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Introduction
• Collider Physics

• accelerating particle -> High Energy collision
• What do we need to predict/understand such 

collision?

Topic
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Kind of measurement
Peak Shape Rate

“easy” “Hard” “VERY HARD”

Background directly 
measured from data. 

Theory needed only for
parameter extraction

Background SHAPE needed. 
Flexible MC for both signal 

and background validated and 
tuned to data

Relies on prediction for both 
shape and normalization. 

Complicated interplay of best 
simulations and data
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•  This is Where 
the new idea 
are expressed
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•  This is Where 
the new idea 
are expressed

 4

Theory side
Lagrangian Feynman Rule

•Same 
information as 
the Lagrangian

FeynRules

Cross-section

•What is the 
precision?
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Monte-Carlo Physics
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Filling the gap
Lagrangian

Feynman Rules

matrix element

parton events

shower events

hadronized events

detector simulation

exclusion plot

FeynRules / Sarah

MadGraph / Comix

MadEvent/Sherpa

Pythia/Herwig

Pythia/Herwig

Delphes/Full Sim

CheckMate/ 
MadAnalysis5
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Simulation of collider events

Simulation of collider events

 7
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What are the MC for?

Sherpa artist
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What are the MC for?
1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

☞ where BSM physics lies 

☞ process dependent

☞ first principles description

☞ it can be systematically improved
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What are the MC for?
1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

☞ QCD -”known physics”
☞ universal/ process independent
☞ first principles description
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What are the MC for?
1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

☞ universal/ process independent

☞ model-based description

☞ low Q   physics
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What are the MC for?
1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

☞ energy and process dependent 

☞ model-based description

☞ low Q   physics
2
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What are the MC for?
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•  Multi-scale problem
➡ New physics visible only at High scale
➡ Problem split in different scale

 14

To Remember
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x1E x2E
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integral

Parton density 
functions

Parton-level cross 
section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�
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Master formula for the LHC



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015  15

pp

µFµF
x1E x2E

`+ `�

long distance

long distance

Phase-space 
integral

Parton density 
functions

Parton-level cross 
section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b

Master formula for the LHC



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015  15

pp

µFµF
x1E x2E

`+ `�

long distance

long distance

Phase-space 
integral

Parton density 
functions

Parton-level cross 
section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)
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• The parton-level cross section can be computed as a 
series in perturbation theory, using the coupling 
constant as an expansion parameter, schematically: 
 
 
 
 
 
 

Perturbative expansion
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• The parton-level cross section can be computed as a 
series in perturbation theory, using the coupling 
constant as an expansion parameter, schematically: 
 
 
 
 
 
 

• Including higher corrections improves predictions 
and reduces theoretical uncertainties

Perturbative expansion
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• As an example, consider Drell-Yan Z/γ* 
production

NLO predictions

 17

x1E x2E
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• As an example, consider Drell-Yan Z/γ* 
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• As an example, consider Drell-Yan Z/γ* 
production

NLO predictions
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• Leading Order predictions can 
depend strongly on the 
renormalization and factorization 
scales

• Including higher order corrections 
reduces the dependence on these 
scales

Improved predictions
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• LO calculation is not reliable,

• but the perturbative series 
stabilises at NNLO/N3LO

• NLO estimation of the 
uncertainties (by scale variation) 
works reasonably well

Higgs at N3LO

 19
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• but the perturbative series 
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uncertainties (by scale variation) 
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Higgs at N3LO
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Let’s focus on NLO
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• For an observable to be calculable in fixed-order 
perturbation theory, the observable should be infrared 
safe, i.e., it should be insensitive to the emission of soft 
or collinear partons. 

• In particular, if pi is a momentum occurring in the 
definition of an observable, it most be invariant under 
the branching 
      pi ⟶ pj + pk, 
whenever pj and pk are collinear or one of them is soft. 

• Examples 

• “The number of gluons” produced in a collision is not an infrared 
safe observable

• “The number of hard jets defined using the kT algorithm with a 
transverse momentum above 40 GeV,” produced in a collision is 
an infrared safe observable

Infrared safe observables

 20
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• Total cross section

• Transverse momentum of the top quark

• Transverse momentum of the top-antitop pair

• Transverse momentum of the jet

• Top-antitop invariant mass

• Azimuthal distance between the top and anti-top

NLO...?

 21

LO VirtReal

• Are all (IR-safe) observables that we can compute using a 
NLO code correctly described at NLO? Suppose we have 
a NLO code for pp ⟶ ttbar
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• NNLO is the current state-of-the-art. There are 
only a few results available: Higgs (N3LO available), 
Drell-Yan, ttbar

• Why do we need it?

•  control of the uncertainties in a  
calculation

• It is “mandatory” if NLO corrections  
are very large to check the behavior  
of the perturbative series

• It is needed for Standard Candles  
and very precise tests of perturbation theory, exploiting all 
the available information, e.g. for determining NNLO PDF 
sets

Going NNLO...?

 22
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Predictions at NNLO

Why?

● A NNLO computation gives control on the 
uncertainties of a perturbative calculation.

● It’s “mandatory” if NLO corrections are very large to 
check the behaviour of the perturbative series

● It’s the best we have! It is needed for Standard Candles 
and for really exploiting all the available information, for 
example that of NNLO PDF’s.

× σ̂ab→X(x1, x2, αS(µ2

R),
Q2

µ2

F

,
Q2

µ2

R

)σX =
∑
a,b

∫ 1

0

dx1dx2 fa(x1, µ
2

F )fb(x2, µ
2

F )

σ̂ab→X = σ0 + αSσ1 + α
2

Sσ2 + . . .

Wednesday 2 May 2012
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Predictions at NNLO
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● A NNLO computation gives control on the 
uncertainties of a perturbative calculation.

● It’s “mandatory” if NLO corrections are very large to 
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Let’s focus on LO



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Hadron Colliders

b

W
Z

t
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Parton densities

10!

Parton Kinematics 

!! Examples: 

!! Higgs: M~100 GeV/c2 

!! LHC: <xp>=100/14000"0.007 

!! TeV: <xp>=100/2000"0.05 

!! Gluino: M~1000 GeV/c2 

!! LHC: <xp>=1000/14000"0.07 

!! TeV: <xp>=1000/2000"0.5 

!! Parton densities rise dramatically towards low x 

!! Results in larger cross sections for LHC, e.g. 

!! factor ~1000 for gluinos 

!! factor ~40 for Higgs 

!! factor ~10 for W’s 

pdf’s measured in deep-inelastic scattering!

(at "s=14 TeV)!

Ratio of Luminosity: LHC at 7 TeV vs Tevatron 

!! Power of collider can be 

fully characterized by ratio 

of parton luminosities 

!! Ratio larger for gg than qq 

!! Due to steap rise of gluon 

towards low x 

!! MX=100 GeV 

!! gg: R"10, e.g. Higgs 

!! qq: R"3, e.g. W and Z 

!! MX=800 GeV  

!! gg: R"1000, e.g. SUSY 

!! qq: R"20, e.g. Z’ 
11!

At small x (small ŝ), gluon domination.
At large x valence quarks

LHC formidable at large mass –
For low mass, Tevatron backgrounds smaller

 24
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Back to the processes
Ratio of Luminosity: LHC at 7 TeV vs Tevatron 

!! Power of collider can be 

fully characterized by ratio 

of parton luminosities 

!! Ratio larger for gg than qq 

!! Due to steap rise of gluon 

towards low x 

!! MX=100 GeV 

!! gg: R"10, e.g. Higgs 

!! qq: R"3, e.g. W and Z 

!! MX=800 GeV  

!! gg: R"1000, e.g. SUSY 

!! qq: R"20, e.g. Z’ 
11!
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•  PDF: content of the proton
➡ Define the physics/processes that will 
dominate on your accelerator

•  NLO/NNLO: Reduce scale uncertainty linked 
to your division of your multi-scale problem

 26

To Remember

Phase-space 
integral

Parton density 
functions

Parton-level cross 
section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b
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•Determine the production mechanism

•  Evaluate the matrix-element

•  Phase-Space Integration  
 
 
 

 27

Matrix-Element
Calculate a given process (e.g. gluino pair)

s s~ > go go WEIGHTED=2 page 1/1

Diagrams made by MadGraph5_aMC@NLO

s

1

s~

2

g

go

3

go

4

 diagram 1 QCD=2, QED=0

s

1

go

3

sl

s~
2

go
4

 diagram 2 QCD=2, QED=0

s

1

go

3

sr

s~
2
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•Determine the production mechanism

•  Evaluate the matrix-element

•  Phase-Space Integration  
 
 
 

 27

Matrix-Element
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Monte Carlo Integration  
and Generation

 28
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Monte Carlo Integration

σ =
1

2s

∫
|M|2dΦ(n)

Calculations of cross section or decay widths involve 
integrations over high-dimension phase space of very 
peaked functions:

 29



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Monte Carlo Integration

σ =
1

2s

∫
|M|2dΦ(n)

Calculations of cross section or decay widths involve 
integrations over high-dimension phase space of very 
peaked functions:

Dim[Φ(n)] ∼ 3n
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Monte Carlo Integration

σ =
1

2s

∫
|M|2dΦ(n)

Calculations of cross section or decay widths involve 
integrations over high-dimension phase space of very 
peaked functions:

General and flexible method is needed

Dim[Φ(n)] ∼ 3n

 29
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Integration
I =

∫ 1

0

dx cos
π

2
x

IN = 0.637 ± 0.307/
√

N

Z
dq2

(q2 �M2 + iM�)2

IN = 0.637 ± 0.307/
√

N

Z
dxC
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Integration
I =

∫ 1

0

dx cos
π

2
x

IN = 0.637 ± 0.307/
√

N

Z
dq2

(q2 �M2 + iM�)2

IN = 0.637 ± 0.307/
√

N

Z
dxC

• MonteCarlo
• Trapezium
• Simpson

Method of evaluation
1/

p
N

1/N4

1/N2

simpson MC
3 0.638 0.3
5 0.6367 0.8

20 0.63662 0.6
100 0.636619 0.65
1000 0.636619 0.636
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Integration
I =

∫ 1

0

dx cos
π

2
x

IN = 0.637 ± 0.307/
√

N

Z
dq2

(q2 �M2 + iM�)2

IN = 0.637 ± 0.307/
√

N

Z
dxC

Method of evaluation
1/

p
N

1/N4

1/N2

More Dimension 1/
p
N

1/N2/d

1/N4/d

• MonteCarlo
• Trapezium
• Simpson
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Integration
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Integration
I =

∫ 1

0

dx cos
π

2
x

IN = 0.637 ± 0.307/
√

N

Z
dq2

(q2 �M2 + iM�)2

IN = 0.637 ± 0.307/
√

N

Z
dxC

I =
∫

x2

x1

f(x)dx

V = (x2 − x1)

∫
x2

x1

[f(x)]2dx − I2 VN = (x2 − x1)
2

1

N

N∑

i=1

[f(x)]2 − I2

N

IN = (x2 − x1)
1

N

N∑

i=1

f(x)

I = IN ±
√

VN/N

V = VN = 0

Can be minimized!
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Importance Sampling

IN = 0.637 ± 0.307/
√

N
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∫ 1

0

dx cos
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√

N
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Importance Sampling

IN = 0.637 ± 0.307/
√
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Importance Sampling
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The Phase-Space parametrization is important to have an 
efficient computation!
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Importance Sampling
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Importance Sampling
Z
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Probability of using 
that point p(x)

Why Importance Sampling?
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Importance Sampling
Z

dq2

(q2 �M2 + iM�)2

⇠ = arctan

✓
q2 �M2

�M

◆

The change of variable ensure that the evaluation of 
the function is done where the function is the largest!

Probability of using 
that point p(x)

Why Importance Sampling?
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•Generate the random point in a distribution 
which is close to the function to integrate.

•This is a change of variable, such that the 
function is flatter in this new variable.

•Needs to know an approximate function. 

 35

Importance Sampling
Key Point

Adaptative Monte-Carlo
•Create an approximation of the function on 
the flight!            



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015  36

1. Creates bin such that 
each of them have the 
same contribution.
➡Many bins where the 
function is large

2. Use the approximate 
for the importance 
sampling method.

Algorithm

Adaptative Monte-Carlo
•Create an approximation of the function on 
the flight!            
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VEGAS
More than one Dimension

•  adaptive methods works only with 1(few) 
dimension (memory problem)
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dimension (memory problem)

Solution
•Use projection on the axis

p(x)= p(x)•p(y)•p(z)…
→
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VEGAS
More than one Dimension

•  adaptive methods works only with 1(few) 
dimension (memory problem)

Solution
•Use projection on the axis

p(x)= p(x)•p(y)•p(z)…
→

• We need to 
ensure the 
factorization !

➡Additional 
change of 
variable
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•The choice of the parameterisation has a 
strong impact on the efficiency

 38

Monte-Carlo Integration
Monte Carlo technics

efficiency of an adaptative MC integration :

case 1 : any peak is aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptative Monte-Carlo P-S integration is very efficient

MadWeight – p. 7/17

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

any peak is aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29

Grid

The adaptive Monte-Carlo Technique picks point 
in interesting areas 
        The technique is efficient
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Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

some peaks are not aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptive Monte-Carlo P-S integration converges slowly

MadWeight – p. 12/29

•The choice of the parametrization has a 
strong impact on the efficiency
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Monte-Carlo Integration

Grid

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

some peaks are not aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptive Monte-Carlo P-S integration converges slowly

MadWeight – p. 12/29

The adaptive Monte-Carlo Techniques picks 
points everywhere 
        The integral converges slowly

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

some peaks are not aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptive Monte-Carlo P-S integration converges slowly

MadWeight – p. 12/29

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

solution to the previous case : perform a change of variables in order

to align the peaks along a single direction of the P-S parametrization

y2

y1

y1 + y2

y1 − y2

→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29

Monte Carlo integration
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efficiency of the MC integration :
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to align the peaks along a single direction of the P-S parametrization
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→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29
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Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

some peaks are not aligned along a single direction of the P-S

parametrization
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y2

y1

→ the adaptive Monte-Carlo P-S integration converges slowly
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•The choice of the parametrization has a 
strong impact on the efficiency
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Monte-Carlo Integration
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Rotation

Grid

The adaptive Monte-Carlo Techniques picks point 
in interesting areas 
        The technique is efficient

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

solution to the previous case : perform a change of variables in order

to align the peaks along a single direction of the P-S parametrization

y2

y1

y1 + y2

y1 − y2

→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

solution to the previous case : perform a change of variables in order

to align the peaks along a single direction of the P-S parametrization

y2

y1

y1 + y2

y1 − y2

→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

solution to the previous case : perform a change of variables in order

to align the peaks along a single direction of the P-S parametrization

y2

y1

y1 + y2

y1 − y2

→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29
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Multi-channel 

What do we do if there is 
no transformation that 
aligns all integrand peaks 
to the chosen axes?
Vegas is bound to fail!

 40
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Multi-channel 

What do we do if there is 
no transformation that 
aligns all integrand peaks 
to the chosen axes?
Vegas is bound to fail!

Solution: use different transformations = channels

p(x) =
n∑

i=1

αipi(x)
n∑

i=1

αi = 1with

with each pi(x) taking care of one “peak” at the time

 40
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Multi-channel 

p1(x) p2(x)

p(x) =
n∑

i=1

αipi(x)

n∑

i=1

αi = 1
with

 41
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Multi-channel 

I =

∫
f(x)dx =

n∑
i=1

αi

∫
f(x)

p(x)
pi(x)dx

p(x) =
n∑

i=1

αipi(x)

n∑

i=1

αi = 1
with

Then,

 42

⇡ 1
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•  Phase-Space integration
•  Parton Shower
•  Hadronization

 43

Exemple of use

u u~ > g g QED=0 page 1/1

Diagrams made by MadGraph5

u

1

u~

2

g

3

g

4

g

 diagram 1 QCD=2

u

1

g

3

u~

2

g

4

u

 diagram 2 QCD=2

u

1

g

4

u~

2

g

3

u

 diagram 3 QCD=2

u u~ > g g QED=0 page 1/1

Diagrams made by MadGraph5

u

1

u~

2

g

3

g

4

g

 diagram 1 QCD=2

u

1

g

3

u~

2

g

4

u

 diagram 2 QCD=2

u

1

g

4

u~

2

g

3

u

 diagram 3 QCD=2

u u~ > g g QED=0 page 1/1

Diagrams made by MadGraph5

u

1

u~

2

g

3

g

4

g

 diagram 1 QCD=2

u

1

g

3

u~

2

g

4

u

 diagram 2 QCD=2

u

1

g

4

u~

2

g

3

u

 diagram 3 QCD=2

/ 1

ŝ
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Multi-channel based on single diagrams*
*Method used in MadGraph

 44

Does a basis exist?  
Z

|Mtot|2 =

Z P
i |Mi|2P
j |Mj |2

|Mtot|2 =
X

i

Z |Mi|2P
j |Mj |2

|Mtot|2
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– Any single diagram is “easy” to integrate (pole structures/
suitable integration variables known from the propagators)

– Divide integration into pieces, based on diagrams
– All other peaks taken care of by denominator sum

Multi-channel based on single diagrams*
*Method used in MadGraph

Key Idea
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– Any single diagram is “easy” to integrate (pole structures/
suitable integration variables known from the propagators)

– Divide integration into pieces, based on diagrams
– All other peaks taken care of by denominator sum

Multi-channel based on single diagrams*
*Method used in MadGraph

Key Idea

N Integral
– Errors add in quadrature so no extra cost
– “Weight” functions already calculated during |M|2 calculation
– Parallel in nature

 44

Does a basis exist?  

⇡ 1

Z
|Mtot|2 =

Z P
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j |Mj |2
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•  Phase-Space integration are difficult
•  We need to know the function

➡ Be careful with cut (they change the 
function)

•  Split the function in a sum (one for each 
structure) and integrate each of those 
separately

➡ This splitting should not be physical

 45

To Remember
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Event generation

 f(x)
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Event generation

1. pick x

3. pick 0<y<fmax
 f(x)

2. calculate  f(x)

4. Compare:
if f(x)>y accept event,

else reject it.

I= 
total tries 

accepted
= efficiency

 46
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What’s the difference between  
weighted and unweighted? 

Weighted:

Same # of events in areas of 
phase space with very 
different probabilities:
events must have different 
weights 

Event generation

 47
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# events is proportional to 
the probability of areas of 
phase space:
events have all the same
weight (”unweighted”)

Events distributed as in nature

Event generation
What’s the difference between  
weighted and unweighted? 

Unweighted:

 48
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Improved by combining with importance sampling:

1. pick x  distributed as p(x)

2. calculate  f(x) and p(x)

3. pick 0<y<f/p(max) 

 f(x)

4. Compare:
if f(x)>y p(x) accept event,
else reject it.

much better efficiency!!!  (need to check 
this page likely wrong in the description)

Event generation
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MC integrator

Event generation
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Event generator

MC integrator

Acceptance-Rejection

☞ This is possible only if f(x)<∞ AND has definite sign!

O

dσ

dO

O

dσ

dO

Event generation
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•  Sample of unweighted events
➡ Events distributed like nature 
➡ Need the function to be

Borned
Always positive

➡ More efficient if the integration is more 
efficient 

Same dependencies in the cut

 51

To Remember



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015  52

Monte-Carlo Summary

•  Slow Convergence (especially in low 
number of Dimension

•  Need to know the function 
• Impact on cut

Bad Point
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Monte-Carlo Summary

•  Slow Convergence (especially in low 
number of Dimension

•  Need to know the function 
• Impact on cut

Bad Point

Good Point

•Complex area of Integration
•Easy Error estimate
•quick estimation of the integral
•Possibility to have unweighted events
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Type of MC simulation

Type of MC Simulation

 53
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• We need to be able to describe an arbitrarily number of 
parton branchings, i.e. we need to ‘dress’ partons with radiation

Parton shower

 54
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• This effect should be unitary: the inclusive cross section 
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from non-perturbative power corrections)
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• We need to be able to describe an arbitrarily number of 
parton branchings, i.e. we need to ‘dress’ partons with radiation

• This effect should be unitary: the inclusive cross section 
shouldn’t change when extra radiation is added

• Remember that parton-level cross sections for a hard process 
are inclusive in anything else. 
E.g. for LO Drell-Yan production all radiation is included via PDFs (apart 
from non-perturbative power corrections)

• And finally we want to turn partons into hadrons (hadronization)....

Parton shower
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• Consider a process for which two particles are separated by a small 
angle θ.

• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
scales which are very long with respect to the hard subprocess.

Collinear factorization

 55
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2
a

b

c
θ

Mn+1

• Consider a process for which two particles are separated by a small 
angle θ.

• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
scales which are very long with respect to the hard subprocess.

• The inclusion of such a branching cannot change the picture set up 
by the hard process: the whole emission process must be writable 
in this limit as the simpler one times a branching probability.

Collinear factorization
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•  The process factorizes in the collinear limit. This procedure it 
universal! 

Collinear factorization

 56
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•  The process factorizes in the collinear limit. This procedure it 
universal! 

Collinear factorization

 56
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Collinear factorization:

when θ is small.

|Mn+1|2d�n+1 ' |Mn|2d�n
dt
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...

...

PS →

ME 
↓

Merging ME with PS
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PS alone vs matched samples

GeV 
0 50 100 150 200 250 300 350 400

 (p
b/

bi
n)

T
/d

P
σd

-310

-210

-110

1

10

 (wimpy)2Q

 (power)2Q

 (wimpy)2
TP

 (power)2
TP

 of the 2-nd extra jetTP

 (a la Pythia)tt

In the soft-collinear approximation of Parton Shower MCs, parameters are used to 
tune the result ⇒ Large variation in results (small prediction power)

(Pythia only)
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Matrix Elements vs. Parton Showers

 59



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Matrix Elements vs. Parton Showers

ME

1. Fixed order calculation
2. Computationally expensive
3. Limited number of particles
4. Valid when partons are hard and 

well separated
5. Quantum interference correct
6. Needed for multi-jet description
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Approaches are complementary: merge them!
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Difficulty: avoid double counting, ensure smooth distributions

Approaches are complementary: merge them!

Matrix Elements vs. Parton Showers

ME

1. Fixed order calculation
2. Computationally expensive
3. Limited number of particles
4. Valid when partons are hard and 

well separated
5. Quantum interference correct
6. Needed for multi-jet description

Shower MC

1. Resums logs to all orders
2. Computationally cheap
3. No limit on particle multiplicity
4. Valid when partons are collinear 

and/or soft
5. Partial interference through 

angular ordering
6. Needed for hadronization
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Goal for ME-PS merging/matching

Matrix element

Parton shower 2nd QCD radiation jet in 
top pair production at 

the LHC, using
MadGraph + Pythia
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Goal for ME-PS merging/matching

• Regularization of matrix element divergence

• Correction of the parton shower for large momenta

• Smooth jet distributions

Matrix element

Parton shower

Desired curve

2nd QCD radiation jet in 
top pair production at 

the LHC, using
MadGraph + Pythia
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...

...

PS →

ME 
↓

[Mangano]
[Catani, Krauss, Kuhn, Webber]
[Lönnblad]

Merging ME with PS
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...

...

PS →

ME 
↓

[Mangano]
[Catani, Krauss, Kuhn, Webber]
[Lönnblad]

DC DC

DC

Merging ME with PS
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...

...

PS →

ME 
↓

[Mangano]
[Catani, Krauss, Kuhn, Webber]
[Lönnblad]

kT < Qc

kT > Qc

kT > Qc

kT > Qc

kT < Qc

kT < Qc

kT > Qc

kT < Qc

Merging ME with PS
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...

...

PS →

ME 
↓

Double counting between ME and PS easily avoided using phase space cut 
between the two: PS below cutoff, ME above cutoff. 

[Mangano]
[Catani, Krauss, Kuhn, Webber]
[Lönnblad]

kT < Qc

kT > Qc

kT > Qc

kT > Qc

kT < Qc

kT < Qc

kT > Qc

kT < Qc

Merging ME with PS
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PS alone vs matched samples

GeV 
0 50 100 150 200 250 300 350 400

 (p
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P
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1
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 (wimpy)2Q

 (power)2Q

 (wimpy)2
TP

 (power)2
TP

 of the 2-nd extra jetTP

 (a la Pythia)tt

In the soft-collinear approximation of Parton Shower MCs, parameters are used to 
tune the result ⇒ Large variation in results (small prediction power)

(Pythia only)
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GeV 
0 50 100 150 200 250 300 350 400

 (p
b/

bi
n)

T
/d

P
σd

-310

-210

-110

1

10

 (wimpy)2Q

 (power)2Q

 (wimpy)2
TP

 (power)2
TP

 of the 2-nd extra jetTP

+0,1,2,3 partons + Pythia (MMLM)tt

[MadGraph]

PS alone vs ME matching

In a matched sample these differences are irrelevant since the behavior at 
high pt is dominated by the matrix element. 
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Short Description of Tools

Tools for MC Simulation

 64
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•LO 
➡ fix order (plus parton-shower)
➡ matched-merged

•NLO 
➡ POWHEG / MC@NLO 
➡ merged sample

•NNLO / re-summation / N3LO
•Default:

➡ Do the most advanced possible 
generation.

➡ Speed issue? check faster possibilities
 65

Which kind of MC?
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•  Need to link the 
one loop tool

•  UNLOPS 
merging

 66

NLO: merged sample
MadGraph5_aMC@NLO Sherpa

•Need to link to a 
Shower program 
(Pythia8)

•FxFx / UnLOPS 
Merging

… + Matchbox

•  Need to 
provide events

•Need to link to 
matrix element  
(both tree and 
loop)

•  NLO in QCD
•  Only SM support
•  free list of process

•MC@NLO method
•MC@NLO  
and POWHEG
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NLO (one multiplicity)
POWHEG VBF@NLO

•  POWHEG matching
•  Less negative 
events

•  Not pure NLO

•  QED@NLO
•  very dedicated

MadGraph5_aMC@NLO Sherpa

•BSM possible •SM 

•  Fixed list of processes
•  Some BSM
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NLO (cross-section)
MCFM

•  Fixed list of processes
•  Some BSM
•  No events generation

MadGraph5_aMC@NLO

Sherpa

Powheg

VBF@NLO

HPAIR

NJETS
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LO (matched/merged)
Sherpa

•  Fully built in
•  Starts BSM supports
•  CKKW-L
•ATLAS Default

… + Pythia

•  MLM / UMEPS / CKKW 
 CKKWL

•  Full BSM supports
•  CMS default (with 
MG5_aMC)

… + Herwig

•  MLM /CKKW 
 CKKWL

•   Full BSM supports



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015  70

LO
CODE Main advantage highest multiplicity

MG5_aMC BSM normal: 6  
decay: 14

Sherpa fast for QCD muli-leg normal: 7 
decay: 7

CalcHep very fast for 2 > 2 normal: 3/4 
decay: 6

Whizard ILC physics normal: 6 
decay: 10

pythia low multiplicity normal: 3 
decay: 100 

herwig low multiplicity normal: 3 
decay: 100



MadGraph5
Olivier Mattelaer

IPPP/Durham
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•Determine the production mechanism

•  Evaluate the matrix-element

•  Phase-Space Integration  
 
 
 

 72

Matrix-Element
Calculate a given process (e.g. gluino pair)

s s~ > go go WEIGHTED=2 page 1/1
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Plan For Today

 73

•  Computation of the matrix-element
•  Tree Level
•  Loop

•  Tools/functionality of MG5_aMC
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gµ⌫
q2

(v̄�⌫u)



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Matrix Element

X

pol
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• Evaluate M for fixed helicity of external particles
➡ Multiply M with M* -> |M|^2 
➡ Loop on Helicity and average the results
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Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

0 0

0

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

01

1

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

Identical

1 1

1

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

6 6

6

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

67

7

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

7

Identical

7

7

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

Identical

8 8

8

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

89

9

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

810

10

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

10 9

11

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

10 10

12

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 

10 10

12

2(N+1) 2(N+1)

 76

M1 M2

|M |2 = |M1 +M2|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 12

10 10
2(N+1) 2(N+1)

N!*2(N+1) N!
 77



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Real case
Known

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

s s~ > t t~ b b~ WEIGHTED=4 page 1/2

Diagrams made by MadGraph5

s

1

s~

2

g
t

3

t~
4

g

b

5

b~

b~
6

 diagram 1 QCD=4, QED=0

s

1

s~

2

g
t

3

t~
4

g

b~

6

b

b
5

 diagram 2 QCD=4, QED=0

s

1

s~

2

g

t

3

t~ 4
g

b
5

b~

6

g

 diagram 3 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t

3

t~ t~

4

 diagram 4 QCD=4, QED=0

s

1

s~

2

g

b

5

b~
6

g

t~

4

t t

3

 diagram 5 QCD=4, QED=0

t

3

t~ 4
g

b
5

b~

6

g

s

1

s

s~
2

 diagram 6 QCD=4, QED=0

Number of routines: Number of routines:

Number of routines for both: 12

10 10
2(N+1) 2(N+1)

N!*2(N+1) N! recursion 2N

 77



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015  78

HELAS

• Original HELicity Amplitude Subroutine library  
[Murayama, Watanabe, Hagiwara]



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015  78

HELAS

• Original HELicity Amplitude Subroutine library  

• One routine by Lorentz structure
➡MSSM [cho, al] hep-ph/0601063 (2006)

➡HEFT [Frederix] (2007)

➡Spin 2 [Hagiwara, al] 0805.2554 (2008)

➡Spin 3/2 [Mawatari, al] 1101.1289 (2011)

[Murayama, Watanabe, Hagiwara]



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015  78

HELAS

• Original HELicity Amplitude Subroutine library  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➡HEFT [Frederix] (2007)

➡Spin 2 [Hagiwara, al] 0805.2554 (2008)

➡Spin 3/2 [Mawatari, al] 1101.1289 (2011)

SLIH

Chromo-magnetic 
operator

Full HEFT
NMSSMEffective Field Theory

Black Holes 

BNV ModelChiral Perturbation

[Murayama, Watanabe, Hagiwara]
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Basically, any new operator can be handle by 
MG5/Pythia8 out of the box!



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

•  Numerical computation faster than 
analytical computation

•  We are able to compute matrix-element
➡ for large number of final state
➡ for any BSM theory

 80

To Remember
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Loop Computation

Loop Computation
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One Loop

 82

k1 k2

k3

k4

k5

k6

kn

D0 D1

D2

D3

Dm�1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3

• Consider this m-point loop 
diagram with n external momenta
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One Loop

 82

k1 k2

k3

k4

k5

k6

kn

D0 D1

D2

D3

Dm�1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3

• Consider this m-point loop 
diagram with n external momenta

Di = (l + pi)
2 �m2

i

Z
ddl

N(l)

D0D1D2 · · ·Dm�1

• The integral to 
compute is
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• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
numerically)

Integrand reduction

 83

Key Point
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• The a, b, c, d and R coefficients depend only on external 
parameters and momenta

Basis of scalar integrals

 84

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

Tadpolei0 =
�

ddl
1

Di0

Bubblei0i1 =
�

ddl
1

Di0Di1

Trianglei0i1i2 =
�

ddl
1

Di0Di1Di2

Boxi0i1i2i3 =
�

ddl
1

Di0Di1Di2Di3

• All these scalar integrals are known and available in computer libraries (FF 
[v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])

Di = (l + pi)
2 �m2

i



Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: IFT 2015

• The a, b, c, d and R coefficients depend only on 
external parameters and momenta

Divergences

 85

➡The coefficients d, c, b and a are finite and do not contain poles in 1/є

➡The 1/є dependence is in the scalar integrals (and the UV renormalization)

➡When we have solved this system (and included the UV renormalization) we have 
the full dependence on the soft/collinear divergences in terms of coefficients in front 
of the poles. These divergences should cancel against divergences in the real 
emission corrections (according to KLN theorem)

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

Tadpolei0 =
�

ddl
1

Di0

Bubblei0i1 =
�

ddl
1

Di0Di1

Trianglei0i1i2 =
�

ddl
1

Di0Di1Di2

Boxi0i1i2i3 =
�

ddl
1

Di0Di1Di2Di3

Di = (l + pi)
2 �m2

i

Virtual ⇠ v0 +
v1
✏

+
v2
✏2
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• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
numerically)

Integrand reduction

 86

Key Point

Two methods

• Passarino-Veltman

• OPP
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• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
numerically)

Integrand reduction
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Key Point

Two methods

• Passarino-Veltman

• OPP
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• Passarino-Veltman reduction: 
 
 

• Reduce a general integral to “scalar integrals” by “completing 
the square” 
 

Standard Approach

 87

Z
ddl

N(l)

D0D1D2 · · ·Dm�1
!

X

i

coe↵i

Z
ddl

1

D0D1 · · ·
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• Passarino-Veltman reduction: 
 
 

• Reduce a general integral to “scalar integrals” by “completing 
the square” 
 

• Let’s do an example: 
Suppose we want to calculate this triangle integral

Standard Approach

 87

Z
ddl

N(l)

D0D1D2 · · ·Dm�1
!

X

i

coe↵i

Z
ddl

1

D0D1 · · ·

p

q
p+ q

l

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27
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• The only independent four vectors are pμ and qμ . Therefore, 
the integral must be proportional to those. We can set-up a 
system of linear equations.
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This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.
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Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.
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27

Main Idea
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• The only independent four vectors are pμ and qμ . Therefore, 
the integral must be proportional to those. We can set-up a 
system of linear equations.
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• The only independent four vectors are pμ and qμ . Therefore, 
the integral must be proportional to those. We can set-up a 
system of linear equations.
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27
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Resolution  (dropping the mass)

• contracting with 2*p and 2*q  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• The only independent four vectors are pμ and qμ . Therefore, 
the integral must be proportional to those. We can set-up a 
system of linear equations.
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

Main Idea

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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• The only independent four vectors are pμ and qμ . Therefore, 
the integral must be proportional to those. We can set-up a 
system of linear equations.
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

Main Idea

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

Main Idea

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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• The only independent four vectors are pμ and qμ . Therefore, 
the integral must be proportional to those. We can set-up a 
system of linear equations.
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Passarino-Veltman

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

Main Idea

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Passarino-Veltman
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Resolution  (dropping the mass)

• express the integral as simpler integral

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

Passarino-Veltman
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Resolution  (dropping the mass)

• express the integral as simpler integral

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

Passarino-Veltman

Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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Resolution  (dropping the mass)

• express the integral as simpler integral

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

Scalar Integral: Know analytically

Passarino-Veltman

Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Already computed

Passarino-Veltman
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Already computed

Passarino-Veltman
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Already computed

Final Step
• Inverting the Gram Determinant

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

• We have an expression in term of scalar integral

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Passarino-Veltman
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OPP Reduction
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• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�
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+
�
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+
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• The functional form of the spurious terms is known (it depends on the 
rank of the integral and the number of propagators in the loop) [del 
Aguila, Pittau 2004]

• for example, a box coefficient from a rank 1 numerator is 
 
 
 
 
(remember that pi is the sum of the momentum that has entered the 
loop so far, so we always have p0 = 0)

• The integral is zero  
 
 

spurious terms

 94

d̃i0i1i2i3(l) = d̃i0i1i2i3 ✏
µ⌫⇢� lµp⌫1p

⇢
2p

�
3

Z
ddl

d̃i0i1i2i3(l)

D0D1D2D3
= d̃i0i1i2i3

Z
ddl

✏µ⌫⇢� lµp⌫1p
⇢
2p

�
3

D0D1D2D3
= 0
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How it works...
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To solve the OPP reduction, 
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ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di



Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: IFT 2015

To solve the OPP reduction, 
choosing special values for the 
loop momenta helps a lot

For example, choosing l such that 
 
 
 
sets all the terms in this equation 
to zero except the first line

How it works...

 95

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)
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To solve the OPP reduction, 
choosing special values for the 
loop momenta helps a lot
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solutions to this equation due to 
the quadratic nature of the 
propagators
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ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

D0(l
i) = D1(l

i) = D2(l
i) = 0

Coefficient computed in a previous step



Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: IFT 2015

Now we choose l such that

 
sets all the terms in this equation 
to zero except the first and 
second line

How it works...

 96

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)
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Now, choosing l such that 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Now, choosing l such that 
 
 
sets  the last line to zero

How it works...
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⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

D0(l
i) = D1(l

i) = 0

Coefficient computed in a previous step

= 0
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Now, choosing arbitrary l

How it works...
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N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥
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Di

+
m�1�
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⇤
ci0i1i2 + c̃i0i1i2(l)
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+
m�1�
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⇤
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⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

Coefficient computed in a previous step
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We have our Numerator!

How it works...
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N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�
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⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

Coefficient computed in a previous step



Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: IFT 2015

• In the previous consideration I was very sloppy in considering 
if we are working in 4 or d dimensions

• In general, external momenta and polarization vectors are in 
4 dimensions; only the loop momentum is in d dimensions 
 

• To be more correct, we compute the integral

d dimensions

 101

Z
ddl

N(l, l̃)

D̄0D̄1D̄2 · · · D̄m�1

D̄i = (l̄ + pi)
2 �m2

i = (l + pi)
2 �m2

i + l̃2 = Di + l̃2

l̄ = l + l̃

4 dim epsilon dimd dim

l̄ · pi = l · pi l̄ · l̄ = l · l + l̃ · l̃l · l̃ = 0
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• The decomposition in terms of scalar 
integrals has to be done in d dimensions 

• This is why the rational part R is needed

Implications

 102

k n

k 1

k 1

k 2

k 3

D 2
k 2k 1 k 3

D 0  

k 4

k 5

k 6

k 6

D 3

D m−1

l l+

D1

+l+ +

l+...+

Figure 1: An n-point one-loop diagram with m propagators in the loop. The dark blob represents
a tree structure.

The values of the integers Mi depend on the particular diagram considered (e.g. in fig. 1

we have M1 = 1, M2 = 3, M3 = 6), but they must always fulfill the following conditions:

1 ≤ Mi < Mi+1 , Mm = n =⇒ p0 = 0 , (3.5)

where the last equality of eq. (3.5) follows from eq. (3.2). The inverses of the loop propa-

gators in d and four dimensions we denote by D̄ and D respectively. Hence:

D̄i = (ℓ̄+ pi)
2 −m2

i = Di + ℓ̃2 ≡ (ℓ+ pi)
2 −m2

i + ℓ̃2 , 0 ≤ i ≤ m− 1 , (3.6)

which follows from eq. (3.3), and from the fact that the (−2ϵ)-dimensional parts of the

external four-vectors are equal to zero, since the ’t Hooft-Veltman scheme is adopted. Note

that mi is the mass of the particle flowing in the ith propagator, and therefore in general

p2i ≠ m2
i . As is known [14], the one-loop integral C can be expressed as a cut-constructible

part, i.e. a linear combination of scalar boxes, triangles, bubbles, and tadpoles, plus a (non

cut-constructible) remainder term R, called rational part:

C =
m−1∑

0≤i0<i1<i2<i3

d(i0i1i2i3)

∫
ddℓ̄

1

D̄i0D̄i1D̄i2D̄i3

+
m−1∑

0≤i0<i1<i2

c(i0i1i2)

∫
ddℓ̄

1

D̄i0D̄i1D̄i2

+
m−1∑

0≤i0<i1

b(i0i1)

∫
ddℓ̄

1

D̄i0D̄i1

+
m−1∑

i0=0

a(i0)

∫
ddℓ̄

1

D̄i0

+ R . (3.7)

The essence of the OPP method is that of computing C by determining (in a numerical

manner) the set of coefficients and the rational part

d(i0i1i2i3), c(i0i1i2), b(i0i1), a(i0), R, (3.8)

– 10 –
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Rational terms

 103

R = R1 +R2
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• In the OPP method, they are split into two 
contributions, generally called 
 

• Both have their origin in the UV part of the model, 
but only R1 can be directly computed in the OPP 
reduction and is given by the CutTools program

Rational terms

 103

R = R1 +R2
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• In the OPP method, they are split into two 
contributions, generally called 
 

• Both have their origin in the UV part of the model, 
but only R1 can be directly computed in the OPP 
reduction and is given by the CutTools program

• R1: originates from the propagator (calculate by CutTools)

• R2: originates from the numerator (need in the model)

Rational terms

 103

R = R1 +R2

Celine Degrande

How does it work?

FeynRules
Renormalize the Lagrangian

FeynArts
Write the amplitudes

NLO.m
Compute the NLO vertices

model.mod
model.gen model.nlo
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• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
numerically)

Integrand reduction

 104

Key Point

Two methods

• Passarino-Veltman

• OPP

One Tool
• MadLoop



Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lecture: IFT 2015

Numerator

 105

• We want to use (modified) HELAS method

d cg g

➱

d c

g1

g2

gµ⌫

l2

• Closing the lorentz trace :

i

j

k

l

➱

Gµ

G⌫

�µ⌫ =
4X

i=0

�µi|{z}
Gµ

�i⌫|{z}
G⌫

External Wavefunction for HELAS
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MadLoop 

 106

• Other modifications : 

➥ Allow for the loop momentum to be complex

➥ Remove the denominator of the loop propagators

• Ok, now this gives you              , the integrand numerator to be fed to CT!  N (lµ)

➥ Close the color trace

A
L
O
H
A

• But this is SLOW!!

• We have to compute this numerator ~ 50 times for each phase-space point!

N (lµ) =
rmaxX

r=0

C(r)
µ0µ1···µr l

µ0 lµ1 · · · lµr

• Idea instead of computing the numerator compute the polynomial form

[S. Pozzorini & al. hep-ph/1111.5206]
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Numerical Stability

 107

Stability&of&CutTools&

ValenQn&Hirschi&

• For 2 to 4 processes, ~7% of the Phase-space point have a precision worse than 1e-3

➡ Previous solution pass to quadruple precision (extremelly slow)
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IREGI

 108

Stability&

• New Solution use IREGI: a TIR program

➡ Slower than previous method but faster than quadruple precision

➡Usually less uncertainty (and not for the same PS point)

[H.-shao]
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•  The main trick is to decompose in scalar 
integral

•  OPP: works at the integrand level 
•  TIR: works at the integral level 
•  Loop evaluation is very slow
•  Loop evaluation can be “unstable”

 109

To Remember



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

MadGraph5 : The platform

Various package in MG5_aMC@NLO

 110
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•  Model Description
•  Width Computation
•  Decay Chain 
•  Interference

 111

Plan
exemple: HEFT

Will not be cover
•  Re-Weighting method
•  Scale Variation
•  TauDecay
•  MadDM

•  MadWeight
•  Standalone
•  external matrix element  
 provider (Pythia8 and  
 Matchbox)
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MadGraph
1991

1994

2002

2006

2011

2014

HELAS

MadGraph

MadEvent

MG/MEv4

MadGraph5

MadGraph5_
aMC@NLO

• Suite of Routine, which allow to write 
the matrix element for any (SM) 
process

• Computing Matrix Element for a fixed 
Helicity and sum over the felicities.
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MadGraph
1991

1994

2002

2006

2011

2014

HELAS

MadGraph

MadEvent

MG/MEv4

MadGraph5

MadGraph5_
aMC@NLO

• Automate the creation of the diagram 
generation and the writing of the 
HELAS routine

e+ e- > mu+ mu- mu+ mu- WEIGHTED=8 page 1/7

Diagrams made by MadGraph5_aMC@NLO

e+

1

e-

2

a
mu+

3

mu-
4

a

mu+

5

mu-

mu-
6

 diagram 1 QCD=0, QED=4

e+

1

e-

2

a
mu+

3

mu-
4

a

mu-

6

mu+

mu+
5

 diagram 2 QCD=0, QED=4

e+

1

e-

2

a
mu+

3

mu-
4

z

mu+

5

mu-

mu-
6

 diagram 3 QCD=0, QED=4

e+

1

e-

2

a
mu+

3

mu-
4

z

mu-

6

mu+

mu+
5

 diagram 4 QCD=0, QED=4

e+

1

e-

2

z
mu+

3

mu-
4

a

mu+

5

mu-

mu-
6

 diagram 5 QCD=0, QED=4

e+

1

e-

2

z
mu+

3

mu-
4

a

mu-

6

mu+

mu+
5

 diagram 6 QCD=0, QED=4
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e+

1

e-

2

z
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3

mu-
4

a

mu-
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mu+

mu+
5

 diagram 6 QCD=0, QED=4
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MadGraph
1991

1994

2002

2006

2011

2014

HELAS

MadGraph

MadEvent

MG/MEv4

MadGraph5

MadGraph5_
aMC@NLO

• Automate the creation of the diagram 
generation and the writing of the 
HELAS routine
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Diagrams made by MadGraph5_aMC@NLO
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MAD stands for Madison
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MadGraph
1991

1994

2002

2006

2011

2014

HELAS

MadGraph

MadEvent

MG/MEv4

MadGraph5

MadGraph5_
aMC@NLO

• Multi-Channel Method!
• Automatic phase-space Integration
• Generation of Events

• Support for the MSSM 
(SMADGRAPH)
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MadGraph
1991

1994

2002

2006

2011

2014

HELAS

MadGraph

MadEvent

MG/MEv4

MadGraph5

MadGraph5_
aMC@NLO

• Support for BSM
• Decay Chain
• Pass to a platform (MadOnia/MadWeight/…)
• Link to Pythia/PGS
• Matching/Merging

• Official/Main SM generator for CMS
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MadGraph
1991

1994

2002

2006

2011

2014

HELAS

MadGraph

MadEvent

MG/MEv4

MadGraph5

MadGraph5_
aMC@NLO

• Full restart of the MadGraph part in 
Python

• Fully Automatic BSM
• Various Output Format
• Huge Improvement
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MadGraph
1991

1994

2002

2006

2011

2014

HELAS

MadGraph

MadEvent

MG/MEv4

MadGraph5

MadGraph5_
aMC@NLO

• Fully Automatic computation at 
• NLO* (cross-section)
• NLO* matched to PS

*NLO= NLO in QCD
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Effective Field Theory

• Only few Operators for one process and different 
effects

L = LSM +
X ci

⇤2
Oi

OWWW = Tr[Wµ⌫W
⌫⇢Wµ

⇢ ]

OW = (Dµ�)
†Wµ⌫(D⌫�)

OB = (Dµ�)
†Bµ⌫(D⌫�)

OW̃WW = Tr[W̃µ⌫W
⌫⇢Wµ

⇢ ]

OW̃ = (Dµ�)
†W̃µ⌫(D⌫�)

Conserving CP Not Conserving CP
Weak Boson production
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2-body decay
h > b b~ page 1/1

Diagrams made by MadGraph5_aMC@NLO

b

2

b~

3

h1

 diagram 1 QCD=0, QED=1

2 body decay

� =
1

2MS

Z
d�2|M|2
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•By Lorentz Invariance the matrix element is 
constant over the phase-space.

 114

2-body decay
h > b b~ page 1/1

Diagrams made by MadGraph5_aMC@NLO

b

2

b~

3

h1

 diagram 1 QCD=0, QED=1

2 body decay

� =
1

2MS

Z
d�2|M|2

� =

p
�(M2,m2

1,m
2
2)|M|2

16⇡SM3

�(M2,m2
1,m

2
2) =

�
M2 �m2

1 �m2
2

�2 � 4m2
1m

2
2
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•By Lorentz Invariance the matrix element is 
constant over the phase-space.
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2-body decay
h > b b~ page 1/1

Diagrams made by MadGraph5_aMC@NLO

b

2

b~

3

h1

 diagram 1 QCD=0, QED=1

2 body decay

� =
1

2MS

Z
d�2|M|2

� =

p
�(M2,m2

1,m
2
2)|M|2

16⇡SM3

�(M2,m2
1,m

2
2) =

�
M2 �m2

1 �m2
2

�2 � 4m2
1m

2
2

•Calculable analytically by FeynRules 
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•Use FeynRules formula (instateneous)

 115

MadWidth hep-ph/1402.1178

2-body
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•Use FeynRules formula (instateneous)

 115

MadWidth hep-ph/1402.1178

2-body

Fast-Estimation of 3-body
•Only use 2-body decay and 
PS factor
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•Use FeynRules formula (instateneous)
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MadWidth hep-ph/1402.1178

2-body

Fast-Estimation of 3-body
•Only use 2-body decay and 
PS factor

Relevant?
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•Use FeynRules formula (instateneous)

 115

MadWidth hep-ph/1402.1178

2-body

Fast-Estimation of 3-body
•Only use 2-body decay and 
PS factor

Relevant?

DONE

No
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•Use FeynRules formula (instateneous)

 115

MadWidth hep-ph/1402.1178

2-body

Fast-Estimation of 3-body
•Only use 2-body decay and 
PS factor

Relevant?

Channel Generation
•Remove Sequence of 2-
body/radiation diagram

DONE

No
Maybe
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•Use FeynRules formula (instateneous)

 115

MadWidth hep-ph/1402.1178

2-body

Fast-Estimation of 3-body
•Only use 2-body decay and 
PS factor

Relevant?

Channel Generation
•Remove Sequence of 2-
body/radiation diagram

Estimation of 3-body
•Based on the diagram. Approx. 
PS/Matrix-Element

DONE

Relevant?

No
Maybe
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•Use FeynRules formula (instateneous)
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MadWidth hep-ph/1402.1178

2-body

Fast-Estimation of 3-body
•Only use 2-body decay and 
PS factor

Relevant?

Channel Generation
•Remove Sequence of 2-
body/radiation diagram

Estimation of 3-body
•Based on the diagram. Approx. 
PS/Matrix-Element

DONE

Relevant?

No
Maybe

No
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•Use FeynRules formula (instateneous)

 115

MadWidth hep-ph/1402.1178

2-body

Fast-Estimation of 3-body
•Only use 2-body decay and 
PS factor

Relevant?

Channel Generation
•Remove Sequence of 2-
body/radiation diagram

Estimation of 3-body
•Based on the diagram. Approx. 
PS/Matrix-Element

DONE

Relevant?

Numerical Integration

No
Maybe

No

Yes?
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•Use FeynRules formula (instateneous)

 115

MadWidth hep-ph/1402.1178

2-body

Fast-Estimation of 3-body
•Only use 2-body decay and 
PS factor

Relevant?

Channel Generation
•Remove Sequence of 2-
body/radiation diagram

Estimation of 3-body
•Based on the diagram. Approx. 
PS/Matrix-Element

DONE

Relevant?

Numerical Integration

4

4

No
Maybe

No

Yes?
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Decay
page 1/10

Diagrams made by MadGraph5_aMC@NLO

u
1

u
3

a

c
2

c
4

a

ve~

8

e- 7
w-

e+ 5

ve
6

w+

 diagram 1 HIG=0, HIW=0, NP=0, QCD=0, QED=6

u
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u
3

a

c
2

c
4

a

ve~

8

e- 7
w-

e+ 5

ve
6

w+

 diagram 2 HIG=0, HIW=0, NP=2, QCD=0, QED

c2
c 4

a
ve~ 8

e-
7

w-

u
1

u
3

a
e+

5

ve 6w+
w-

 diagram 3 HIG=0, HIW=0, NP=2, QCD=0, QED=5

c2
c 4
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7

w-
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3
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ve 6w+
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•  Process complicated to have the full 
process
➡Including off-shell contribution
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Decay
Non Resonant Diagram
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•  Process complicated to have the full 
process
➡Including off-shell contribution
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Decay

Solution
•  Only keep on-shell contribution

Non Resonant Diagram
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•  This is an Approximation!
•  This force the particle to be on-shell!

•  Recover by re-introducing the Breit-
wigner up-to a cut-off
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Decay chains

• p p > t t~ w+, (t > w+ b, w+ > l+ vl), \
                     (t~ > w- b~, w- > j j), \
                     w+ > l+ vl

• Separately generate core process and each decay
- Decays generated with the decaying particle as 
resulting wavefunction

• Iteratively combine decays and core processes

• Difficulty: Multiple diagrams in decays

mardi 25 octobre 2011
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•Decay chains retain full matrix element for 
the diagrams compatible with the decay

• Full spin correlations (within and between 
decays)

•Full width effects
•However, no interference with non-resonant 
diagrams 
➡ Description only valid close to pole 

mass
➡ Cutoff at |m ± nΓ| where n is set in 

run_card.

 119

Decay chains
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Decay chains

Thanks to developments in MadEvent, also (very) long  
decay chains possible to simulate directly in MadGraph!

 120
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MadSpin

One Event 

offshell spin unweighted

No No YES

YES No No

YES YES No

YES YES YES

[Frixione, Leanen, Motylinski,Webber (2007)]

[Artoisenet, OM et al. 1212.3460]
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MadSpin

One Event 

Decay Events

- smear the mass
- flat decay

offshell spin unweighted

No No YES

YES No No

YES YES No

YES YES YES

[Frixione, Leanen, Motylinski,Webber (2007)]

[Artoisenet, OM et al. 1212.3460]
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MadSpin

One Event 

Decay Events
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offshell spin unweighted

No No YES

YES No No
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MadSpin

One Event 

Decay Events

- smear the mass
- flat decay

offshell spin unweighted

No No YES

YES No No

YES YES No

YES YES YES

|MP+D

LO
|2/|MPLO|2- re-weight by  

Decay Events II

[Frixione, Leanen, Motylinski,Webber (2007)]

[Artoisenet, OM et al. 1212.3460]
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MadSpin
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MadSpin

One Event 

Decay Events

- smear the mass
- flat decay

offshell spin unweighted
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YES No No

YES YES No

YES YES YES

|MP+D
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|2/|MPLO|2- re-weight by  

Decay Events II

- accept/reject method
- reject the decay not the event

Final Sample

[Frixione, Leanen, Motylinski,Webber (2007)]

[Artoisenet, OM et al. 1212.3460]
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MadSpin
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Figure 5: Next-to-leading-order cross sections differential in pT (l+) (left pane) and in cosφ (right
pane) for tt̄H events with or without spin correlation effects. For comparison, also the leading-
order results are shown. Events were generated with aMC@NLO, then decayed with MadSpin,
and finally passed to Herwig for shower and hadronization.
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Figure 6: Next-to-leading-order cross sections differential in pT (l+) (left pane) and in cosφ
(right pane) for tt̄A events with or without spin correlation effects. Events were generated with
aMC@NLO, then decayed with MadSpin, and finally passed to Herwig for shower and hadroniza-
tion.

that preserving spin correlations is more important than including NLO corrections for this

observable. However, we observe that the inclusion of both, as it is done here, is necessary

for an accurate prediction of the distribution of events with respect to cos(φ). In general, a

scheme including both spin correlation effects and QCD corrections is preferred: it retains

the good features of a NLO calculation, i.e. reduced uncertainties due to scale dependence

(not shown), while keeping the correlations between the top decay products.

The results for the pseudo-scalar Higgs boson are shown in Figure 6. The effects of the

spin correlations on the transverse momentum of the charged lepton are similar as in the

case of a scalar Higgs boson: about 10% at small pT , increasing to about 40% at pT = 200

GeV. On the other hand, the cos(φ) does not show any significant effect from the spin-

correlations. Therefore this observable could possibly help in determining the CP nature of

the Higgs boson, underlining the importance of the inclusion of the spin correlation effects.

– 14 –
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Non Definite positive
2

O(⇤2)

+
O(⇤)

2

O(⇤0)

+

Motivation:

SM
Model independent

Dominant

BSM
Model dependent

Sub-Dominant

Idea:
• Compute them separately
• Have a new syntax for such selection (NP^2=)

Status:
• Not compatible with decay chains
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•  2 to 2 processes: OK on a laptop
•  2 to 3 processes: OK on a small size cluster
•  2 to 4 processes: Specific case
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MadGraph Functionality

•  Leading Order Option
•  Support of BSM
•  Computation of the Width
•  Narrow width Approximation

•Decay Chain
•MadSpin

•Systematics
•  NLO

•  SM with merging

M

AD
GRAPH5

aMC@NLO
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•  follow the built-in 
tutorial

•  cards meaning
•  meaning of QCD/QED
•  details of syntax ($/)
•  script
•  width computation 
•  decay chain

 127

Tutorial map
Learning MG5 BSM CASE

•  check the model
•  width computation
•  signal generation

•  decay chain
•  merging sample 
generation

•  background/NLO 
generation



Learning MG5_aMC
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Where to find help?

• Ask me

• Use the command “help” /  “help XXX”
➡ “help” tell you the next command that you need to do.

• Launchpad:
➡ https://answers.launchpad.net/madgraph5
➡ FAQ: https://answers.launchpad.net/madgraph5/+faqs
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https://answers.launchpad.net/madgraph5
https://answers.launchpad.net/madgraph5/+faqs
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What are those cards?

• Read the Cards and identify what they do
➡ param_card: model parameters
➡ run_card: beam/run parameters and cuts 

✦ https://answers.launchpad.net/madgraph5/+faq/2014

 130

https://answers.launchpad.net/madgraph5/+faq/2014
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Exercise II: Cards Meaning

• How do you change
➡ top mass
➡ top width
➡ W mass
➡ beam energy
➡ pt cut on the lepton

 131
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Exercise II : Syntax

• What’s the meaning of the order QED/QCD

• What’s the difference between
➡ p p > t t~ 
➡ p p > t t~ QED=2
➡ p p > t t~ QED=0

• Compute the cross-section for each of those and 
check the diagram

• Generate VBF process

• check that you have the  
  diagram that you want
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Diagrams made by MadGraph5
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➡ p p > t t~ QCD=0
➡ p p > t t~ QED<=2
➡ p p > t t~ QCD^2==2
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Exercise III: Syntax

• Generate the cross-section and the distribution 
(invariant mass) for 
➡ p p >  e+ e-
➡ p p > z, z > e+ e-
➡ p p > e+ e- $ z
➡ p p > e+ e- / z

• Use the invariant mass distribution to determine 
the meaning of each syntax.

Hint :To plot automatically distributions:
mg5> install MadAnalysis

 133



 MadGraph Tutorial.                             IFT 2015

Exercise IV: Automation/Width

• Compute the cross-section for the top pair 
production for 3 different mass points.
➡ Do NOT use the interactive interface

✦ hint: you can edit the param_card/run_card via the “set” 
command [After the launch]

✦ hint:  All command [including answer to question] can be 
put in a file. (run ./bin/mg5 PATH_TO_FILE)

➡ Remember to change the value of the width

✦ “set width 6 Auto” works

✦ cross-check that it indeed returns the correct width

 134

Examples

File:

import model EWDim6
generate p p > z z
ouput TUTO_DIM6
launch
  set nevents 5000
  set MZ 100

How to Run: ./bin/mg5_amc PATH
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Exercise V: Decay Chain

• Generate p p > t t~ h, fully decayed (fully leptonic 
decay for the top)
➡ Using the decay-chain formalism
➡ Using MadSpin

• Compare cross-section
➡ which one is the correct one?
➡ Why are they different?

• Compare the shape.

 135
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Exercise I: Check the model validity

• Check the model validity:
➡ check p p > uv uv~
➡ check p p > ev ev~
➡ check p p > t t~ p1 p2

 137

• This checks 
➡ gauge invariance
➡ lorentz invariance
➡ that various way to compute the matrix element 

provides the same answer
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Exercise II: Width computation

• Check with MG the width computed with FR:
➡ generate uv > all all; output; launch
➡ generate ev > all all; output; launch
➡ generate p1 > all all; output; launch
➡ generate p2 > all all; output; launch

• Check with MadWidth
➡ compute_widths uv ev p1 p2
➡ (or Auto in the param_card)
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FR Number

0.00497 GeV

0.0706 GeV

0 GeV

0.0224 GeV

• Muv = 400 GeV     Mev = 50 GeV  λ=0.1   
• m1 = 1GeV     m2 = 100GeV   m12 = 0.5 GeV
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Exercise III: 

• Compute cross-section and distribution 
➡ uv pair production with decay in top and     /     (semi leptonic 

decay for the top

• Hint: The width of the new physics particles has to be set 
correctly in the param_card. 
➡ You can either use “Auto” 
➡ or use the value computed in exercise 1 

• Hint:  For sub-decay, you have to put parenthesis:
➡ example:  

p p > t t~ w+, ( t > w+ b, w+ >e+ ve), (t~ > b~ w-, w- > j j), w+ > l+ vl

 139

�1 �2

arXiv:1402.1178 
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Too Slow?

• Use MadSpin!
➡ Use Narrow Width Approximation to factorize 

production and decay

• instead of 
➡ p p > t t~ w+, ( t > w+ b, w+ >e+ ve), (t~ > b~ w-, w- > j j),  

w+ > l+ vl

• Do

➡ p p > t t~ w+

• At the question:  
 
 
 

• At the next question edit the madspin_card and define the decay

 140

 arXiv:1212.3460
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Exercise IV: generate multiple 
multiplicity sample for pythia8

• We will do MLM matching
➡ in the run_card.dat ickkw=1
➡ the matching scale (Qcut) will be define in pythia

✦ in madgraph we use xqcut which should be smaller than 
Qcut (but at least 10-20 GeV)
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Exercise V: Have Fun

• Simulate Background

• Go to NLO (ask me the model)

• …
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Solution Learning MG5_aMC

 143
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Exercise II: Cards Meaning

• How do you change
➡ top mass
➡ top width
➡ W mass
➡ beam energy
➡ pt cut on the lepton

 144

Param_card

Run_card
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• top mass

 145
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• W mass

 146

W Mass is an internal parameter! 
MG5 didn’t use this value! 

So you need to change MZ or Gf or alpha_EW
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Exercise III: Syntax

• What’s the meaning of the order QED/QCD

• What’s the difference between
➡ p p > t t~ 
➡ p p > t t~ QED=2
➡ p p > t t~ QED=0
➡ p p > t t~ QCD^2==2
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Solution I : Syntax
• What’s the meaning of the order QED/QCD

➡ By default MG5 takes the lowest order in QED!
➡ p p > t t~  => p p > t t~ QED=0
➡ p p > t t~ QED=2 

✦ additional diagrams (photon/z exchange)

p p > t t~ QED=2

No significant QED contribution

p p > t t~
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• QED<=2 is the SAME as QED=2
➡ quite often source of confusion since most of the 

people use the = syntax

• QCD^2==2 
➡ returns the interference between the QCD and the 

QED diagram
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Solution I Syntax

• generate p p > w+ w- j j
➡ 76 processes
➡ 1432 diagrams
➡ None of them are VBF
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• generate p p > w+ w- j j QED = 4
➡ 76 processes
➡ 5332 diagrams
➡ VBF present! + those not VBF

• generate p p > w+ w- j j QED = 2
➡ 76 processes
➡ 1432 diagrams
➡ None of them are VBF

• generate p p > w+ w- j j QCD = 0
➡ 60 processes
➡ 3900 diagrams
➡ VBF present!

• generate p p > w+ w- j j QCD = 2
➡ 76 processes
➡ 5332 diagrams

• generate p p > w+ w- j j QCD = 4
➡ 76 processes
➡ 5332 diagrams
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Exercise IV: Syntax

• Generate the cross-section and the distribution 
(invariant mass) for 
➡ p p >  e+ e-
➡ p p > z, z > e+ e-
➡ p p > e+ e- $ z
➡ p p > e+ e- / z

Hint :To have automatic distributions:
mg5> install MadAnalysis
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p p > e+ e-
(16 diagrams)

p p >z , z > e+ e-

p p > e+ e- $ z

(8 diagrams)

(16 diagrams)

p p > e+ e- /z
(8 diagrams)

Z- onshell vetoNo Z
 152
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p p > e+ e-
(16 diagrams)

p p >z , z > e+ e-

p p > e+ e- $ z

(8 diagrams)

(16 diagrams)

p p > e+ e- /z
(8 diagrams)

Z- onshell vetoNo Z

Correct Distribution

 152



 MadGraph Tutorial.                             IFT 2015

p p > e+ e-
(16 diagrams)

p p >z , z > e+ e-

p p > e+ e- $ z

(8 diagrams)

(16 diagrams)

p p > e+ e- /z
(8 diagrams)

Z- onshell vetoNo Z

Correct Distribution

Z Peak

NO Z Peak
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p p > e+ e-
(16 diagrams)

p p >z , z > e+ e-

p p > e+ e- $ z

(8 diagrams)

(16 diagrams)

p p > e+ e- /z
(8 diagrams)

Z- onshell vetoNo Z

Correct Distribution

Z Peak

NO Z Peak
No z/a interference z/a interference
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p p > e+ e-
(16 diagrams)

p p >z , z > e+ e-

p p > e+ e- $ z

(8 diagrams)

(16 diagrams)

p p > e+ e- /z
(8 diagrams)

Z- onshell vetoNo Z

Correct Distribution

Z Peak

NO Z Peak

Wrong tail Correct tail
No z/a interference z/a interference
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|M⇤ �M | < BWcut ⇤ �

p p > e+ e- p p >z , z > e+ e- p p > e+ e- $ z

= +
Onshell cut: BW_cut

(16 diagrams) (8 diagrams) (16 diagrams)

• The Physical distribution is (very close to) exact sum of 
the two other one.

• The “$” forbids the Z to be onshell but the photon 
invariant mass can be at MZ (i.e. on shell substraction).

• The “/” is to be avoid if possible since this leads to 
violation of gauge invariance.
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WARNING

• NEXT SLIDE is generated with bw_cut =5

• This is TOO SMALL to have a physical meaning (15 
the default value used in previous plot is better)

• This was done to illustrate more in detail how the 
“$” syntax works.
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p p > e+ e- / Z
See previous slide warning
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p p > e+ e- / Z adding p p > e+ e- $ Z
See previous slide warning
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(red curve) (blue curve)
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p p > e+ e- / Z adding p p > e+ e- $ Z
See previous slide warning

• Z onshell veto

5 times width area

 155

(red curve) (blue curve)
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p p > e+ e- / Z adding p p > e+ e- $ Z
See previous slide warning

• Z onshell veto

• In veto area only 
photon contribution

5 times width area
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p p > e+ e- / Z adding p p > e+ e- $ Z
See previous slide warning

• Z onshell veto

• In veto area only 
photon contribution

• area sensitive to z-peak

5 times width area

15 times width area

 155
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p p > e+ e- / Z adding p p > e+ e- $ Z
See previous slide warning

• Z onshell veto

• In veto area only 
photon contribution

• area sensitive to z-peak

• very off-shell Z, the 
difference between the 
curve is due to 
interference which are 
need to be KEPT in 
simulation.5 times width area

15 times width area
>15 times width area
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p p > e+ e- / Z adding p p > e+ e- $ Z

The “$” can be use to split the sample in BG/SG area

See previous slide warning

• Z onshell veto

• In veto area only 
photon contribution

• area sensitive to z-peak

• very off-shell Z, the 
difference between the 
curve is due to 
interference which are 
need to be KEPT in 
simulation.5 times width area

15 times width area
>15 times width area

 155

(red curve) (blue curve)
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• Syntax Like 
➡ p p > z > e+ e-                             (ask one S-channel z)
➡ p p > e+ e- / z                                       (forbids any z)
➡ p p > e+ e- $$ z                    (forbids any z in s-channel)

• ARE NOT GAUGE INVARIANT !

• forgets diagram interference.

• can provides un-physical distributions.
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• Syntax Like 
➡ p p > z > e+ e-                             (ask one S-channel z)
➡ p p > e+ e- / z                                       (forbids any z)
➡ p p > e+ e- $$ z                    (forbids any z in s-channel)

• ARE NOT GAUGE INVARIANT !

• forgets diagram interference.

• can provides un-physical distributions.

Avoid Those as much as possible!
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• Syntax Like 
➡ p p > z > e+ e-                             (ask one S-channel z)
➡ p p > e+ e- / z                                       (forbids any z)
➡ p p > e+ e- $$ z                    (forbids any z in s-channel)

• ARE NOT GAUGE INVARIANT !

• forgets diagram interference.

• can provides un-physical distributions.

Avoid Those as much as possible!
check physical meaning and gauge/Lorentz invariance if you do.

 156



 MadGraph Tutorial.                             IFT 2015

• Syntax like

• p p > z, z > e+ e-                      (on-shell z decaying)

• p p > e+ e- $ z      (forbids s-channel z to be on-shell)

• Are linked to cut  

• Are more safer to use

• Prefer those syntax to the previous slides one

|M⇤ �M | < BWcut ⇤ �
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Exercise V: Automation

• Look at the cross-section for the previous process 
for 3 different mass points.
➡ hint: you can edit the param_card/run_card via the 

“set” command [After the launch]
➡ hint:  All command [including answer to question] can 

be put in a file.
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Exercise V: Automation

• File content:

 159

• Run it by:

• ./bin/mg5 PATH

• (smarter than ./bin/mg5 < PATH)

• If an answer to a question is not 
present: Default is taken automatically
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• generate p p > t t~ h  

➡ decay t > w+ b, w+ > e+ ve
➡ decay t~ >w- b~, w- > e- ve~
➡ decay h > b b~
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Exercise VI: Decay

MadSpin

MadSpin Card

MadGraph
• generate p p > t t~ h, (t > w+ b, w+ > e+ ve), (t~ 

>w- b~, w- > e- ve~), h > b b~  

 

2m18.214s

0.004707

 

0.003014
9m30.806s

Different here because of cut (not cut should be applied since 2.3.0)


