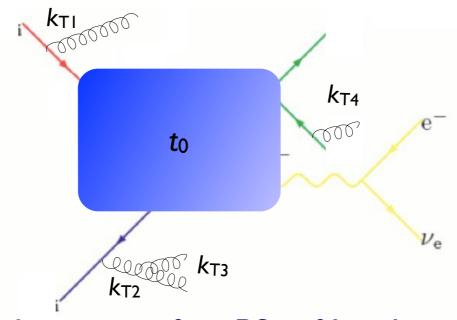
• The simplest way to do the Sudakov suppression is to run the shower on the event, starting from t_0 !



• Perform jet clustering after PS - if hardest jet $k_{T1} > t_{cut}$ or there are jets not matched to partons, reject the event

[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

• The simplest way to do the Sudakov suppression is to run the shower on the event, starting from t_0 !



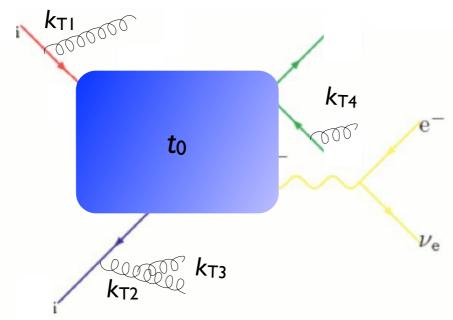
- Perform jet clustéring after PS if hardest jet $k_{T1} > t_{cut}$ or there are jets not matched to partons, reject the event
- The resulting Sudakov suppression from the procedure is

$$(\Delta_{Iq}(t_{\mathrm{cut}},t_0))^2(\Delta_q(t_{\mathrm{cut}},t_0))^2$$

which turns out to be a good enough approximation of the correct expression $(\Delta_{Iq}(t_{\rm cut},t_0))^2\Delta_g(t_2,t_1)(\Delta_q(t_{\rm cut},t_2))^2$

[M.L. Mangano, ~2002, 2007] [J.A. et al 2007, 2008]

• The simplest way to do the Sudakov suppression is to run the shower on the event, starting from t_0 !

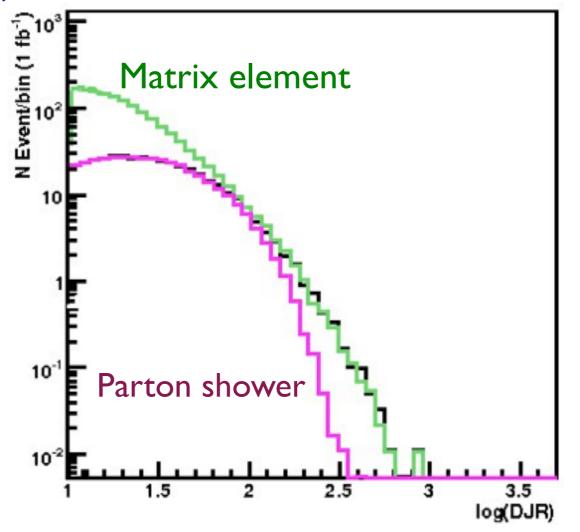


- Perform jet clustéring after PS if hardest jet $k_{T1} > t_{cut}$ or there are jets not matched to partons, reject the event
 - √ Simplest available scheme
 - ✓ Allows matching with any shower, without modification
 - Sudakov suppression not exact, minor mismatch with shower
 - Implemented in AlpGen, HELAC, MadGraph+Pythia 6

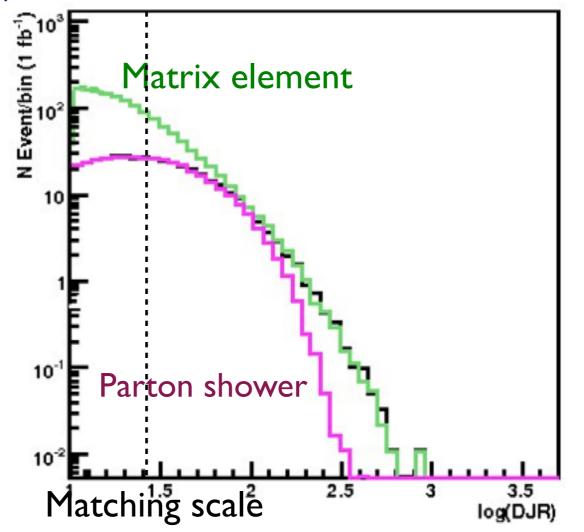
Highest multiplicity sample

- In the previous, assumed we can simulate all parton multiplicities by the ME
- In practice, we can only do limited number of final-state partons with matrix element (up to 4-5 or so)
- For the highest jet multiplicity that we generate with the matrix element, we need to allow additional jets above the matching scale t_{cut}, since we will otherwise not get a jetinclusive description – but still can't allow PS radiation harder than the ME partons
- ightharpoonup Need to replace t_{cut} by the clustering scale for the softest ME parton for the highest multiplicity

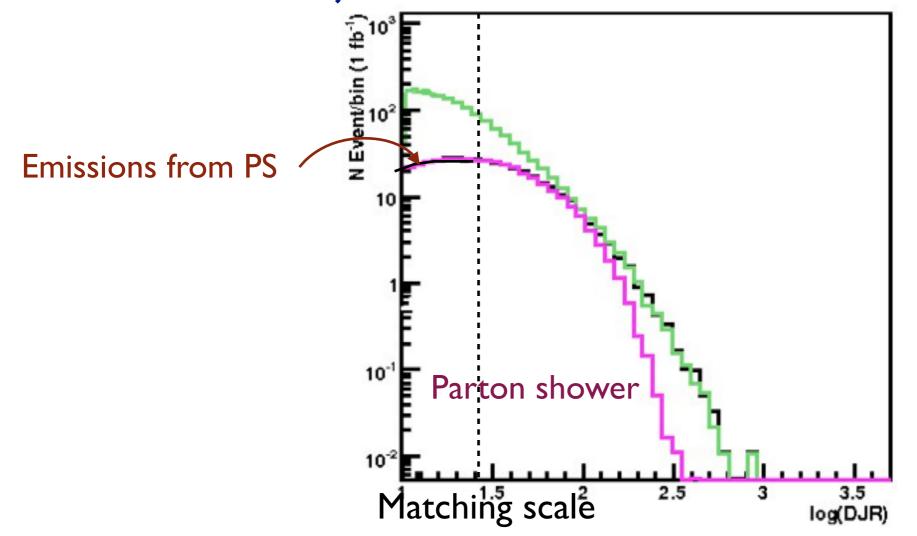
- Regularization of matrix element divergence
- Correction of the parton shower for large momenta
- Smooth jet distributions



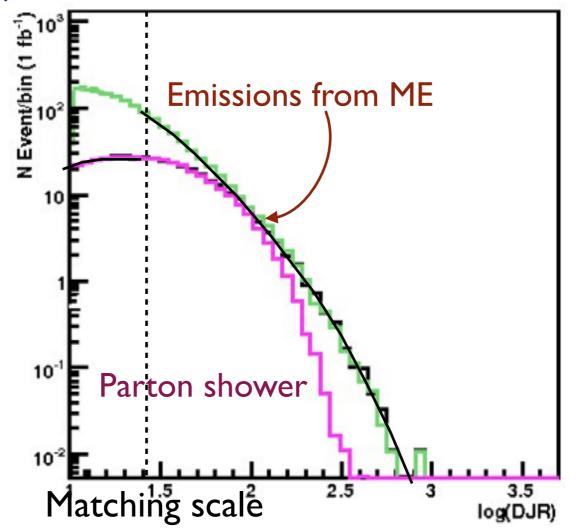
- Regularization of matrix element divergence
- Correction of the parton shower for large momenta
- Smooth jet distributions



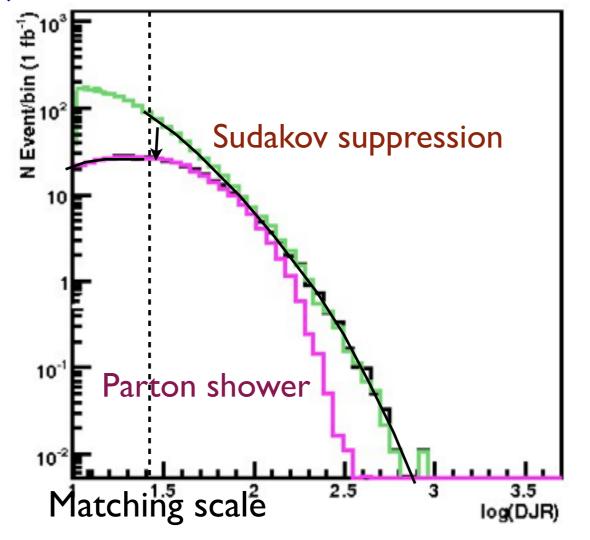
- Regularization of matrix element divergence
- Correction of the parton shower for large momenta
- Smooth jet distributions



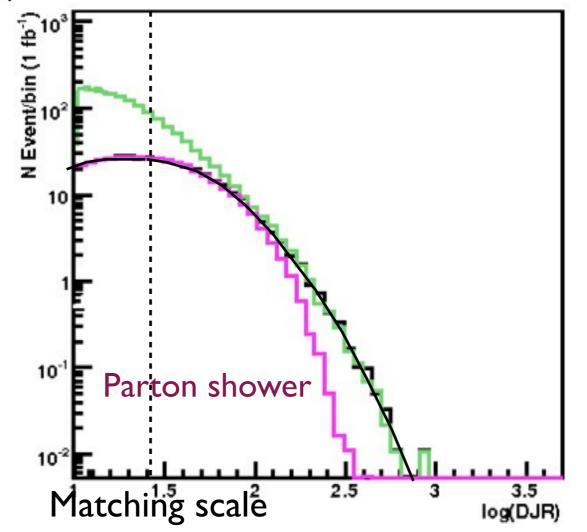
- Regularization of matrix element divergence
- Correction of the parton shower for large momenta
- Smooth jet distributions



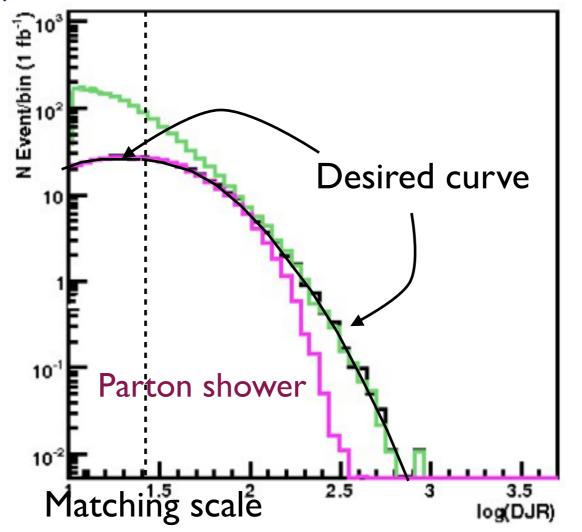
- Regularization of matrix element divergence
- Correction of the parton shower for large momenta
- Smooth jet distributions



- Regularization of matrix element divergence
- Correction of the parton shower for large momenta
- Smooth jet distributions



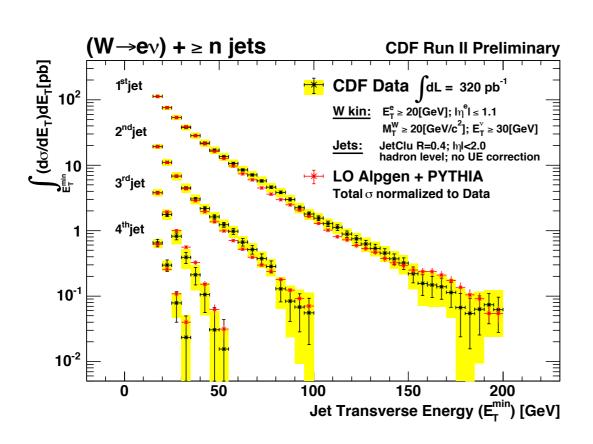
- Regularization of matrix element divergence
- Correction of the parton shower for large momenta
- Smooth jet distributions

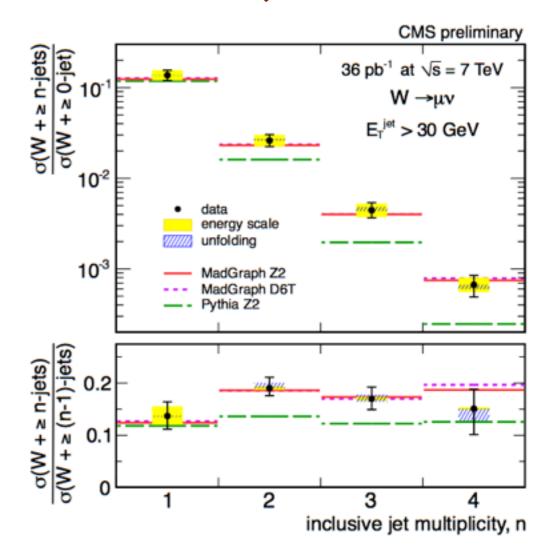


Summary of Matching Procedure

- I. Generate ME events (with different parton multiplicities) using parton-level cuts ($p_T^{ME}/\Delta R$ or k_T^{ME})
- 2. Cluster each event and reweight α_s and PDFs based on the scales in the clustering vertices
- 3. Apply Sudakov factors to account for the required non-radiation above clustering cutoff scale and generate parton shower emissions below clustering cutoff:
 - a. (CKKW) Analytical Sudakovs + truncated showers
 - b. (CKKW-L) Sudakovs from truncated showers
 - c. (MLM) Sudakovs from reclustered shower emissions

Comparing to experiment: W+jets





- Very good agreement at Tevatron (left) and LHC (right)
- Matched samples obtained via different matching schemes (MLM and CKKW)
 consistent within the expected uncertaintes.
- Pure parton shower (Pythia) doesn't describe the data beyond 1st jet.

Mattelaer Olivier NCTS 2014

matching in MadGraph+Pythia

Example: Simulation of pp→W with 0, 1, 2 jets (comfortable on a laptop)

```
mg5> generate p p > w+, w+ > l+ vl @0 mg5> add process p p > w+ j, w+ > l+ vl @1 mg5> add process p p > w+ j j, w+ > l+ vl @2 mg5> output
```

```
In run_card.dat:
...

1 = ickkw

0 = ptj

...

15 = xqcut

Matching on

No cone matching

k_T matching scale
```

Matching automatically done when run through MadEvent and Pythia!

matching in MadGraph+Pythia

- By default, k_T -MLM matching is run if xqcut > 0, with the matching scale QCUT = max(xqcut*1.4, xqcut+10)
- For shower-kT, by default QCUT = xqcut
- If you want to change the Pythia setting for matching scale or switch to shower- k_{T} matching:

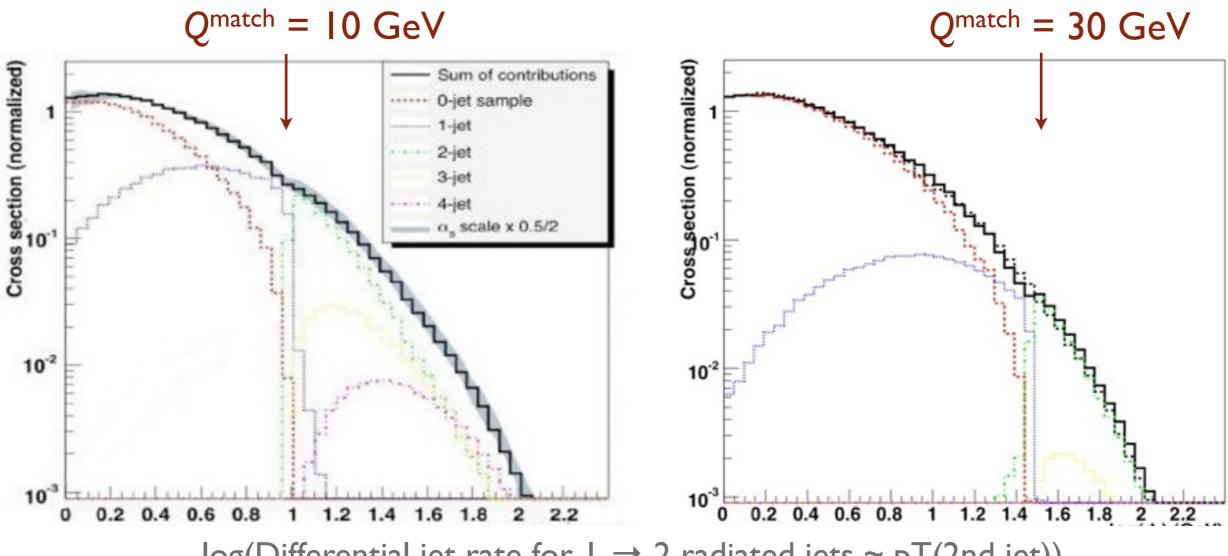
```
In pythia_card.dat:
...
! This sets the matching scale, needs to be > xqcut
QCUT = 30
! This switches from kT-MLM to shower-kT matching
! Note that MSTP(81)>=20 needed (pT-ordered shower)
SHOWERKT = T
```


How to do validate the matching

- The matching scale (QCUT) should typically be chosen around 1/6-1/2 x hard scale (so xqcut correspondingly lower)
- The matched cross section (for X+0,1,... jets) should be close to the unmatched cross section for the 0-jet sample (found on the process HTML page)
- The differential jet rate plots should be smooth
- When QCUT is varied (within the region of validity), the matched cross section or differential jet rates should not vary significantly

Matching validation

W+jets production at the Tevatron for MadGraph+Pythia $(k_{\rm T}$ -jet MLM scheme, q^2 -ordered Pythia showers)



 $log(Differential\ jet\ rate\ for\ l\rightarrow 2\ radiated\ jets \sim pT(2nd\ jet))$

Jet distributions smooth, and stable when we vary the matching scale!

Matching Summary

- Despite the apparent enormous complexity of simulation of complete collider events, nature has kindly allowed us to factorize the simulation into separate steps
- The Monte Carlo method allows us to step-by-step simulate hard scattering, parton shower, particle decays, hadronization, and underlying event
- Jet matching between matrix elements and parton showers gives crucial improvement of simulation of background as well as signal processes
- Running matching with MadGraph + Pythia is very easy, but the results should always be checked for consistency