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Motivation and plan

., N

motivation : method to maximize the information that you can
extract from a sample of events : matrix element method

» test theoretical hypothesis
# need a good understanding of the detector

# We can extract mass, spin, cross section,...
® plan
# Wweighting experimental events
o MadWeight : automatic computation of the weights

o Examples of application
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Welghting experimental events

-

® matrix element method : weighting events

P(x,a) = | Mo|* ()

-

where

® |M,|? is the squared matrix element
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Welghting experimental events

., N

matrix element method : weighting events
Pz, o) = M| (Y)W (z, y)
where

® |M,|? is the squared matrix element

® W (x,y) is the resolution function
& X . experimental measurements
# Y . partonic momenta
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Welghting experimental events

., N

matrix element method : weighting events
1
P(@,a)= - [ do(w) Mo P ()W ()

where
® |M,|? is the squared matrix element

® W (x,y) is the resolution function
& X . experimental measurements
# Y . partonic momenta

® d¢(y) is the partonic phase-space measure
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Welghting experimental events

., N

matrix element method : weighting events
1
P(waa) — ; /d¢(y)dw1dw2f1(w1)f2(w2)‘Ma‘z(y)w(may)

where
® |M,|? is the squared matrix element

® W (x,y) is the resolution function
& X . experimental measurements
# Y . partonic momenta

® d¢(y) is the partonic phase-space measure

® fi(w), fo(w2) are the Parton Distribution Functions
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How to evaluatethe weight ?

-

® matrix element method : weighting events

P(@,a) = - [ dofy)dwidusfi(w) flw) M. ()W (.9)

-
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How to evaluatethe weight ?

-

® matrix element method : weighting events
1
Pl@,a) =~ [ doty)dusdus i n)folun) M)W (@9

® (transfer functions : experimental extraction

-
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How to evaluatethe weight ?

., N

matrix element method : weighting events
1
Pl@,a) =~ [ doty)dusdus i n)folun) M)W (@9

® (transfer functions : experimental extraction

® numerical integration : very difficult due to the structure in peaks
of the integrand

M, (y)|* : propagators

1 G

W(m,y)%H\/ﬁa.e 207
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Decay chain example
fIet us consider a specific example of decay chain :

P1
v

® peaksin |M,(y)|? controlled by m* ,...,m*. (7 variables)
® peaksin W (x,y) controlled by
0;, 0y |pi|* 1€ {2,3,4,5,6,7,8} (21 variables)
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Decay chain example

., N

MadWeight decomposes it into blocks corresponding to local
change of variables

|§*

*
. N\ —
ECS B _ »>
o \ \pb
p pr

Block D Block D Block D

final parametrization :

8 7
B A = d|py|d|ps|dip,|d|pg| [] dbsds, [[ dm™ x 7

i=2 j=1
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MadWeight code

- N

In general in MadWeight algorithm,
® the phase-space is splitted into blocks, each of them is associated
to a specific local change of variables

® we only consider analytic changes of variables
® 12 different changes of variables are available

® the decomposition into blocks depends on the topology, on the
widths of the Breit-Wigner distributions, and on the shape of the
resolution function — MadWeight
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Examples of Application (I)
-

® measurement of the top-quark mass in semi-leptonic channel
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Examples of Application (I)
-

® measurement of the top-quark mass in semi-leptonic channel

® 20 Monte Carlo events (MadGraph/Pythia/PGS)
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Examples of Application (I)
-

® measurement of the top-quark mass in semi-leptonic channel
® 20 Monte Carlo events (MadGraph/Pythia/PGS)

9o L(mt) = G_pr(w’mt)dw H?Z,\Ll P(mz, mt)
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Examples of Application (I)
-

measurement of the top-quark mass in semi-leptonic channel
20 Monte Carlo events (MadGraph/Pythia/PGS)
L(my;) = e~ N/ Pl@midz TTY P(x;;m,)

input : my,, = 160 GeV, output : my,, = 158.9 = 2.3 GeV

likelihood (m,,=160 GeV)

800 | ' ' ' parébolic fit
fitted parameters:

798 1 Myop=158.9+-2.3 GeV

796 |

794

In(L)

792

790 |

788 |

786

* ot -
150 155 160 165 170

Miop
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Example of Application (11)
=

® Higgs mass analysis

-
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Example of Application (I1)

ut
II" l/“
H,
............ RO
s
w
I

® 500 Monte Carlo events (MadGraph/Pythia/PGS)
® input:mp..s = 300 GeV, output : mp;g.s = 300.9 = 3.0 GeV

., N

Higgs mass analysis

likelihood: (My;4qs=300GeV)
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Charged Higgs: Discriminant




Charged Higgs: Discriminant
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9 MH+ = 100GeV



Charged Higgs: Discriminant
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Charged Higgs: Discriminant
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9 MH+ = 100GeV

_ P
» d= Ps+Pp

Discriminant
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Charged Higgs: Discriminant
- | | -

9 MH+ = 100GeV

_ P
» d= Ps+Pp

Discriminant
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Charged Higgs: Discriminant
- | | -

9 MH+ = 100GeV

_ P
® d= Ps+Pp




Charged Higgs: Discriminant
-

9 MH+ = 100GeV

_ __Pg
® d= Ps+Pp

Discriminant

| ® 750 background events
| ® 262 signal events
| ® r=25.9%




Charged Higgs: Discriminant
- | | -

9 MH+ = 100GeV

Psg
Ps+Pp

Discriminant

® d=

750 background events
262 signal events

r = 25.9%

Tmes = 21 £ 4%
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Conclusion

., N

the Matrix Element method provides the best discriminator on an

event-by-event basis

® both theoritical (| M |*) and experimental (z, W (x, y)) information
IS used

® the computation of the weights requires a specific phase space
generator : MadWeight
» finds the best phase-space parametrisation(s)
s fully automatic
o works for "any" decay chain

® code available on madgraph.phys.ucl.ac.be (on the download

page)
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End



Welghting experimental events

-

® combine the weights into a likelihood

-

L(a) = HP(CCZ'; )



Welghting experimental events

-

® combine the weights into a likelihood

-

N
L(Oé) _ e—NfP(w,a)d:c HP(.’BZ, CV)

1=1



Welghting experimental events

., N

combine the weights into a likelihood

N
L(Oé) _ e—NfP(w,a)d:c HP(.’BZ, CV)

1=1

the best estimation of « is the one that maximizes L
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Welghting experimental events

., N

combine the weights into a likelihood

N
L(Oé) _ e—NfP(w,a)d:c HP(.’BZ, CV)

1=1

the best estimation of « is the one that maximizes L

example : top-quark mass measurement from tt — ™ X sample at D@

?550 SN
P T $ 72 events
| ' o My, = 180.1 £ 3.65 =+
242 | E ' 4.04,s GeV
:zz: ® J. Estrada : Phd dissertation,
36 £ N R S University of Rochester (2001)

140 160 180 200
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Monte Carlo technics

., N

efficiency of an adaptative MC integration :

» case 1: any peak is aligned along a single direction of the P-S
parametrization

-

ZJQA

U1 1

— the adaptative Monte-Carlo P-S integration is very efficient
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Monte Carlo technics

., N

efficiency of an adaptative MC integration :

® case 2 :some peaks are not aligned along a single direction of
the P-S parametrization

Yo
Y2 A

Y1

— the adaptative Monte-Carlo P-S integration converges slowly
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Monte Carlo technics

.

efficiency of an adaptative MC integration :

# possible solution : perform a change of variables

Yo

Y1

Y1 — Y2

— the adaptative Monte-Carlo P-S integration is very efficient
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Monte Carlo technics
.

efficiency of an adaptative MC integration :

» case 3 :there are more peaks than phase-space variables

Yo

1

— the efficiency depends of the shape, relative position, ... of the
peaks

o |

MadWeiaht = p. 14/19



Phase-space generation

-

® ideal case: tt

D4
Ps

D1
B )
Py

Peé

b3

’ 2

s peaksin |M,(y)|* controlled by m* |, ..., m* , (4 variables)

s peaksin W (x,y) controlled by 0;, ¢;, |p;|*> 1 € {1,2,3,4} (12
variables)

s dim|d¢| = 16, — each peak can be aligned along a single

L variable of integration J
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Phase-space gener ation

-

which parametrization do we use ?

-

® natural parametrization

6

d Pi dgpz 4
do = H 2m)2E, H (QW)BZEidxldléé (pa + Py — Z%)

J

where all the peaks in W (x, y) are aligned

® we apply local changes of variables to reach the parametrization
4 4
de = | [ do:deud|p,| | [ dm™ x J
i=1 j=1

Lwhere each Breit-Wigner distribution is also aligned J
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MadWeight : changes of variables

-

® changes of variables to restore energy momentum conservation

a \\ /S é/ pil, 61,1 @ \\ S S S P, Py P

/ i1
q: / \ !
: |pl|’ 025 02

-

.................
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MadWeight : changes of variables

-

® auxiliary changes of variables :

........ »-....../.......»........./...»..-.-.- | ‘ ..........»........./.-.»-......
* 2 K * * 2k
TYLZ-3 fTLjZ mil QZZV TYLZ-Q mil |py‘
oy

-

0,
block A block B
/ ’Pﬂ
T TThWN. T L mn
.| Pl D, |
block C block D block E

|
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Welghting experimental events

., N

advantages :
» it takes into account the full matrix element (in particular
spin-correlation effects)
» resolution of the detector is included
» itis particularly usefull for processes with missing particles

® drawbacks:
» the evaluation of the weight is time-consuming compare to other
methods
# what are the systematics errors ?
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