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/" Aim of the Lecture N

*Get you acquainted with the concepts and
techniques used 1n event generation

* Give you hands-on experience

\_ */Answer as many of your questions as I can

/ Lecture 1

e I[ntroduction

AN

e Fvaluation of Matrix Element

e Integration of the cross-section/ events
\_ generation

/ Lecture 11
e Shower Monte-Carlo

k * Matching/Merging /
. Mattelaeroliviee  NeTs2014 o
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Standard Model Production Cross Section Measurements Status: March 2014
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CMS

WW - o 1.11+0.11+0.04 4.9fb"
\ WW — * — 122+012+0.04 35fb"
(ATLAS

LHC pp Vs=7 TeV
WWI/| oo # B theory | II \ o
A data
- stat only

\ stat+syst 05 1 15
(COMBINE

¢ Both seems indicates a 15-20% excess

A A,

* Not significant at all

* Need more data / theoretical precision
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e Soft b/b~

= not observed

\ e evade direct searches constraints /
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(" Check the model!

e Monte-Carlo!
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/SUSY [aike Explanation \

205 GeV wr

5150 GeV

8
\ Kim, Rolbleckl, sakural, Tattersal [1406.0258]

/Compressed Spectrum  M; ~ M, + N\
e Soft b/b~

= not observed

K e evade direct searches constraints /
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|. An excess is discovered in data

2. Exhaust SM explanations for the excess
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( Modelling Excesses N

|. An excess is discovered in data

2. Exhaust SM explanations for the excess

3. Think of possible new physics explanations

= W/ithin or outside of conventional/high scale models

4. Find range of model parameters that can explain excess

= Typically, using Monte Carlo simulations
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/" Modelling Excesses N

|. An excess is discovered in data

2. Exhaust SM explanations for the excess

3. Think of possible new physics explanations

= W/ithin or outside of conventional/high scale models

4. Find range of model parameters that can explain excess
= Typically, using Monte Carlo simulations

5. Find other observables (collider as well as flavor/EVVP/
cosmology) where the explanation can be verified/falsified

= Note that indirect constraints (flavor/EVWWP/cosmology)
\_ typically modified by additional particles in the spectrum/
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Simulation of collider events
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What are the MC for”/
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~@>~  \What are the MC for?  wpum

| Hi,czh-Q2 Scattering 2. Parton Shower

= where new physics lies

s process dependent

= first principles description

¥ it can be systematically improved

3. Hadronization 4, Underlying__Event
. Mattelaerolivier NeTs=2014 42
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= QCD -"known physics”
& universal/ process independent

& first principles description

3. Hadronization 4. Underlying Event
 Mattelaerolivier ~ NeTs2014 43
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= universal/ process independent

& low Q2 physics
= model-based description

3. Hadronization | 4. Underlying Event
 Mattelaerolivier ~ NeTsS2014 14




. High-Q2 Scattering 2. Parton Shower

2 .
= low Q physics
& energy and process dependent

= model-based description

3. Hadronization A 4. Underlying Event
 Mattelaeroliviee  NeTs2014 15




5. Detector simulation

Mattelaer Olivier NCTS 2014 16



Tevatron vs. the LHC  wpuham

* Tevatron: 2 TeV proton-antiproton collider

= Most important: q-q annihilation (85% of t t )
 LHC: 8-14 TeV proton-proton collider

= Most important: g-g annihilation (90% of t t )

- /
 Mattelaerolivier ~ NeTS2014 a7




Tevatron vs. the LHC ot

* Tevatron: 2 TeV proton-antiproton collider
= Most important: q-q annihilation (856% of t t )
 LHC: 8-14 TeV proton-proton collider

= Most important: g-g annihilation (90% of t t )

- /
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Hadron Colliders W Durham

proton - (anti)proton cross sections

/First: Understand our processes! N

Tevatron LHC

Cross sections at a collider depend on: /

® Coupling strength wie
® Coupling to what? b oE™ s ver0) : - 35:_7
(ight quarks, gluons, heavy quarks, 1‘% We, —) :
EW gauge bosons?) e 1002;;/) §
® Mass %

e

o (E,™ > Vs/4)

O pe(M,=120 GeV)
200 GeV

\. Single production/pair production Y

500 GeV

Vs (TeV)




Hadron Colliders W Durham

proton - (anti)proton cross sections

/First: Understand our processes! N

Tevatron LHC
Cross sections at a collider depend on: /
® Coupling strength 10 .;g
10°
N }
® Coupling to what? b ouE > Vw20 . e
- 1 I
3 |
(light quarks, gluons, heavy quarks, |2 v
EW gauge bosons?) "o (e > 100600

® Mass
\. Single production/pair production Y

events / sec for ¢

o (E,™ > Vs/4)

0,e(M,=120 GeV)
200 GeV’
500 GeV
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Parton-level cross
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long distance :

fa(xla /LF)fb(a;Qv /LF) 5-a,b—>X(§7 HE, /’LR)

Parton density Parton-level cross
functions section
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long distance :

) /dwldxzd%s falx1, pr) fo(22, iF) Gap—x (5, LFs LR)

a,b
’ Phase-space Parton density Parton-level cross

integral functions section
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Matrix Element
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Vatrix Element W Durham




Matrix Element
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ersity

Very Efficient !!!
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Very Efficient !!!
But the number of terms rises as N2




Very Efficient !!!
But the number of terms rises as N2

Only for 2—2 and 2—3
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e Idea: Evaluate 7 for fixed helicity of external

particles
= Multiply 7 with %¢* -> |7 |2

= Loop on Helicity and sum the results

4

M = uyHv P, uy"v
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Numbers for given helicity and momenta
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e Idea: Evaluate 7 for fixed helicity of external

particles
= Multiply 7 with %¢* -> |7 |2

= Loop on Helicity and sum the results

2 4

/ M :@@u@@

Numbers for given helicity and momenta

CALL OXXXXX(P(0,1),ZERO,NHEL(1l),-1*IC(1l),W(1,1))
CALL IXXXXX(P(0,2),ZERO,NHEL(2),+1*IC(2),W(1,2))
CALL IXXXXX(P(0,3),ZERO,NHEL(3),-1*IC(3),W(1,3))
CALL OXXXXX(P(0,4),ZERO,NHEL (4) ,+1*IC(4) ,W(1,4))
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e Idea: Evaluate 7 for fixed helicity of external

particles
= Multiply 7 with %¢* -> |7 |2

= Loop on Helicity and sum the results

2 4

/ M :@@u@@

Numbers for given helicity and momenta

CALL OXXXXX(P(0,1),ZERO,NHEL(1l),-1*IC(1l),W(1,1))
CALL IXXXXX(P(0,2),ZERO,NHEL(2),+1*IC(2),W(1,2))
CALL IXXXXX(P(0,3),ZERO,NHEL(3),-1*IC(3),W(1,3))
CALL OXXXXX(P(0,4),ZERO,NHEL (4) ,+1*IC(4) ,W(1,4))




Al
W Durham

e Idea: Evaluate 7 for fixed helicity of external

particles
= Multiply 7 with %¢* -> |7 |2

= Loop on Helicity and sum the results

M =@/ CFDr®

Numbers for given helicity and momenta

4

Calculate propagator wavefunctions

CALL OXXXXX(P(0,1),ZERO,NHEL(1l),-1*IC(1l),W(1,1))
CALL IXXXXX(P(0,2),ZERO,NHEL(2),+1*IC(2),W(1,2))
CALL IXXXXX(P(0,3),ZERO,NHEL(3),-1*IC(3),W(1,3))
CALL OXXXXX(P(0,4),ZERO,NHEL (4) ,+1*IC(4) ,W(1,4))

CALL JIOXXX(W(1l,2),W(l,1),GAL,ZERO,ZERO,W(1,65))
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particles
= Multiply 7 with %¢* -> |7 |2

= Loop on Helicity and sum the results

M =G/ CFDr®

Numbers for given helicity and momenta

4

Calculate propagator wavefunctions
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e Idea: Evaluate 7 for fixed helicity of external

particles
= Multiply 7 with %¢* -> |7 |2

= Loop on Helicity and sum the results

M =@/ CFDr®

Numbers for given helicity and momenta

4

Calculate propagator wavefunctions

CALL OXXXXX(P(0,1),ZERO,NHEL(1l),-1*IC(1l),W(1,1))
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CALL JIOXXX(W(1l,2),W(l,1),GAL,ZERO,ZERO,W(1,65))
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e Idea: Evaluate 7 for fixed helicity of external

particles
= Multiply 7 with %¢* -> |7 |2

= Loop on Helicity and sum the results

Numbers for given helicity and momenta

Calculate propagator wavefunctions
Finally evaluate amplitude (c-number)

CALL OXXXXX(P(0,1),ZERO,NHEL(1l),-1*IC(1l),W(1,1))
CALL IXXXXX(P(0,2),ZERO,NHEL(2),+1*IC(2),W(1,2))
CALL IXXXXX(P(0,3),ZERO,NHEL(3),-1*IC(3),W(1,3))
CALL OXXXXX(P(0,4),ZERO,NHEL (4) ,+1*IC(4) ,W(1,4))

CALL JIOXXX(W(1l,2),W(1,1),GAL,ZERO,ZERO,W(1,5))
CALL IOVXXX(W(1l,3),W(1,4),wW(1l,5),GAL,AMP (1))
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e Idea: Evaluate 7 for fixed helicity of external

particles
= Multiply 7 with %¢* -> |7 |2

= Loop on Helicity and sum the results

Numbers for given helicity and momenta

Calculate propagator wavefunctions
Finally evaluate amplitude (c-number)

CALL OXXXXX(P(0,1),ZERO,NHEL(1l),-1*IC(1l),W(1,1))
CALL IXXXXX(P(0,2),ZERO,NHEL(2),+1*IC(2),W(1,2))
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e Idea: Evaluate 7 for fixed helicity of external

particles
= Multiply 7 with %¢* -> |7 |2

= Loop on Helicity and sum the results

4

Numbers for given helicity and momenta

Calculate propagator wavefunctions
Finally evaluate amplitude (c-number)

CALL OXXXXX(P(0,1) ,ZERO,NHEL (1) ,-1*IC(1),W(1,1))

o . CALL IXXXXX(P(0,2),ZERO,NHEL(2),+1*IC(2),W(1,2))
Helicity amplitude calls CALL IXXXXX(P(0,3),ZERO,NHEL(3),-1*IC(3),W(1,3))
written by MadGraph CALL OXXXXX (P (0,4) ,ZERO,NHEL (4) ,+1*IC(4) ,W(1,4))

CALL JIOXXX(W(1l,2),W(1,1),GAL,ZERO,ZERO,W(1,5))
CALL IOVXXX(W(1l,3),W(1,4),wW(1l,5),GAL,AMP (1))
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mm Known

Number of routines: |

Number of routines:

Number of routines for both: |




Real case

|dentical = Known

Number of routines: |

Number of routines:

Number of routines for both: |

A
¥ Durham

University




Real case W Durham

mm Known

Number of routines: 6
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mm Known

|dentical

Number of routines: 7 Number of routines: 7

Number of routines for both:7
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mm Known

Number of routines: 8

|dentical

Number of routines: 8

Number of routines for both:8
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mm Known

Number of routines: 9

Number of routines: 8

Number of routines for both:9
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mm Known

Number of routines: |0

Number of routines: 8

Number of routines for both: |0
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mm Known

Number of routines: |0

Number of routines: 9

Number of routines for both: | |
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mm Known

Number of routines: |1 0 Number of routines: |0

Number of routines for both: |2
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mm Known

Number of routines: |0 Number of routines: |0
2(N+1) 2(N+1)

Number of routines for both: |2
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mm Known

Number of routines: | Q Number of routines: |0
2(N+1) 2(N+1)

Number of routines for both:|?2

NI*2(N+1) — NI
gy | UM T



Real case W Durham

mm Known

Number of routines: | Q Number of routines: |0
2(N+1) 2(N+1)

Number of routines for both:|?2

NI*2(N+1) — NI In progress | o~
. Mmattelaerolivier ~ NeTsa2014 o




Helicity amplitudes
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* Thanks to new diagram generation algorithm, wt

recycling much more ethicient in MG5 than MGA4

Wavefunctions

Run time

Process Amplitudes NG AT MG | MG 1 NG T
utt — et e 2 6 6 < 6us < Gus
utt = ete"ete I8 62 32 0.22 ms | 0.14 ms
Qm —ete ete ete” 3474 3194 301 | 46.5 ms | 19.0 ms)
wi — dd 1 D D < 4pus < 4pus
uii — ddg D 11 11 27 ps 27 ps
uii — ddgg 38 A7 29 0.42 ms | 0.31 ms
wit — ddggg 393 355 122 | 10.8 ms | 6.75 ms
Ut — uigqg 76 84 40 1.24 ms | 0.80 ms
uit — uigqgq 786 682 174 35.7ms | 17.2 ms
wtt — dddd 14 28 19 84 ps 83 us
uit — ddddg 132 178 65 1.88 ms | 1.15 ms
utt — ddddggq 1590 1782 286 141 ms | 34.4 ms
( wit — dddddd 612 708 141 425 ms | 6.6 ms)

Time for matrix element evaluation on a Sony Vaio TZ laptop

no recycling

300,000

5500
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/ [Murayama, Watanabe, Hagiwarm

* Ornginal HELicity Amplitude Subroutine library
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[Murayama, Watanabe, Hagiwarm

Original HELicity Amplitude Subroutine library

One routine per Lorentz structure
= MSSM [cho, al] hep-ph/0601063 (2006)
= HEFT [Frederix] (2007)

= Spin 2 [Hagiwara, al] 0805.2554 (2008)

= Spin 3/2 [Mawatari, al] 1101.1289 (2011) /




HELAS W Durham

/ [Murayama, Watanabe, Hagiwarm

* Ornginal HELicity Amplitude Subroutine library

* One routine per Lorentz structure
= MSSM [cho, al] hep-ph/0601063 (2006)
= HEFT [Frederix] (2007)

= Spin 2 [Hagiwara, al] 0805.2554 (2008)

\ = Spin 3/2 [Mawatari, al] 1101.1289 (2011) /
Chiral Perturbation BNV Model
Effective Field Theory NMSSM

Full HEFT Chromo-magnetic
operator

Black Holes
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me:[ UFO ﬂ 1 To Helicity  Translate

Type text or a website address or translate a document.
covre

PYTHON

programming

FORTRAN 77

and Numerical
Methods for
Engineers

WESLEY J. CHUN
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Type text or a website address or translate a document.
covre

PYTHON

programming

FORTRAN 77

and Numerical
Methods for
Engineers

WESLEY J. CHUN
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- ALOHA
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Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:




Monte Carlo Integration ot

Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:

_ 1 >
o = 23/|M| dP(n)
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Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:

L ) o
7= 2—3/|M| d®(n)
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Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:

Dim|®(n)] ~ 3n
1 NN 4
o= 2_3/|M| dP(n)

General and flexible method is needed
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= Convergence is slow but it can be easily estimated

= Error does not depend on # of dimensions!
= Improvement by minimizing V.




Integrals as averages o

= Convergence is slow but it can be easily estimated

= Error does not depend on # of dimensions!
= Improvement by minimizing V.
= Optimal/ldeal case: f(x)=C =Vn=0
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Importance Sampling — ¥eute

Iy = 0.637 £0.307/vVN

In = 0.637 £ 0.031/V/N

1 1 T
COS oI
I:/ de cos —g I:/ dz (1 — z°) 2
0 2 0

1 — x?

_ &2 jecos Fz[¢]
- J& ag 1—x[£]?
 Mattelaeroliviee ~ NeTs2014 . 3
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Iy = 0.637 £0.307/vVN In =0.6374+0.031/VN

1 1
cos X x
I:/ d:z:cosia: I:/ daj(l—$2) 22
0 2 0 1 —=x
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but... you need to know a lot about f(x)!
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Alternative: learn during the run and build a step-function
approximation p(x) of f(x) #VEGAS
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Alternative: learn during the run and build a step-function

approximation p(x) of f(x) #VEGAS
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but... you need to know a lot about f(x)!

Alternative: learn during the run and build a step-function

approximation p(x) of f(x) #VEGAS
Me104

~ ]

N many bins where f(x) is

\ large

p(x) = N Az r, — Ax; < x < 24
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can be generalized to n dimensions:

p(x)= p(X)*p(y)*P(2). .
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Importance Sampling

can be generalized to n dimensions:

p(x)= p(x)*p(y)*P(2). .-

but the peaks of f(?() need to be “aligned” to the axis!

but it is sufficient to make
a change of variables!
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What do we do if there is
no transformation that
aligns all integrand peaks
to the chosen axes?
Vegas is bound to fail!
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What do we do if there is
no transformation that
aligns all integrand peaks
to the chosen axes?
Vegas is bound to fail!

Solution: use different transformations = channels
n n
p(x) = aipi(z)  with > =1
i=1 i=1
with each pi(x) taking care of one “peak” at the time
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Example: QCD 2 = 2 ¥ubm

Three very different pole structures contributing
to the same matrix element.
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Consider the integration of an amplitude |M|*2 at tree level which many
contributing diagrams.VWe would like to have a basis of functions,

such that: =1

|. we know how to integrate each one of them,
2. they describe all possible peaks,

giving us the combined integral

Iz/dé[)f Z/dcbgzcﬁ fzg;:Zh,
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Consider the integration of an amplitude |M|*2 at tree level which many
contributing diagrams.VWe would like to have a basis of functions,

such that: =1

|. we know how to integrate each one of them,
2. they describe all possible peaks,

giving us the combined integral
L A@) &
I:/dcpf Z/dCIDQZCD fg(f);:zh,

Does such a basis exist?
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*Method used in MadGraph

Does such a basis exist!? A2
YES! = Z
RS DAV RE

O Dl SLE Iy [p ATy e [ 1P
p— — AO — L AO — AO
1 i /fz i /Zj ‘A]P’ tt’ zj ‘AJ|2’ tt’ ‘ tt‘

‘Atot |2
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*Method used in MadGraph

Does such a basis exist!? A, |2
{2

' T Aoz
YES! fi=f el

‘Az’|2 2 Z"AiP 2 / 2
[: i — AO p— ¢ AO p— AO
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*Method used in MadGraph

Does such a basis exist!? A, |2
{2

’ A A02
YES! fi=f el

‘Ai,Q 2 Z"AiP 2 / 2
I = i Ator|” = : Ator|” = Aio

/ Key Idea \

— Any single diagram 1s “easy” to integrate (pole structures/
suitable integration variables known from the propagators)

— Divide integration into pieces, based on diagrams

\ — All other peaks taken care of by denominator sum /




. . . ] |
Multi-channel based on single diagrams* WDurham

*Method used in MadGraph

Does such a basis exist!? A, |2
{2

' T — 1402
YES! fi=f el

‘A,,;IQ 2 Z"AiP 2 / 2
I = Ji = 5 Aiot|” = : Ao = Ayl
ZL:/ z;/ j‘AjP’ tt’ Zj \AjP’ tt’ \ tt\

/ Key Idea \

— Any single diagram 1s “easy” to integrate (pole structures/
suitable integration variables known from the propagators)

— Divide integration into pieces, based on diagrams

\ — All other peaks taken care of by denominator sum /

N Integral I

— Errors add in quadrature SO no extra cost

— “Weight” functions already calculated during |#/1? calculation

\ — Parallel in nature /
 Mattelaeroliviee ~ NeTs2014 a3
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|. pick x




cvent generation Wpuha

|. pick x

2. calculate f(x)




cvent generation Wpuha

|. pick x
2. calculate f(x)

3. pick 0<y<fmax

Weles oz o+
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|. pick x
2. calculate f(x)

3. pick 0<y<fmax

4. Compare:
if f(x)>y accept event,
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|. pick x
2. calculate f(x)

3. pick 0<y<fmax

4. Compare:
if f(x)>y accept event,

else reject it.




Event generation W Durham

|. pick x
2. calculate f(x)

3. pick 0<y<fmax

4. Compare:
if f(x)>y accept event,

else reject it.

accepted

|= = efficiency
total tries
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Event generation

What’s the difference between
weighted and unweighted?

Weighted:

Same # of events in areas of
phase space with very
different probabilities:
events must have different

weights
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Event generation

What’s the difference between
weighted and unweighted?

Unweighted:

# events is proportional to
the probability of areas of
phase space:

events have all the same
weight ("unweighted”)

Events distributed as in nature
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Event generation

Improved by combining with importance sampling:

|. pick x distributed as p(x)
2. calculate f(x) and p(x)
3. pick O<y<|

4. Compare:
if f(x)>y p(x) accept event,

else reject it.

much better efficiency!!!
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MC gt
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dO
HE
o
&= @ance-RejectD

E
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Event generator




Event generation
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Event generator

&= @ance-Re]@

do
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Event generation
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Event generator

&= @ance-Re]@

do
dQO

A

M
e
PEEM
1
o
o

>

This is possible only if f(x)<oco AND has definite sign! O
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* Original MadGraph by Tim Stelzer was written in Fortran,
first version from 1994 hep-ph/9401258
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. = ¢ Original MadGraph by Tim Stelzer was written in Fortran,
AT first version from 1994 hep-ph/9401258
* Event generation by MadEvent using the single diagram
/ enhanced multichannel integration technique in 2002
(Stelzer, Maltoni) hep-ph/0208156
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* Original MadGraph by Tim Stelzer was written in Fortran,
first version from 1994 hep-ph/9401258

* Event generation by MadEvent using the single diagram
enhanced multichannel integration technique in 2002

(Stelzer, Maltoni) hep-ph/0208156

* Support for BSM (and many other improvements) in MG/
ME 4 (2006) arXiv:0706.2334
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Original MadGraph by Tim Stelzer was written in Fortran,
first version from 1994 hep-ph/9401258

Event generation by MadEvent using the single diagram
enhanced multichannel integration technique in 2002

(Stelzer, Maltoni) hep-ph/0208156
Support for BSM (and many other improvements) in MG/
ME 4 (2006) arXiv:0706.2334
Rewritten in Python in 2011: MG5

= Fully Automatic BSM arXiv:1106.0522
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Original MadGraph by Tim Stelzer was written in Fortran,
first version from 1994 hep-ph/9401258

Event generation by MadEvent using the single diagram
enhanced multichannel integration technique in 2002
(Stelzer, Maltoni) hep-ph/0208156

Support for BSM (and many other improvements) in MG/

ME 4 (20006) arXiv:0706.2334
Rewritten in Python in 2011: MG5

= Fully Automatic BSM arXiv: 1 106.0522
Including NLLO computation in 2014 ArXiv: 1 405.030 |
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.. : : : citatior
Original MadGraph by Tim Stelzer was written in Fortran,

first version from 1994 hep-ph/9401258 800

Event generation by MadEvent using the single diagram
enhanced multichannel integration technique in 2002

(Stelzer, Maltoni) hep-ph/0208156 1000
Support for BSM (and many other improvements) in MG/

ME 4 (2006) arXiv:0706.2334 1400
Rewritten in Python in 2011: MG5

= Fully Automatic BSM arXiv:1106.0522 1250
Including NLLO computation in 2014 arXiv:1405.0301 10
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Decay chains

® pp>tt~wtH (t>wtb wt>I+vl))
(t~ > w- b~ w->jj),\
: ] 1)
w+ > |+ vl

® Separately generate core process and each decay
- Decays generated with the decaying particle as
resulting wavefunction

® |teratively combine decays and core processes

® Difficulty: Multiple diagrams in decays



Decay chains W puham

e If multiple diagrams in decays, need to multiply together core
process and decay diagrams:

2

uu~>gogo/ur “ X + go>uu~nl/ur

5 (to the second power
//Nﬂ\& 4 since both gluinos decay)




Decay chains W putam

* [f multiple diagrams in decays, need to multiply
together core process and decay diagrams:

uu~>gogo/ur,go>uu~nl/ur

6
2 ni 8
8 o 7
u
6
E ul
! ni
3 E ul~ . 5
| o ___—"‘ U~
5 u u 4
3
1 1
diagram 1 QCD=4, QED=2 diagram 2 QCD=4, QED=2 diagram 7 QCD=4, QED=2 diagram 8 QCD=4, QED=2

[¢] [0]

H
tul

3
u
u - nt
5
- -
4
! ! ni
; : ul~ . 8
1 0 1 o ___-"' U~
u u d 7
6
1 1

diagram 3 QCD=4, QED=2 diagram 4 QCD=4, QED=2 diagram 9 QCD=4, QED=2 diagram 10 QCD=4, QED=2

3
u
u - ni
5
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4
u 6
vt ni
u~ 8
7

[¢] [¢]

ni 5 ni 5
4 4
< u ¥ < u
3 3
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: i u 6 i n1 8
: ! u- .- 1 ' ul L. ] : u~
: o .. . o T n : 0 n ; o U~
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diagram 5 QCD=4, QED=2 diagram 6 QCD=4, QED=2 diagram 11 QCD=4, QED=2 diagram 12 QCD=4, QED=2

h h
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8
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Decay chains retain full matrix element for the
diagrams compatible with the decay

Full spin correlations (within and between decays)

Full width effects

However, no interference with non-resonant
diagrams

= Description only valid close to pole mass

= (Cutoff at Im + nI'l where n 1s set in run_card.
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NN S

| ] Online Event Generation

&« = C O file://localhost/Users/alwall/MadGraph/version_1_0_1/PROC_gogo_tltx_tnl_ballall/HTML/crossx.html o

Results for g g > go go , (go > tl t~,t~>b~allall/ h+,(t1 >tnl ,t> b all all / h+)) in the mssm

Available Results
_ Links |  Events  |Tag Run _ Collider _ |Cross section (pb) Events
resulis banner |[Parton-level [LHE lfami, €5t 1000 x 7000 Gevl|  33857E03 10000
Main Page

Thanks to developments in MadEvent, also (very) long

decay chains possible to simulate directly in MadGraph!
. Mmattelaerolivieer  NeTms=20t4 . 5
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Output formats in MadGraph 5

® Thanks to UFO/ALOHA, we now have automatic
helicity amplitude routines in any language

= So it makes sense to have also matrix element
output in multiple languages!

® Presently implemented: Fortran, C++, Python
= Fortran - for MadEvent and Standalone
= C++ - for Pythia 8 and Standalone

= Python - for internal use in MG5 (checks of
gauge, perturbation and Lorentz invariance)
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Examples shown

® pp>tt~
This gives only (the dominant) QCD vertices, and
ignores (the negligible) QED vertices.

® pp>tt~ QED=2
This gives both QED and QCD vertices.

O Pp>w+jj,w+>|+v|
More complicated example.

AL
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More syntax examples

e pp>tt~jQED=2: Generate all combinations of
brocesses for particles defined in multiparticle labels
b / j, including up to two QED vertices (and unlimited

QCD vertices)

® pp>tt~, (t>bwhwt>[+vl),t~>b~jj:
® Only diagrams compatible with given decay

® Only t/ t~and W+ close to mass shell in event
generation

® pp>wt w-/h:Exclude any diagrams with h

® pp>wtw-9% h:Exclude on-shell h in event
generation (but retain interference effects)



Summary Wt

/Uab—>X( ) fa(z1) fo(22) dr1dredPrg

Parton level Parton density Phase space
cross section functions integral

* MadGraph use Numerical method for the matrix element
= Faster than analytical formula
= Available For ANY BSM (thanks to UFO/ALOHA)

* Numerical integration is not trivial
= We use Monte-Carlo integration

= Return physical sample of events!

« MGH

= decay chains
= nice interface

= several output formats



