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Motivation and plan

motivation : how to determine new physics at hadron colliders

excess of events

topology of the process

precise measurements (matrix element method)

plan

weighting experimental events

how to evaluate the weights

MadWeight : automatic computation of the weights

check and capabilities
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Weighting experimental events

matrix element method : weighting events

P (x, α) = |Mα|2(x)

where

|Mα|2 is the squared matrix element
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Weighting experimental events

matrix element method : weighting events

P (x, α) = |Mα|2(y) W (x,y)

where

|Mα|2 is the squared matrix element

W (x,y) is the resolution function
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Weighting experimental events

matrix element method : weighting events

P (x, α) =
1

σ

∫

dφ(y)|Mα|2(y) W (x,y)

where

|Mα|2 is the squared matrix element

W (x,y) is the resolution function

dφ(y) is the partonic phase-space measure
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Weighting experimental events

matrix element method : weighting events

P (x, α) =
1

σ

∫

dφ(y)|Mα|2(y)dq1dq2f1(q1)f2(q2)W (x,y)

where

|Mα|2 is the squared matrix element

W (x,y) is the resolution function

dφ(y) is the partonic phase-space measure

f1(q1), f2(q2) are the Parton Distribution Functions
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Weighting experimental events

combine the weights into a likelihood

L(α) =
N∏

i=1

P (xi;α)
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Weighting experimental events

combine the weights into a likelihood

L(α) = e−N
R

P (x,α)dx

N∏

i=1

P (xi;α)
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Weighting experimental events

combine the weights into a likelihood

L(α) = e−N
R

P (x,α)dx

N∏

i=1

P (xi;α)

the best estimation of α is the one that maximizes L
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Weighting experimental events

combine the weights into a likelihood

L(α) = e−N
R

P (x,α)dx

N∏

i=1

P (xi;α)

the best estimation of α is the one that maximizes L

example : top-quark mass measurement from tt̄ → l+X sample at DØ

72 events

Mtop = 180.1 ± 3.6stat ±
4.0sys Gev

J. Estrada : Phd dissertation,

University of Rochester (2001)
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Weighting experimental events

advantages :

it takes into account the full matrix element (in particular

spin-correlation effects)

resolution of the detector is included

it is particularly usefull for processes with missing particles

drawbacks :

the evaluation of the weight is time-consuming compare to other

methods

what are the systematics errors ?
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How to evaluate the weight ?

P (x, α) =
1

σ

∫

dφ(y)dq1dq2 f1(q1)f2(q2)
︸ ︷︷ ︸

experimental

|Mα|2(y) W (x,y)
︸ ︷︷ ︸

experimental

transfer functions

fitted by Monte-Carlo

no restriction in the code

Parton Distribution Functions

extrapolated from data

different libraries
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How to evaluate the weight ?

P (x, α) =
1

σ

∫

dφ(y)dq1dq2 f1(q1)f2(q2)
︸ ︷︷ ︸

experimental

|Mα|2(y)
︸ ︷︷ ︸

MadGraph

W (x,y)
︸ ︷︷ ︸

Monte Carlo
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How to evaluate the weight ?

P (x, α) =
1

σ

∫

dφ(y)dq1dq2

︸ ︷︷ ︸

MadWeight

f1(q1)f2(q2)
︸ ︷︷ ︸

experimental

|Mα|2(y)
︸ ︷︷ ︸

MadGraph

W (x,y)
︸ ︷︷ ︸

Monte Carlo

numerical integration : very difficult due to the un-aligned peaks in the

integrand

|Mα(y)|2 = ˜|Mα(y)|2
∏

j

BW (m∗

j ,mj,p,Γj)

W (x,y) ≈
∏

i

1√
2πσi

e
−

(xi−yi)
2

2σ2
i
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Monte Carlo technics

efficiency of an adaptative MC integration :

case 1 : any peak is aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptative Monte-Carlo P-S integration is very efficient
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Monte Carlo technics

efficiency of an adaptative MC integration :

case 2 : some peaks are not aligned along a single direction of

the P-S parametrization

y2

y1

y2

y1

→ the adaptative Monte-Carlo P-S integration converges slowly
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Monte Carlo technics

efficiency of an adaptative MC integration :

possible solution : perform a change of variables

y2

y1

y1 + y2

y1 − y2

→ the adaptative Monte-Carlo P-S integration is very efficient
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Monte Carlo technics

efficiency of an adaptative MC integration :

case 3 : there are more peaks than phase-space variables

y2

y1

→ the efficiency depends of the shape, relative position, ... of the

peaks
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Phase-space generation

ideal case : tt̄ in fully leptonic decay

t

t̄

µ−

µ+

νµ

ν̄µ

pa

b

b̄

p4

p5

p1

p2

p3

p6

W+

m∗
−1

m∗
−3

m∗
−4

W−
m∗

−2
pb

peaks in |Mα(y)|2 controlled by m∗

−1, . . . ,m
∗

−4 (4 variables)

peaks in W (x,y) controlled by θi, φi, |pi|2 i ∈ {1, 2, 3, 4} (12

variables)

dim[dφ] = 16, → each peak can be aligned along a single

variable of integration
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Phase-space generation

which parametrization do we use ?

natural parametrization

dφ =

4∏

i=1

d3pi

(2π)32Ei

6∏

i=5

d3pi

(2π)32Ei

dx1dx2δ
4

(

pa + pb −
∑

j

pj

)

where all the peaks in W (x,y) are aligned

we apply local changes of variables to reach the parametrization

dφ =
4∏

i=1

dθidφid|pi|
4∏

j=1

dm∗2
−j × J

where each Breit-Wigner distribution is also aligned
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MadWeight : changes of variables

changes of variables to restore energy momentum conservation

|pi|,

|pj|,

q1

q2

Class A

θ1, φ1

θ2, φ2

. . .

pνx, pνy, pνz

i1

. . .

q2

q1

Class B

i2 i1

. . .

q2

q1

Class C

pνx, pνy, pνz

θ, φ p

. . .

q2

q1

Class D

i1
i3

i4
i2

pν1x, pν1y, pν1z

pν2x, pν2y, pν2z

ŝ y

Class E

pν1x, pν1y, pν1z

pν2x, pν2y, pν2z

i1

i2
i3

. . . . . .

Class F

i1
i3

i4
i2

pν1x, pν1y, pν1z

pν2x, pν2y, pν2z
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MadWeight : changes of variables

auxiliary changes of variables :

m∗
i1

m∗
i2

m∗
i3

θν

block A

|pν|

φν

m∗
i1

m∗
i2

block B

θν

|pν|

m∗
i1

|pν|

block C

m∗
i1

|p|

block D

m∗
i1

m∗
i2

|p2|

|p1|

block E
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MadWeight code

in general in MadWeight algorithm,

the phase-space is splitted into blocks, each of them is associated

to a specific local change of variables

we only consider analytic changes of variables

we always keep the visible angles in the phase-space

parametrization (they are assumed to be well reconstructed).

the decomposition into blocks depends on the topology, on the

widths of the Breit-Wigner distributions, and on the shape of the

resolution function.
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Decay chain example

let us consider a specific example of decay chain :

ν

ν

p2p3

p4
p1

p7p8

p5

p6

p9

m∗
−2

m∗
−3

m∗
−1

m∗
−4m∗

−5m∗
−6

m∗
−7

peaks in |Mα(y)|2 controlled by m∗

−1, . . . ,m
∗

−7 (7 variables)

peaks in W (x,y) controlled by

θi, φi, |pi|2 i ∈ {2, 3, 4, 5, 6, 7, 8} (21 variables)

dim[dφ] = 25, → some peaks must be left misaligned
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Decay chain example

each local change of variables is performed successively
Block A

Block DBlock D Block D

ECS B

ν

ν

p2p3

p4
p1

p7p8

p5

p6

p9

m∗
−2

m∗
−3

m∗
−1

m∗
−4

m∗
−5

m∗
−6

m∗
−7

final parametrization :

dφ = d|p2|d|p3|d|p4|d|p6|
8∏

i=2

dθidφi

7∏

j=1

dm∗2
−j × J
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Check and capabilities

can we find back the pole mass from MC sample ?
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Check and capabilities

can we find back the pole mass from MC sample ?

search for the top-quark mass

t

t̄

µ−

µ+

νµ

ν̄µ

pa

b

b̄

p4

p5

p1

p2

p3

p6

W+

m∗
−1

m∗
−3

m∗
−4

W−
m∗

−2
pb
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Check and capabilities

can we find back the pole mass from MC sample ?

search for the top-quark mass

30 Monte Carlo events (MadGraph/Pythia/PGS)
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Check and capabilities

can we find back the pole mass from MC sample ?

search for the top-quark mass

30 Monte Carlo events (MadGraph/Pythia/PGS)

input : mtop = 174.3 Gev, output : mtop = 170.3 ± 4.0 Gev

 1485

 1490

 1495

 1500

 1505

 1510

 1515

 152  156  160  164  168  172  176  180  184  188  192  196

-ln
 L

mt (GeV)

Likelihood for tt>2l+X
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Check of capabilities

search for the Higgs mass

µ+

νµ

µ−

ν̄µ

W+

W−

H0
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Check of capabilities

search for the Higgs mass

µ+

νµ

µ−

ν̄µ

W+

W−

H0

500 Monte Carlo events (MadGraph/Pythia/PGS)

input : mHiggs = 300 Gev, output : mHiggs = 300 ± 5 Gev
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Conclusion

the Matrix Element method provides the best discriminator on an

event-by-event basis

both theoritical (|M |2) and experimental (x, W (x,y)) information

is used

the computation of the weights requires a specific phase space

generator : MadWeight

it finds the best phase-space parametrisation(s)

all changes of variables are local and analytical

our code works for all decay chains

first release candidate available on request :

olivier.mattelaer@uclouvain.be & pierre.artoisenet@uclouvain.be
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