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Parton shower

(" Goal )

® We want to an explicit description of the SOFT radiation
that are ALREADY included implicitly in the LO
events (via the scale)

NG /
(Important )
® Parton-Shower is not ADDING radiation
® Such radiations are already included within the event-
\_ generator )
4 )

® \We need to be able to describe an arbitrarily number of
parton branchings, 1.e. we need to ‘dress’ partons with radiation

® This effect should be unitary: the inclusive cross section
9 shouldn’t change when extra radiation Is added y
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Collinear factorization

2 12

e—»o> xa—<

® (onsider a process for which two particles are separated by a small
angle 0.

® |n the limit of @ = 0O the contribution is coming from a single parent
particle going on shell: therefore its branching is related to time
scales which are very long with respect to the hard subprocess.

® The inclusion of such a branching cannot change the picture set up
by the hard process: the whole emission process must be writable
in this limit as the simpler one times a branching probability.

- /
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Collinear factorization

5 |2 .| 2 .
o = o<

* The process factorizes in the collinear limit. This procedure it
universal

1 1 1
(po +pe)®  JEEER(I=COSE) 1

soft and collinear

divergencies

Collinear factorization:

do o
M1 |2d®Ppi1 ~ | M, |*dP, —d d9 as

o 27

a—>bc(z)

when 0 is small.
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4 1 :2k1-q/q2:2Eq/\/§\
do Qg :C% + :E% Ty =2k - q/q* = 2E;/VS
dx1dxs = 90Cr om (1 — 1) (1 — z2) 23 =2ks-q/q*> =2E,/VS
1+ o+ 13 = 2
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4 1 :2k1-q/q2:2Eq/\/§\
do o T + T3 vy = 2ky - q/q° = 2Eg/V'S
— 0oL F
dx1dxy 21 (1 — 1) (1 — o) w3 =2ks-q/q> =2E,/V'S
r1 + To + L3 — 2
N /
4 |
® Change the variable to x5 and cos 613 A
do Qg
= 0oCp— —x
dwgd COS (913 0 27 ]
N /
(e Collinear limit 2dcosbts  dcosbs dcostiz )
| | | sin2013 1 —cosbis 14 cosbis
® Split our integral in two dcos 015 d ¢0s Oz
~ (1 —cosby3) (1 —cosbas)
\_ 07, 03 /




First Example

/0 Change the variable to x5 and cos 013 A
do Qg
— O'()CF— — I3
dxsd cos 013 27
o /
(" e Collinear limit 2dcosths  dcosbis dcostrz )
| | | sin2013 1 —cosfis 1+ cosfis
® Split our integral in two d cos O d cos O
~ (1 — cosby3) + (1 — cosfa3)
\_ 0l; 05, %
( asdf? 14+ (1—2)? A
do = og Z C’F2 2 dz
jets 4 <
= 7 fraction of energy
\_ == Generic Formula )




Parton Shower basics

dqbas
2T 2

The spin averaged (unregulated) splitting functions for the various types
of branching are (Altarelli-Parisi):

C M1 |?dPpiq ~ | M, |2dD,, d e (2)

A 1+ 22 %_é
Pyq(z) = CF } : 1=z
(1 —2) .
Pye(z) = Cp e (13_ 28 ! +{1
pqg(z) = 1Tgr {32+(1_3)2: : m<1_z
Pyg(z) = A [(liz) 1;3 2(1—3)} . ‘“’gil_z




Parton Shower basics

dgbas
2T 2

The spin averaged (unregulated) splitting functions for the various types
of branching are (Altarelli-Parisi):

C Myt PdD, 1 ~ | M, 2dD, —d e(2)

) = 0r 725 *42
Ppo(s) = op [FEUZD] +{
Pagz) = Tr|22+(1-2)], m<1_z
Pyy(z) = CA[(liz)—{—l;z—{—z(l—z)}. ﬂliil_z

Cp=7%5,C4=3Tg=3.

Comments:

* Gluons radiate the most

*There are soft divergences in z=1 and z=0.
* Pqg has no soft divergences.




Collinear factorization

BON I BOERS

% The process factorizes in the collinear limit. This procedure it

universall
d(fb C‘fs

|Mn—|—1|2dq)n—|—1 = |Mn|2dq) d 9 2 a—)bc(z)

% Notice that what has been roughly called ‘branching probability’ is actually a
singular factor, so one will need to make sense precisely of this definition.

% At the leading contribution to the (n+1)-body cross section the Altarelli-Parisi
splitting kernels are defined as:

z 11—z
Py yqq(2) =Tr [+ (1 — 2)7], Py 4q(2) =Ca [z(l—z)—|— T + |
1+ 22 1+ (1—2)?
Pq%qg(z):CFll_zla Pq%gq(z):CF[ (z )]



Collinear factorization

dt . do «
C M1 ]2dPp i1 ~ |M,|[2dP,, d 2¢23 (H,,C(z))

% t can be called the 'evolution variable’ (will become clearer later): it
can be the virtuality m2 of particle a or its pr2 or E202 ...

A62/67 = dm?/m? = dps/p
m? ~ z(1 — 2)0?E*>
2

P2 ~ 2m

% It represents the hardness of the branching and tends to O in the
collinear limit.

s Different choice of ‘evolution parameter in different Parton-
shower code




Collinear factorization

dt o)
( MuiPd@un = (M2, S GEE Pie(2)

% z 1s the "energy variable™: it is defined to be the energy fraction taken by parton
b from parton a. It represents the energy sharing between b and ¢ and tends to
| In the soft limit (parton c going soft)

% @ is the azimuthal angle. It can be chosen to be the angle between the
polarization of a and the plane of the branching.




Argument of Qs
C M1 |2d®p ~ |M,|2dP, —d ;wg‘s Hbc(z))

® Fach choice of argument for Os is equally acceptable at the leading-logarithmic accuracy.
However, there is a choice that allows one to resum certain classes of subleading

logarithms.
® [he more natural choices is to evaluated it at scale “‘t”

® (an be proof to be a good choice since it allows to include sub-logarithm
contributions.

® [ach radiation evaluates alpha_s at his own scale

e Different from fixed order computation where all value use the renormalisation
scale.




Collinear factorization

°12 2

BN L BOS LS

® (ross section factorization in the collinear limit. This procedure it

universal!
s« The process factorizes in the collinear Iimit This procedure 1t universal

do o
M1 |2dP, 1~ [ M,|*dP,, —d 2¢2S —sbe(2)

% This is an amplitude squared: naively one would maybe expect |/t2 dependence.

N

Why is the square not there?

% It's due to angular-momentum conservation.
E.g., take the splitting @ — qg: helicity is conserved for the quarks, so the

final state spin differs by one unity with respect to the initial one. The
scattering happens in a p-wave (orbital angular momentum equal to one), so

there is a suppression factor as t — 0.

% 1N fact| a factor I/t is alwais cancelled in an exalicit comﬁutation
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® t is the evolution parameter (control the collinear behaviour)




To Remember

(Collinear Limit

do o
M1 |2d®Ppi1 ~ | M, |*dP, —d 4o as

21 2

Pa—>bc (Z)
\_

~

J

® t is the evolution parameter (control the collinear behaviour)

® Z s the energy sharing variable




To Remember

(Collinear Limit )

do o
Myt 2, ~ M, |2d<1> 2;’?2;13&%(2/)
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To Remember

o

(Collinear Limit

do o
Moia P, = My d, Tz P, (2

~

J

o

® t is the evolution parameter (control the collinear behaviour)
® Z s the energy sharing variable
® alpha_s need to be evaluated at the scale t

® P is the splitting Kernel (control the soft behaviour)




Multiple emission

2 a

2
6,0 =0 xL<be<d

<6 C e

® Now consider Mn+| as the new core process and use the recipe we

used for the first emission in order to get the dominant contribution
to the (n+2)-body cross section: add a new branching at angle much

smaller than the previous one: y y
t
IMyia?d®, 0 ~ |M,|2dP, —dz ¢ as
t 2727
dt'  de s
—dz
t’ 2w 21

Pa—)bc(z)

— Py ge(2)

® This can be done for an arbitrary number of emissions. The recipe to
get the leading collinear singularity Is thus cast in the form of an
iterative sequence of emissions whose probability does not depend on
the past history of the system: a ‘Markov chain’. No interferencelll



Multiple emission

2

2
6,6 = 0 xL<be<d
0<6 C e

® T[he dominant contribution comes from the region where the
subsequently emitted partons satisfy the strong ordering requirement:

0>0>0".

For the rate for multiple emission we get
Ca tar T a as\ ¥
On+k X Qg / / / (k=1 X Op, (ﬁ) 1ng(Q2/Q(Q))

where Q is a typical hard scale and Qo is a small infrared cutoff that
separates perturbative from non perturbative regimes.

® Fach power of &s comes with a logarithm. The logarithm can be easily
large, and therefore it can lead to a breakdown of perturbation theory.



Absence of Interference

® The collinear factorization picture gives a branching sequence
for a given leg starting from the hard subprocess all the way
down to the non-perturbative region.

® Suppose you want to describe two such histories from two
different legs: these two legs are treated in a completely
uncorrelated way. And even within the same history,
subsequent emissions are uncorrelated.

® The collinear picture completely misses the possible
interference effects between the various legs. The extreme
simplicity comes at the price of quantum Inaccuracy.

® Nevertheless, the collinear picture captures the leading

contributions: it gives an excellent description of an arbitrary
number of (collinear) emissions:

® [tisa“resummed computation”

® |t bridges the gap between fixed-order perturbation theory
and the non-perturbative hadronization.



Sudakov Form Factor
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- What is the probability of no emission?
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two scales:
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Sudakov Form Factor

4 . N o N
- What is the probability of no emission?
Ot g A
Pnon—branching (tz) =1 - 7Dbra,nching (tz) =1 - E% dZP(Z)

» So the probability of no emission between

two scales: N
, ot ag ~
Prorancnin(@0) = Jim T[ (1557 [ a=P(2)
1=
~ lim e i (—%3—5 deP(Z)>
N — 00
o S W1z 35 P(z) — o [2 dp(t)
\_ /




Sudakov Form Factor

o

» So the probability of no emission between

4 . N o N
- What is the probability of no emission?
Ot g A
Pnon—branching (tz) =1 - 7Dbra,nching (tz) =1 - E% dZP(Z)

two scales: N
ot ag A
P, _ : 2 ) = lim 1 — —— | dzP(z
no branchzng(Q ; ) N io( ti o ( ))
~ lim e i (_%3_5 fdzﬁ(z)>
Sudakov form factor N—o0
2 / o ~ 2 ,
A(Q?, 1) ~ o S A5 P() — o~ [ dp(t)

J




Sudakov Form Factor

4 . N o N
- What is the probability of no emission?
Ot g A
Pnon—branching (tz) =1 - 7Dbra,nching (tz) =1 - E% dZP(Z)

» So the probability of no emission between

two scales: N
ot ag A
P, - 2 t) = lim 11— —— | dzP(z
no branchzng(Q 9 ) N io( y o ( ))
~ lim GZ?LO (_%3_5 fdzﬁ(z))
Sudakov form factor N—o0
2 / o ~ 2 ,
A(Q?, 1) ~ o S A5 P() — o~ [ dp(t)

J

:

Property: A(A,B) = A(A,C) A(C,B)

)




Parton shower

% The Sudakov form factor is the heart of the parton shower. It gives the
probabllity that a parton does not branch between two scales

s¢ Using this no-emission probability the branching tree of a parton is generated.

2 Define dPx as the probability for k ordered splittings from leg a at given scales

dPi(t1) = A(Q*t1) dp(t1)A(t1,Qp),
dPy(t1,ta) = A(Q? t1) dp(t1) A(ty,te) dp(ta) Alta, Q5)O(t1 — ta),

dPg(t1,....,tx) = Q2 Q) O(ti—1 — 1)

et

% Qo? is the hadronization scale (~| GeV). Below this scale we do not trust the
perturbative description for parton splitting anymore.
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integrating the probabillity for k splittings:
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® The parton shower has to be unitary (the sum over all
branching trees should be |).We can explicitly show this by
integrating the probabillity for k splittings:

Q2 &
sz/de(tl,...,tw=A(Q2,Q%>%/ dp(t>] L VE=0,1,..
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Unitarity

-

k
dPi(t1, . tr) = AQ%QY) [[dp(t)O(ti—1 — t1)
=1

® The parton shower has to be unitary (the sum over all

branching trees should be |).We can explicitly show this by
integrating the probabillity for k splittings:

1
Pe= [ dPit ) = M@ @)y
o ROk

® Summing over all number of emissions

Q> &
L/ dp(t)| , Vk=0,1,..

~
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4 ;
dPi(t1, . tr) = AQ%QY) [[dp(t)O(ti—1 — t1)

® The parton shower has to be unitary Ethe sum over all
branching trees should be |).We can explicitly show this by
integrating the probabllity for k splittings:

Q> &
/ dp(t)| , Vk=0,1,..

0

PkE/de(tla--- k) = A(Q7, Qo)

® Summing over all number of emissions

oo

L[ e & Q>
ZPk; = A(Q?, QO)ZE [/2 dp(t)] = A(Q?%, Qf) exp [/2 dp(t)] =1

k=0 0 0

N\




Unitarity

4 ) ™
dPi(t1, . tr) = AQ%QY) [[dp(t)O(ti—1 — t1)

® The parton shower has to be unitary Ethe sum over all
branching trees should be |).We can explicitly show this by
integrating the probabllity for k splittings:

Q? g
sz/de(tl,... k) = A(Q7, QO) /2 dp(t)] , VkE=0,1,...

0

® Summing over all number of emissions

oo

L[ e & Q>
ZPk; = A(Q?, QO)ZE [/2 dp(t)] = A(Q?%, Qf) exp [/2 dp(t)] =1

k=0 0 0

® Hence, the total probability is conserved

N\




singularities

® \We have shown that the showers Is unitary. However, how are
the IR divergences cancelled explicitly? Let's show this for the
first emission:
Consider the contributions from (exactly) O and | emissions

from leg a:

d
27— AQ%L QY +AQLQY Y d
bc

On

dt do o

Pa—> C
t 2w 27 b (Z)

® [Expanding to first order in &s gives

do Q” dt’ d o dt do o
_Nl_Z/ ¢ % p Zdz PAp L (2)

27T 27 a%bc t 2w 2w

® Same structure of the two latter terms, with opposite signs:
cancellation of divergences between the approximate virtual
and approximate real emission cross sections.

® The probabillistic interpretation of the shower ensures that
infrared divergences will cancel for each emission.



Final-state parton showers




Final-state parton showers

With the Sudakov form factor, we can now implement a final-state
parton shower in a Monte Carlo event generator!




Final-state parton showers

With the Sudakov form factor, we can now implement a final-state
parton shower in a Monte Carlo event generator!

|. Start the evolution at the virtual mass scale to (e.g. the mass of the
decaying particle) and momentum fraction zo = |




Final-state parton showers

With the Sudakov form factor, we can now implement a final-state
parton shower in a Monte Carlo event generator!
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Given a virtual mass scale ttand ~ momentum fraction x; at some stage
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where R is a random number (uniform on [0, I]).
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211)P(z), where P(z) is the appropriate splitting function.




Final-state parton showers

With the Sudakov form factor, we can now implement a final-state
parton shower in a Monte Carlo event generator!

|. Start the evolution at the virtual mass scale to (e.g. the mass of the
decaying particle) and momentum fraction zo = |

2. Given a virtual mass scale ttand  momentum fraction x; at some stage
in the evolution, generate the scale of the next emission ti+| according to
the Sudakov probability A(t;ti+1) by solving
A(ti+|,ti) =R

where R is a random number (uniform on [0, 1]).

3. If ti+) < teue it means that the shower has finished.

4. Otherwise, generate z = zj/z;+) with a distribution proportional to (Xs/
211)P(z), where P(z) is the appropriate splitting function.

5. For each emitted particle, iterate steps 2-4 until branching stops.



Veto Algorithm

(1. find overestimate of the branching probability
p(z) > P(Z), Zimin < Zmin(t)a Zmax(t) < Zmaz, QS = aS(t)

o) = o [P 2 [ S25PG) =00
K Emin
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Veto Algorithm

(1. find overestimate of the branching probability N
P(Z) > P(Z), Zrin < Zmz'n(t)a Zma:c(t) < Zmazs OUS > aS(t)

o) = [ Py s [ pey —
% 27t /me / )

/2. Solve the overestimated Sudakov )
R=A(Q% ) = e JF ottt

We have P (t) = g(t)A(QQ,t) Weneed P(t) = p(t)A(Qz, t)

p(t)A(Q%, 1)
g(t)A(Q?,1)

<1

Standard unweighting needs

.




Veto Algorithm

(1. find overestimate of the branching probability N
P(Z) > P(Z), Zrin < Zmz'n(t)a Zma:c(t) < Zmazs OUS > aS(t)

C_\f zmam _ CVS]. .
- —_— > _— —
o) =5 | P@ = [ SE5PE) =0
\ min /

/2. Solve the overestimated Sudakov )
Q2

R — A(QQ,t) — e~ ft g(¢')dt’

We have P (t) = g(t)A(QQ,t) Weneed P(t) = p(t)A(Qz, t)

p(t)A(QQ, t) Xl Standard unweighting
A(O2 ¢t does not work!
L 9(AQ1) ,

(3. Special selection: Veto Algorithm )

Standard unweighting needs




Veto Algorithm

Sheck if this is bigger or lower!




Veto Algorithm

1. ldea

® \We want to compensate the over-estimate of the choice of the
scale by not re-generate above that scale If the scale is rejected

heck if this is bigger or lower!




Veto Algorithm

1. ldea

® \We want to compensate the over-estimate of the choice of the
scale by not re-generate above that scale If the scale is rejected

J

(2. Algorithm

2
| Start with i=0 andt0 = &

heck if this is bigger or lower!
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1. ldea

® \We want to compensate the over-estimate of the choice of the
scale by not re-generate above that scale If the scale is rejected

(2. Algorithm

2
| Start with i=0 andt0 = &

2.move to i+1 and generate t;41 suchthat R; 1 = A(ti, ti—|—1)

heck if this is bigger or lower!

J




Veto Al

gorithm

1. ldea

® \We want to compensate the over-estimate of the choice of the
scale by not re-generate above that scale If the scale is rejected

(2. Algorithm

2
| Start with i=0 andt0 = &

3.accept/reject with probability

2.move to i+ and generate t;41 such that R, = A(ti, t,,;_|_1)

P(tz'+1)
(tit1)

heck if this is bigger or lower!
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1. ldea

® \We want to compensate the over-estimate of the choice of the
scale by not re-generate above that scale If the scale is rejected

(2. Algorithm

2
| Start with i=0 andt0 = &

2.move to i+ and generate t;41 such that R, = A(ti, t,,;_|_1)
p(tit1)

3.accept/reject with probability

heck if this is bigger or lower!

J
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1. ldea

® \We want to compensate the over-estimate of the choice of the
scale by not re-generate above that scale If the scale is rejected

(2. Algorithm

2
| Start with i=0 andt0 = &

2.move to i+ and generate t;41 such that R, = A(ti, t,,;_|_1)
p(tit1)

3.accept/reject with probability

heck if this is bigger or lower!

B clse go back to point 2
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Veto Algorithm

1. ldea

® \We want to compensate the over-estimate of the choice of the
scale by not re-generate above that scale If the scale is rejected

(2. Algorithm )
2
|.Start with i=0 andT0 = &
2.move to i+ | and generate ti_|_1 such that Ri—H — A(t,b ti—l—l)
t.
3.accept/reject with probability p( H_l)
g(tit1)
41 eturn t@_|_1
heck if this is bigger or lower!
B c|se go back to point 2
\_ Is is what we want? -
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P(t) — Z Pn(t)

k n=0
4 _ _

Polt) = o)A (1o, )2 = p(1)A (10,

o 9 )Y s PO
7Dl(t) — /t dtlg(tl)A(tO tl) 1 — ];(ti)) g(t)A(tl t)%
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4 )
P, (t) The probability to select t?oe scale t after n+1| attempt
P(t) = Z Pn(t)
_ n=0 /
4 ~ p(t) ~ N
ZORS TNORS) (R PONCES




Veto Algorithm

-
P, (t) The probabillity to select the scale t after n+1 attempt
P(t) — Z Pn(t)
k n=0
4 R PO




Veto Algorithm

-
P, (t) The probability to select t?oe scale t after n+1 attempt
P(t) — Z Pn(t)

k n=0
4 _ _

Polt) = o)A (1o, )2 = p(1)A (10,

: o) e\ )
7Dl(t) — /t dtlg(tl)A(tO tl) 1 — ];(ti)) g(t)A(tl t)g(t)




Veto Algorithm

-
P, (t) The probability to select t?oe scale t after n+1 attempt
P(t) — Z Pn(t)

k n=0
4 _ _
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4 N

P, (t) The probability to select t?oe scale t after n+1 attempt

= p(t)A(ty, t)el” a9t =p(t)

= p(t)A(to, t)

Alto, t) Alto,?)
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Final-state parton showers

With the Sudakov form factor, we can now implement a final-state
parton shower in a Monte Carlo event generator!

|. Start the evolution at the virtual mass scale to (e.g. the mass of the
decaying particle) and momentum fraction zo = |

2. Given a virtual mass scale ttand  momentum fraction x; at some stage
in the evolution, generate the scale of the next emission ti+| according to
the Sudakov probability A(t;ti+1) by solving
A(ti+|,ti) =R

where R is a random number (uniform on [0, 1]).

3. If ti+) < teue it means that the shower has finished.

4. Otherwise, generate z = zj/z;+) with a distribution proportional to (Xs/
211)P(z), where P(z) is the appropriate splitting function.

5. For each emitted particle, iterate steps 2-4 until branching stops.



Soft Limit

C A da
A(Q? 1) = = Al p
(Q ) ) exXp |: — [ 41 227_‘_ 9 b (Z)

There is a lot of freedom in the choice of evolution parameter

t. It can be the virtuality m? of particle a or its p72 or E202 ... For
the collinear limit they are all equivalent

However, in the soft limit (z — O, 1) they behave differently

Can we chose it such that we get the correct soft limit?

Soft gluon comes from the full event!

® (Quantum Interference




Angular ordering

) %1 2
2 N O(p-q,)

'S
£
&

e g &
w@z O(e-¢,)

Radiation inside cones around the original partons is allowed
(and described by the eikonal approximation), outside the cones
it Is zero (after averaging over the azimuthal angle)

N

photon

+ photon




| n t u I t Ive ex p ‘ a n at I O n MichelangeloMangano®

s Lifetime of the virtual intermediate state:
T <Y/M =E/M2 = 1/(ko02) = 1/(k.0)

¢ Distance between q and gbar after T:

d=@T= ((p/@) | /k 1

U2 = (p+k)2 = 2E ko (l-cos0)
~EkoB2~Ek, 0O
f the transverse wavelength of the emitted gluon is longer than the

separation between g and gbar, the gluon emission Is suppressed,
because the g gbar system will appear as colour neutral (i.e. dipole-

like emission, suppressed)
Therefore d>1/k, , which implies 0 < .



Angular ordering

% The construction can be iterated to the next
emission, with the result that the emission
angles keep getting smaller and smaller.

% One can generalize it to a generic parton of
color charge Qi splitting into two partons |
and j, Qi=Qi*+Q;. The result is that inside the
cones | and | emit as independent charges,
and outside their angular-ordered cones the
emission is coherent and can be treated as if
it was directly from color charge Q.

# KEY POINT FOR THE MC!

% Angular ordering Is automatically satisfied in
O ordered showers! (and easy to account for
in pt ordered showers).



Angular ordering




Angular ordering

Angular ordering is:




Angular ordering

Angular ordering is:

. A quantum effect coming from the interference of different
Feynman diagrams.
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Angular ordering is:

. A quantum effect coming from the interference of different
Feynman diagrams.

2. Nevertheless it can be expressed in “a classical fashion” (square of
a amplitude Is equal to the sum of the squares of two special
“amplitudes”). The classical limit is the dipole-radiation.




Angular ordering

Angular ordering is:

. A quantum effect coming from the interference of different
Feynman diagrams.

2. Nevertheless it can be expressed in “a classical fashion” (square of
a amplitude Is equal to the sum of the squares of two special
“amplitudes”). The classical limit is the dipole-radiation.

3. It is not an exclusive property of QCD (ie, it is also present In

QED) but in QCD produces very non-trivial effects, depending on
how particles are color connected.




To Remember

4 )
- Sudakov Form-Factor: Probability of No-
emission between two scale.

A(Q2 1) ~ = ST Haz52P(e) — o= [ dp(t)

- Parton shower is unitary (and IR save)
- Parton shower is a Markov Chain
=0ne emission at the time

- Each interactions has its own scale for
alphas

*Various choice for the evolution parameter
\_ /




Initial-state
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® 5o far, we have looked at final-state (time-like) splittings. For
initial state, the splitting functions are the same

® However, there is another ingredient: the parton density (or
distribution) functions (PDFs). Naively: Probabllity to find a
given parton in a hadron at a given momentum fraction x = p4/
P, and scale t.
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® 5o far, we have looked at final-state (time-like) splittings. For
initial state, the splitting functions are the same

® However, there is another ingredient: the parton density (or
distribution) functions (PDFs). Naively: Probabllity to find a
given parton in a hadron at a given momentum fraction x = p4/
P, and scale t.

® How do the PDFs evolve with increasing t?
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® 5o far, we have looked at final-state (time-like) splittings. For
initial state, the splitting functions are the same

® However, there is another ingredient: the parton density (or
distribution) functions (PDFs). Naively: Probabllity to find a
given parton in a hadron at a given momentum fraction x = p4/
P, and scale t.

® How do the PDFs evolve with increasing t?

0, Ldz ay x
o filet) = [ o Py(a), (;,t) DGLAP
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To Remember

&

® T[he parton shower dresses partons with radiation. This makes
the inclusive parton-level predictions (i.e. inclusive over extra
radiation) completely exclusive

® |n the soft and collinear limits the partons showers are
exact, but In practice they are used outside this limit as well.

® Partons showers are universal (l.e. independent from the
process)

® Buillding block of the parton shower is the Sudakov

® There is a cut-off in the shower (below which we don't trust
perturbative QCD) at which a hadronization model takes over

J




