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1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Sherpa artist
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What are the MC for?

 55

Sherpa artist

2. Parton Shower 

☞ where new physics lies 

☞ process dependent
☞ first principles description
☞ it can be systematically improved

1. High-Q  Scattering2

3. Hadronization 4. Underlying Event 
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What are the MC for?

Sherpa artist

 56

1. High-Q  Scattering2 2. Parton Shower 

4. Underlying Event 3. Hadronization 

☞ QCD -”known physics”
☞ universal/ process independent
☞ first principles description
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Master formula for the LHC
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Parton shower

 58

Goal
• We want to an explicit description of the SOFT radiation 

that are ALREADY included implicitly in the LO 
events (via the scale)
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Parton shower

 58

Goal
• We want to an explicit description of the SOFT radiation 

that are ALREADY included implicitly in the LO 
events (via the scale)

• Parton-Shower is not ADDING radiation

• Such radiations are already included within the event-
generator

Important
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• We need to be able to describe an arbitrarily number of 
parton branchings, i.e. we need to ‘dress’ partons with radiation

• This effect should be unitary: the inclusive cross section 
shouldn’t change when extra radiation is added

Parton shower

 58

Goal
• We want to an explicit description of the SOFT radiation 

that are ALREADY included implicitly in the LO 
events (via the scale)

• Parton-Shower is not ADDING radiation

• Such radiations are already included within the event-
generator

Important
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• Consider a process for which two particles are separated by a small 
angle θ.

• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
scales which are very long with respect to the hard subprocess.

Collinear factorization

 59
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• Consider a process for which two particles are separated by a small 
angle θ.

• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
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• Consider a process for which two particles are separated by a small 
angle θ.

• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
scales which are very long with respect to the hard subprocess.

Collinear factorization
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θ

Mn+1

• Consider a process for which two particles are separated by a small 
angle θ.

• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
scales which are very long with respect to the hard subprocess.

Collinear factorization
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2
a

b

c
θ

Mn+1

• Consider a process for which two particles are separated by a small 
angle θ.

• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
scales which are very long with respect to the hard subprocess.

• The inclusion of such a branching cannot change the picture set up 
by the hard process: the whole emission process must be writable 
in this limit as the simpler one times a branching probability.

Collinear factorization

 59

θ ➞ 0 ×
b

c
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Mn
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•  The process factorizes in the collinear limit. This procedure it 
universal! 

Collinear factorization

 60
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b
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Mn+1 θ ➞ ×
b

c
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θ
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•  The process factorizes in the collinear limit. This procedure it 
universal! 

Collinear factorization

 60
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•  The process factorizes in the collinear limit. This procedure it 
universal! 

Collinear factorization

 60
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•  The process factorizes in the collinear limit. This procedure it 
universal! 

Collinear factorization

 60

2a
b

c
θ
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c
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soft 

z

1-z
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b

c
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θ

and collinear
divergencies

1
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' 1
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=

1

t

Collinear factorization:

when θ is small.

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�
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2⇡
Pa!bc(z)
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First Example

e+e� ! qq̄g
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Diagrams made by MadGraph5_aMC@NLO
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• Divergent at               and 

• Soft Divergencies

• Collinear Divergencies
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First Example
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First Example
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• Collinear limit

• Split our integral in two
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First Example

Introduction to Event Generators Bryan Webber, MCnet School, 2014

Can separate into two independent jets:!

!

!

!

!

Jets evolve independently!

!

!

Exactly same form for anything!

e.g. transverse momentum:!

     invariant mass:

6

(x3 � z)

☞ z fraction of energy
☞ Generic Formula
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• Collinear limit

• Split our integral in two
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The spin averaged (unregulated) splitting functions for the various types 
of branching are (Altarelli-Parisi): 

Parton Shower basics

 64

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)
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The spin averaged (unregulated) splitting functions for the various types 
of branching are (Altarelli-Parisi): 

Comments: 
* Gluons radiate the most
* There are soft divergences in z=1 and z=0.
* Pqg  has no soft divergences.

Parton Shower basics

 64

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
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2⇡
Pa!bc(z)



Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: 2019

 The process factorizes in the collinear limit. This procedure it 
universal! 
 

Collinear factorization

 X

2a
b

c
θ

Mn+1 θ ➞ ×
b

c

a
2a

Mn

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)

Pg!qq(z) = TR

⇥
z2 + (1� z)2

⇤
, Pg!gg(z) = CA


z(1� z) +

z

1� z
+

1� z

z

�
,

Pq!qg(z) = CF


1 + z2

1� z

�
, Pq!gq(z) = CF


1 + (1� z)2

z

�
.

Notice that what has been roughly called ‘branching probability’ is actually a 
singular factor, so one will need to make sense precisely of this definition.

At the leading contribution to the (n+1)-body cross section the Altarelli-Parisi 
splitting kernels are defined as:
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t can be called the ‘evolution variable’ (will become clearer later): it 
can be the virtuality m2 of particle a or its pT2 or E2θ2 …

It represents the hardness of the branching and tends to 0 in the 
collinear limit.

Different choice of ‘evolution parameter’ in different Parton-
shower code

d✓2/✓2 = dm2/m2 = dp2T /p
2
T

Collinear factorization

 65

m2 ' z(1� z)✓2E2
a

p2T ' zm2

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)
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Collinear factorization

 66

z is the “energy variable”: it is defined to be the energy fraction taken by parton 
b from parton a. It represents the energy sharing between b and c and tends to 
1 in the soft limit (parton c going soft)

Φ  is the azimuthal angle. It can be chosen to be the angle between the 
polarization of a and the plane of the branching.

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)
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• Each choice of argument for αS is equally acceptable at the leading-logarithmic accuracy. 
However, there is a choice that allows one to resum certain classes of subleading 
logarithms.

• The more natural choices is to evaluated it at scale “t”

• Can be proof to be a good choice since it allows to include sub-logarithm 
contributions.

• Each radiation evaluates alpha_s at his own scale

• Different from fixed order computation where all value use the renormalisation 
scale.

Argument of αS
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• Cross section factorization in the collinear limit. This procedure it 
universal! 
 

Collinear factorization

 X

2a
b

c
θ

Mn+1 θ ➞ ×
b

c

a
2a

Mn

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)

This is an amplitude squared: naively one would maybe expect 1/t2 dependence. 
Why is the square not there?

It’s due to angular-momentum conservation. 
E.g., take the splitting q ⟶ qg: helicity is conserved for the quarks, so the 
final state spin differs by one unity with respect to the initial one. The 
scattering happens in a p-wave (orbital angular momentum equal to one), so 
there is a suppression factor as t ⟶ 0.

In fact, a factor 1/t is always cancelled in an explicit computation

The process factorizes in the collinear limit. This procedure it universal! 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To Remember

 68
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To Remember
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To Remember

 68

|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
Pa!bc(z)

Collinear Limit

• t is the evolution parameter (control the collinear behaviour)

• z is the energy sharing variable

• alpha_s need to be evaluated at the scale t 

• P is the splitting Kernel (control the soft behaviour)
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• Now consider Mn+1 as the new core process and use the recipe we 
used for the first emission in order to get the dominant contribution 
to the (n+2)-body cross section: add a new branching at angle much 
smaller than the previous one: 
 
 

• This can be done for an arbitrary number of emissions. The recipe to 
get the leading collinear singularity is thus cast in the form of an 
iterative sequence of emissions whose probability does not depend on 
the past history of the system: a ‘Markov chain’. No interference!!!

Multiple emission

 69
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• The dominant contribution comes from the region where the 
subsequently emitted partons satisfy the strong ordering requirement: 
θ ≫ θ’ ≫ θ’’... 
For the rate for multiple emission we get 
 
 
 
 
where Q is a typical hard scale and Q0 is a small infrared cutoff that 
separates perturbative from non perturbative regimes.

• Each power of αs comes with a logarithm. The logarithm can be easily 
large, and therefore it can lead to a breakdown of perturbation theory.

Multiple emission
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dt
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• The collinear factorization picture gives a branching sequence 
for a given leg starting from the hard subprocess all the way 
down to the non-perturbative region.

• Suppose you want to describe two such histories from two 
different legs: these two legs are treated in a completely 
uncorrelated way. And even within the same history, 
subsequent emissions are uncorrelated.

• The collinear picture completely misses the possible 
interference effects between the various legs. The extreme 
simplicity comes at the price of quantum inaccuracy.

• Nevertheless, the collinear picture captures the leading 
contributions: it gives an excellent description of an arbitrary 
number of (collinear) emissions:

• It is a “resummed computation” 

• It bridges the gap between fixed-order perturbation theory 
and the non-perturbative hadronization.

Absence of interference

 X
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•What is the probability of no emission?

 71

Sudakov Form Factor
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•What is the probability of no emission?

•So the probability of no emission between 
two scales:
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•What is the probability of no emission?
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Parton shower

 X

The Sudakov form factor is the heart of the parton shower. It gives the 
probability that a parton does not branch between two scales

Using this no-emission probability the branching tree of a parton is generated.

Define dPk as the probability for k ordered splittings from leg a at given scales 
 
 
 
 

Q02 is the hadronization scale (~1 GeV). Below this scale we do not trust the 
perturbative description for parton splitting anymore.

dP1(t1) = �(Q2, t1) dp(t1)�(t1, Q2
0),

dP2(t1, t2) = �(Q2, t1) dp(t1) �(t1, t2) dp(t2) �(t2, Q2
0)⇥(t1 � t2),

... = ...

dPk(t1, ..., tk) = �(Q2, Q2
0)

k�

l=1

dp(tl)⇥(tl�1 � tl)
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• The parton shower has to be unitary (the sum over all 
branching trees should be 1). We can explicitly show this by 
integrating the probability for k splittings: 
 
 

Unitarity

 X

dPk(t1, ..., tk) = �(Q2, Q2
0)

k�

l=1

dp(tl)⇥(tl�1 � tl)
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• The parton shower has to be unitary (the sum over all 
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integrating the probability for k splittings: 
 
 

• Summing over all number of emissions  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• The parton shower has to be unitary (the sum over all 
branching trees should be 1). We can explicitly show this by 
integrating the probability for k splittings: 
 
 

• Summing over all number of emissions  
 
 

Unitarity
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• The parton shower has to be unitary (the sum over all 
branching trees should be 1). We can explicitly show this by 
integrating the probability for k splittings: 
 
 

• Summing over all number of emissions  
 
 

• Hence, the total probability is conserved

Unitarity

 X
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• We have shown that the showers is unitary. However, how are 
the IR divergences cancelled explicitly? Let’s show this for the 
first emission: 
Consider the contributions from (exactly) 0 and 1 emissions 
from leg a: 
 

• Expanding to first order in αs gives 

• Same structure of the two latter terms, with opposite signs: 
cancellation of divergences between the approximate virtual 
and approximate real emission cross sections.

• The probabilistic interpretation of the shower ensures that 
infrared divergences will cancel for each emission.

singularities

 X

d⇤

⇤n
= �(Q2, Q2

0) + �(Q2, Q2
0)

�

bc

dz
dt

t

d⌅

2⇥
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d⇤
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⇥ 1�

�

bc

⇥ Q2

Q2
0

dt⇥

t⇥
dz

d⌅
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�S
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Final-state parton showers

 72



Mattelaer Olivier Monte-Carlo Lecture: 2019

Final-state parton showers

With the Sudakov form factor, we can now implement a final-state 
parton shower in a Monte Carlo event generator!
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With the Sudakov form factor, we can now implement a final-state 
parton shower in a Monte Carlo event generator!

1. Start the evolution at the virtual mass scale t0 (e.g. the mass of the 
decaying particle) and momentum fraction z0 = 1
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Final-state parton showers

With the Sudakov form factor, we can now implement a final-state 
parton shower in a Monte Carlo event generator!

1. Start the evolution at the virtual mass scale t0 (e.g. the mass of the 
decaying particle) and momentum fraction z0 = 1

2. Given a virtual mass scale ti and momentum fraction xi at some stage 
in the evolution, generate the scale of the next emission ti+1 according to 
the Sudakov probability ∆(ti,ti+1) by solving 
∆(ti+1,ti) = R 
where R is a random number (uniform on [0, 1]).
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decaying particle) and momentum fraction z0 = 1

2. Given a virtual mass scale ti and momentum fraction xi at some stage 
in the evolution, generate the scale of the next emission ti+1 according to 
the Sudakov probability ∆(ti,ti+1) by solving 
∆(ti+1,ti) = R 
where R is a random number (uniform on [0, 1]).

3. If ti+1 < tcut it means that the shower has finished.

 72



Mattelaer Olivier Monte-Carlo Lecture: 2019

Final-state parton showers

With the Sudakov form factor, we can now implement a final-state 
parton shower in a Monte Carlo event generator!

1. Start the evolution at the virtual mass scale t0 (e.g. the mass of the 
decaying particle) and momentum fraction z0 = 1

2. Given a virtual mass scale ti and momentum fraction xi at some stage 
in the evolution, generate the scale of the next emission ti+1 according to 
the Sudakov probability ∆(ti,ti+1) by solving 
∆(ti+1,ti) = R 
where R is a random number (uniform on [0, 1]).

3. If ti+1 < tcut it means that the shower has finished.

4. Otherwise, generate z = zi/zi+1 with a distribution proportional to (αs/
2π)P(z), where P(z) is the appropriate splitting function.
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Final-state parton showers

With the Sudakov form factor, we can now implement a final-state 
parton shower in a Monte Carlo event generator!

1. Start the evolution at the virtual mass scale t0 (e.g. the mass of the 
decaying particle) and momentum fraction z0 = 1

2. Given a virtual mass scale ti and momentum fraction xi at some stage 
in the evolution, generate the scale of the next emission ti+1 according to 
the Sudakov probability ∆(ti,ti+1) by solving 
∆(ti+1,ti) = R 
where R is a random number (uniform on [0, 1]).

3. If ti+1 < tcut it means that the shower has finished.

4. Otherwise, generate z = zi/zi+1 with a distribution proportional to (αs/
2π)P(z), where P(z) is the appropriate splitting function.

5. For each emitted particle, iterate steps 2-4 until branching stops.
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R = �̄(Q2, t) ⌘ e�
R Q2

t g(t0)dt0

P(t) = g(t)�̄(Q2, t) P(t) = p(t)�(Q2, t)We have We need

p(t)�(Q2, t)

g(t)�̄(Q2, t)
 1Standard unweighting needs Standard unweighting 

does not work!

3. Special selection: Veto Algorithm
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Veto Algorithm
1. Idea

Check if this is bigger or lower!
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Veto Algorithm
1. Idea

• We want to compensate the over-estimate of the choice of the 
scale by not re-generate above that scale if the scale is rejected

Check if this is bigger or lower!
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Veto Algorithm
1. Idea

• We want to compensate the over-estimate of the choice of the 
scale by not re-generate above that scale if the scale is rejected

2. Algorithm

1.Start with i=0 and t0 = Q2

Check if this is bigger or lower!
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Veto Algorithm
1. Idea

• We want to compensate the over-estimate of the choice of the 
scale by not re-generate above that scale if the scale is rejected

2. Algorithm

1.Start with i=0 and 

2.move to i+1 and generate            such that 

t0 = Q2

Ri+1 = �̄(ti, ti+1)ti+1

Check if this is bigger or lower!
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Veto Algorithm
1. Idea

• We want to compensate the over-estimate of the choice of the 
scale by not re-generate above that scale if the scale is rejected

2. Algorithm

1.Start with i=0 and 

2.move to i+1 and generate            such that 

3.accept/reject with probability 

t0 = Q2

Ri+1 = �̄(ti, ti+1)
p(ti+1)

g(ti+1)

ti+1

Check if this is bigger or lower!
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Veto Algorithm
1. Idea

• We want to compensate the over-estimate of the choice of the 
scale by not re-generate above that scale if the scale is rejected

2. Algorithm

1.Start with i=0 and 

2.move to i+1 and generate            such that 

3.accept/reject with probability 

➡ if                                 return 

t0 = Q2

ti+1

Ri+1 = �̄(ti, ti+1)
p(ti+1)

g(ti+1)
p(ti+1)

g(ti+1)
< R0

i+1

ti+1

Check if this is bigger or lower!
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Veto Algorithm
1. Idea

• We want to compensate the over-estimate of the choice of the 
scale by not re-generate above that scale if the scale is rejected

2. Algorithm

1.Start with i=0 and 

2.move to i+1 and generate            such that 

3.accept/reject with probability 

➡ if                                 return 

➡else go back to point 2

t0 = Q2

ti+1

Ri+1 = �̄(ti, ti+1)
p(ti+1)

g(ti+1)
p(ti+1)

g(ti+1)
< R0

i+1

ti+1

Check if this is bigger or lower!
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Veto Algorithm
1. Idea

• We want to compensate the over-estimate of the choice of the 
scale by not re-generate above that scale if the scale is rejected

2. Algorithm

1.Start with i=0 and 

2.move to i+1 and generate            such that 

3.accept/reject with probability 

➡ if                                 return 

➡else go back to point 2

t0 = Q2

ti+1

Ri+1 = �̄(ti, ti+1)
p(ti+1)

g(ti+1)
p(ti+1)

g(ti+1)
< R0

i+1

ti+1

Is is what we want?

Check if this is bigger or lower!
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Veto Algorithm
Pn(t)•            The probability to select the scale t after n+1 attempt

P(t) =
1X

n=0

Pn(t)
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Pn(t)•            The probability to select the scale t after n+1 attempt

P0(t) = g(t)�̄(t0, t)
p(t)

g(t)
= p(t)�̄(t0, t)

P(t) =
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n=0

Pn(t)
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Veto Algorithm
Pn(t)•            The probability to select the scale t after n+1 attempt

P0(t) = g(t)�̄(t0, t)
p(t)
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P1(t) =

Z t0

t
dt1g(t1)�̄(t0, t1)

✓
1� p(t1)

g(t1)

◆
g(t)�̄(t1, t)

p(t)

g(t)

P(t) =
1X

n=0

Pn(t)



Mattelaer Olivier Monte-Carlo Lecture: 2019  X

Veto Algorithm
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Pn(t)
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Final-state parton showers

With the Sudakov form factor, we can now implement a final-state 
parton shower in a Monte Carlo event generator!

1. Start the evolution at the virtual mass scale t0 (e.g. the mass of the 
decaying particle) and momentum fraction z0 = 1

2. Given a virtual mass scale ti and momentum fraction xi at some stage 
in the evolution, generate the scale of the next emission ti+1 according to 
the Sudakov probability ∆(ti,ti+1) by solving 
∆(ti+1,ti) = R 
where R is a random number (uniform on [0, 1]).

3. If ti+1 < tcut it means that the shower has finished.

4. Otherwise, generate z = zi/zi+1 with a distribution proportional to (αs/
2π)P(z), where P(z) is the appropriate splitting function.

5. For each emitted particle, iterate steps 2-4 until branching stops.

 X
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• There is a lot of freedom in the choice of evolution parameter 
t. It can be the virtuality m2 of particle a or its pT2 or E2θ2 ... For 
the collinear limit they are all equivalent

• However, in the soft limit (z ⟶ 0,1) they behave differently

• Can we chose it such that we get the correct soft limit?

• Soft gluon comes from the full event!  

Soft Limit

 X

�(Q2, t) = exp

�
�

⇤

bc

⌅ Q2

t

dt⇥

t⇥
dz

d⇤

2⇥

�S

2⇥
Pa�bc(z)

⇥

Event Generators 1 Mike Seymour 

Soft limit 
Also  universal.    But  at  amplitude  level… 
 
 
 
 
 
 
 
soft gluon comes from everywhere in event. 
ÆQuantum interference. 
Spoils independent evolution picture? 

• Quantum Interference
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Radiation inside cones around the original partons is allowed 
(and described by the eikonal approximation), outside the cones 
it is zero (after averaging over the azimuthal angle)

Angular ordering

 X

photon+photon
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If the transverse wavelength of the emitted gluon is longer than the 
separation between q and qbar, the gluon emission is suppressed, 
because the q qbar system will appear as colour neutral (i.e. dipole-
like emission, suppressed)

Therefore d>1/k⊥ , which implies    θ < φ.

Intuitive explanation
Angular ordering
(slide by M. Mangano)

An intuitive explanation of angular ordering

φ

θμ!
k

p

Distance between q and qbar after τ:

d =  φτ = (φ/θ) 1/k⊥

If the transverse wavelength of the emitted gluon is longer than 
the separation between q and qbar, the gluon emission is 
suppressed, because the q qbar system will appear as colour 
neutral (=> dipole-like emission, suppressed)

μ! = (p+k)! = 2E k₀ (1-cosθ) 
∼ E k₀ θ! ∼ E k⊥ θ

Lifetime of the virtual intermediate state:

τ < γ/μ = E/μ!  = 1 / (k₀θ!)= 1/(k⊥θ)

Therefore d> 1/k⊥ , which implies θ < φ
12Paolo Torrielli (EPFL) Interfacing NLO with Parton Showers ThinkTank on Physics @ LHC 25 / 83

 X

Lifetime of the virtual intermediate state: 
τ < γ/μ = E/μ2 = 1/(k0θ2) = 1/(k⊥θ)

Distance between q and qbar after τ: 
d = φτ = (φ/θ) 1/k⊥

μ2 = (p+k)2 = 2E k0 (1-cosθ)  
∼ E k0 θ2 ∼ E k⊥ θ

MichelangeloMangano®
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Angular ordering

The construction can be iterated to the next 
emission, with the result that the emission 
angles keep  getting smaller and smaller. 

One can generalize it to a generic parton of 
color charge Qk splitting into two partons i 
and j, Qk=Qi+Qj.  The result is that inside the 
cones i and j emit as independent charges, 
and outside their angular-ordered cones the 
emission is coherent and can be treated as if 
it was directly from color charge Qk. 

KEY POINT FOR THE MC!

Angular ordering is automatically satisfied in 
θ ordered showers! (and easy to account for 
in pT ordered showers).

 X
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Angular ordering

 X
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Angular ordering

Angular ordering is: 

 X
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Angular ordering

Angular ordering is: 

1. A quantum effect coming from the interference of different 
Feynman diagrams. 

 X
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Angular ordering

Angular ordering is: 

1. A quantum effect coming from the interference of different 
Feynman diagrams. 

2.  Nevertheless it can be expressed in “a classical fashion” (square of 
a amplitude is equal to the sum of the squares of two special 
“amplitudes”).  The classical limit is the dipole-radiation.

 X
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Angular ordering

Angular ordering is: 

1. A quantum effect coming from the interference of different 
Feynman diagrams. 

2.  Nevertheless it can be expressed in “a classical fashion” (square of 
a amplitude is equal to the sum of the squares of two special 
“amplitudes”).  The classical limit is the dipole-radiation.

3.  It is not an exclusive property of QCD (i.e., it is also present in 
QED) but in QCD produces very non-trivial effects, depending on 
how particles are color connected. 

 X
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•  Sudakov Form-Factor: Probability of No-
emission between two scale.  
 
 

•Parton shower is unitary (and IR save)
•Parton shower is a Markov Chain

➡One emission at the time 
•Each interactions has its own scale for 
alphas

•Various choice for the evolution parameter

 73

To Remember

Pno�branching(Q
2, t) ' e�

R Q2

t
dt0
t0 dz

↵S
2⇡ P̂ (z) ⌘ e�

R Q2

t dp(t0)�(Q2, t)
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• So far, we have looked at final-state (time-like) splittings. For 
initial state, the splitting functions are the same

• However, there is another ingredient: the parton density (or 
distribution) functions (PDFs). Naively: Probability to find a 
given parton in a hadron at a given momentum fraction x = pz/
Pz and scale t.

Initial-state

 X

x0 t0

Q2

x1 t1
· · ·

xn�1 tn�1

xn tn

p

Figure 3.5: The struck quark radiating several gluons at successive t and x, such that
t0 ⇤ t1 ⇤ . . .⇤ tn�1 ⇤ tn ⇤ t = Q2 and x0 > x1 > . . . > xn�1 > xn = x.

steps, we see that such a radiation would result in

q(x, t) = q0(x) +
 t

t0

dt⇥

t⇥
�s

2⇥

 1

x

dz

z
P (z)

⌥
q0

�x

z

⇥
+

+
 t�

t0

dt⇥⇥

t⇥⇥
�s

2⇥

 1

x/z

dz⇥

z⇥
P (z⇥) q0

� x

zz⇥

⇥�
=

= q0(x) +
�s

2⇥
ln
⇤

t

t0

⌅ 1

x

dz

z
P (z) q0

�x

z

⇥
+

+
1
2!

⇧
�s

2⇥
ln
⇤

t

t0

⌅⌃2  1

x

dz

z
P (z)

 1

x/z

dz⇥

z⇥
P (z⇥) q0

� x

zz⇥

⇥
⇥

⇥ q0(x) +
 t

t0

dt⇥

t⇥
�s(t⇥)

2⇥

 1

x

dz

z
P (z) q

�x

z
, t⇥
⇥

(3.27)

where the last step follows from the first, and the middle equality is only
inserted to show the appearance of the

⌦
�s
2⇥ ln

�
t
t0

⇥↵2
-term.

Note that, in the last step, we evaluate the running coupling �s(t) (see
sec. 3.1.1) at the same scale as the quark distribution function. If we look
at more successive gluon radiations at ever decreasing t (see fig. 3.5), we
include higher powers of

⌦
�s
2⇥ ln

�
t
t0

⇥↵
, and the last step in eq. (3.27) turns

into an identity. Differentiating with respect to t, we get the famous DGLAP
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• So far, we have looked at final-state (time-like) splittings. For 
initial state, the splitting functions are the same

• However, there is another ingredient: the parton density (or 
distribution) functions (PDFs). Naively: Probability to find a 
given parton in a hadron at a given momentum fraction x = pz/
Pz and scale t.

• How do the PDFs evolve with increasing t?
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Figure 3.5: The struck quark radiating several gluons at successive t and x, such that
t0 ⇤ t1 ⇤ . . .⇤ tn�1 ⇤ tn ⇤ t = Q2 and x0 > x1 > . . . > xn�1 > xn = x.
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where the last step follows from the first, and the middle equality is only
inserted to show the appearance of the
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-term.

Note that, in the last step, we evaluate the running coupling �s(t) (see
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• The parton shower dresses partons with radiation. This makes 
the inclusive parton-level predictions (i.e. inclusive over extra 
radiation) completely exclusive

• In the soft and collinear limits the partons showers are 
exact, but in practice they are used outside this limit as well.

• Partons showers are universal (i.e. independent from the 
process)

• Building block of the parton shower is the Sudakov

• There is a cut-off in the shower (below which we don’t trust 
perturbative QCD) at which a hadronization model takes over
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