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Motivation

Study of resonances at hadron colliders in decay chains with invisible

particles

Example : slepon production

u

ū

µ̃r

µ̃r

µ−

µ+

χ̃1

χ̃1

How to identify this si-

gnature ?

How to measure the

properties of (new)

particles in the decay

chain ?

Method to maximize the information that you can extract from a sample

of events
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Motivation

Outline :

Matrix Element Method : procedure to discriminate between two

theoretical assumptions using the maximum amount of information

MadWeight : automatic procedure to apply matrix element techniques
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Matrix Element Method

given a theoretical assumption α, attach a weight P (x, α) to each

experimental event x quantifying the validity of the theoretical

assumption α for this event.

P (x, α) = |Mα|2(x)

where

|Mα|2 is the squared matrix element
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Matrix Element Method

given a theoretical assumption α, attach a weight P (x, α) to each

experimental event x quantifying the validity of the theoretical

assumption α for this event.

P (x, α) = |Mα|2(y)W (x,y)

where

|Mα|2 is the squared matrix element

W (x,y) is the resolution function
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Matrix Element Method

given a theoretical assumption α, attach a weight P (x, α) to each

experimental event x quantifying the validity of the theoretical

assumption α for this event.

P (x, α) =
1

σ

∫

dφ(y)|Mα|2(y)W (x,y)

where

|Mα|2 is the squared matrix element

W (x,y) is the resolution function

dφ(y) is the parton-level phase-space measure
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Matrix Element Method

given a theoretical assumption α, attach a weight P (x, α) to each

experimental event x quantifying the validity of the theoretical

assumption α for this event.

P (x, α) =
1

σ

∫

dφ(y)|Mα|2(y)W (x,y)

where

|Mα|2 is the squared matrix element

W (x,y) is the resolution function

dφ(y) is the parton-level phase-space measure

The value of the weight P (x, α) is the probability to observe the

experimental event x in the theoretical frame α.
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Weighting experimental events

combine the weights into a likelihood

L(α) =
N
∏

i=1

P (xi;α)
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Weighting experimental events

combine the weights into a likelihood

L(α) = e−N
R

P (x,α)dx

N
∏

i=1

P (xi;α)
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Weighting experimental events

combine the weights into a likelihood

L(α) = e−N
R

P (x,α)dx

N
∏

i=1

P (xi;α)

the best estimation of α is the one that maximizes L
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Weighting experimental events

combine the weights into a likelihood

L(α) = e−N
R

P (x,α)dx

N
∏

i=1

P (xi;α)

the best estimation of α is the one that maximizes L

example : top-quark mass measurement from tt̄ → l+X sample at DØ

72 events

Mtop = 180.1 ± 3.6stat ± 4.0sys GeV

J. Estrada : Phd dissertation, University

of Rochester (2001)
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Examples of Matrix Element analysis

top-quark mass determination from top-quark pair events

semi-leptonic channel

t

t̄

j

µ+

νµ

j

g

b

b̄

W+

W−
g

D0 collaboration : Phys. Rev. D74 092005, 2006

CDF collaboration : Phys. Rev. Lett. 99 182002, 2007

double-leptonic channel

t

t̄

µ−
µ+

νµ

ν̄µ

g

b

b̄

W+

W−
g

D0 collaboration : Phys. Lett. B655 :7, 2007

CDF collaboration : Phys. Rev. D75 :031105, 2007

Remarks :

all jet combinations are considered (info from b-tagging included)

internal check of the Jet Energy Scale (JES fixed by the maximization

of the likelihood)
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Examples of Matrix Element analysis

top-quark mass determination from top-quark pair events

Results for the semi-leptonic channel (D0 collaboration)

0.4 fb−1

175 events

170.3 ± 4.5 ± 1.8GeV

Phys.Rev.D74 :092005 (2006)
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Examples of Matrix Element analysis

Definition of a event-by-event discriminator

D(x) =
P (x|S)

P (x|S) + P (x|B)
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QCD

W + light jets

Wcc + jets

Wbb + jets

 lep + jets → tt

 dilepton → tt

signal: tb

signal: tqb

DATA

Single Top cross section

s- and t-channels
t

b̄

q

q̄

W+
W+

t

q′

b

q

σ(pp̄ → tb+ tbq +X) = 4.8+1.6
−1.4 pb

J. Mitrevski : D0 note 5392-CONF

Maximum significance at the LHC :Cranmer & al :hep-ph/0605268
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The Matrix Element Method

advantages :

it is conceptually simple

the maximum amount of experimental information can be used to

discriminate different theoretical hypothesis

the events are weighted with the squared matrix element → refined

analysis of the decay chain (spin, coupling types, masses, . . .)

drawbacks :

difficult to estimate the systematic errors

in particular : parametrization of the transfer functions ?

the evaluation of the weight is time-consuming : one phase-space

integration per event and per theoretical assumption.
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Practical evaluation of the weights

P (x, α) =
1

σ

∫

|Mα|2(y) W (x,y) dφ(y)
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Practical evaluation of the weights

P (x, α) =
1

σ

∫

|Mα|2(y) W (x,y) dφ(y)

Amplitude generator (MadGraph)
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Practical evaluation of the weights

P (x, α) =
1

σ

∫

|Mα|2(y) W (x,y) dφ(y)

Amplitude generator (MadGraph)

fit from MC tuned to the resolution of the detector
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Practical evaluation of the weights

P (x, α) =
1

σ

∫

|Mα|2(y) W (x,y) dφ(y)

Amplitude generator (MadGraph)

fit from MC tuned to the resolution of the detector

Phase space generator (MadWeight)
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Practical evaluation of the weights

Numerical integration : In addition to the propagators in |Mα(y)|2, new

peaks are introduced with the transfer function

resolution

W (x,y) ≈
∏

i

1√
2πσE,i

e
−

(Erec
i −E

gen
i

)2

2σ2
E,i in energy

× 1√
2πσφ,i

e
−

(φrec
i −φ

gen
i

)2

2σ2
φ,i in azimuthal angle

× 1√
2πση,i

e
−

(ηrec
i −η

gen
i

)2

2σ2
η,i in pseudo-rapidity
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Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

any peak is aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29



Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

some peaks are not aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptive Monte-Carlo P-S integration converges slowly
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Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

solution to the previous case : perform a change of variables in order

to align the peaks along a single direction of the P-S parametrization

y2

y1

y1 + y2

y1 − y2

→ the adaptive Monte-Carlo P-S integration is very efficient
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Phase-space generation (tt̄ production)

Example : top-quark pair production in the double-leptonic channel

t

t̄

µ−

µ+

νµ

ν̄µ

pa

b

b̄

p4

p5

p1

p2

p3

p6

W+

m∗
−1

m∗
−3

m∗
−4

W−
m∗

−2
pb

peaks in |Mα(y)|2 controlled by

m∗

−1, . . . , m
∗

−4 (4 variables)

peaks in W (x, y) controlled by

θi, φi, |pi|2 i ∈ {1, 2, 3, 4} (12 va-

riables)

dim[dφ] = 16, → each peak can be

aligned along a single variable of in-

tegration
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Phase-space generation (tt̄ production)

optimal parametrization ?

start from the parametrization

dφ =

4
∏

i=1

d3pi

(2π)32Ei

6
∏

i=5

d3pi

(2π)32Ei

dx1dx2δ
4

(

pa + pb −
∑

j

pj

)

where all the peaks in W (x,y) are aligned

apply local changes of variables to reach the parametrization

dφ =
4
∏

i=1

dθidφid|pi|
4
∏

j=1

dm∗2
−j × J

where each Breit-Wigner distribution is aligned
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Phase-space generation (generalization)

Let us consider a example of generic decay chain :

ν

ν

p2p3

p4
p1

p7p8

p5

p6

p9

m∗
−2

m∗
−3

m∗
−1

m∗
−4m∗

−5m∗
−6

m∗
−7

peaks in |Mα(y)|2 controlled by m∗

−1, . . . ,m
∗

−7 (7 variables)

peaks in W (x,y) controlled by θi, φi, |pi|2 i ∈ {2, 3, 4, 5, 6, 7, 8}
(21 variables)

dim[dφ] = 25, → some peaks must be left misaligned
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Phase-space generation

each local change of variable is performed successively

Block A

Block DBlock D Block D

ECS B

ν

ν

p2p3

p4
p1

p7p8

p5

p6

p9

m∗
−2

m∗
−3

m∗
−1

m∗
−4

m∗
−5

m∗
−6

m∗
−7

Final parametrization :

dφ = d|p2|d|p3|d|p4|d|p6|
8
∏

i=2

dθidφi

7
∏

j=1

dm∗2
−j × J
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Phase-space generation

ECS :

|pi|,

|pj|,

q1

q2

Class A

θ1, φ1

θ2, φ2

. . .

pνx, pνy, pνz

i1

. . .

q2

q1

Class B

i2 i1

. . .

q2

q1

Class C

pνx, pνy, pνz

θ, φ p

. . .

q2

q1

Class D

i1
i3

i4
i2

pν1x, pν1y, pν1z

pν2x, pν2y, pν2z

ŝ y

Class E

pν1x, pν1y, pν1z

pν2x, pν2y, pν2z

i1

i2
i3

. . . . . .

Class F

i1
i3

i4
i2

pν1x, pν1y, pν1z

pν2x, pν2y, pν2z
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Phase-space generation

Blocks :

m∗
i1

m∗
i2

m∗
i3

θν

block A

|pν|

φν

m∗
i1

m∗
i2

block B

θν

|pν|

m∗
i1

|pν|

block C

m∗
i1

|p|

block D

m∗
i1

m∗
i2

|p2|

|p1|

block E
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Phase-space generation

In MadWeight,

the phase-space is splitted into blocks, each of them is associated to a

specific local change of variables

12 blocks, i.e. 12 analytic changes of variables have been defined in

our code

Given

the decay chain under study

the resolution function for each visible particle

MadWeight

finds the optimal partition of the PS into blocks

computes the weights using the corresponding PS parametrization

MadWeight – p. 19/29



Application

Example 1 : measurement of the top-quark mass in semi-leptonic

channel

20 Monte Carlo events (MadGraph/Pythia/PGS)

L(mt) = e−N
R

P (x,mt)dx

∏N

i=1 P (xi;mt)

input : mtop = 160 GeV, output : mtop = 158.9 ± 2.3 GeV

 786

 788

 790

 792

 794

 796

 798

 800

 150  155  160  165  170

-ln
(L

)

mtop

likelihood (mtop=160 GeV)

fitted parameters: 

mtop=158.9+-2.3 GeV

parabolic fit

 786

 788

 790

 792

 794

 796

 798

 800

 150  155  160  165  170

-ln
(L

)

mtop

likelihood (mtop=160 GeV)

fitted parameters: 

mtop=158.9+-2.3 GeV

parabolic fit
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Applications

Example 2 :
separate the signal t → H+b from the background t → W+b

3

t

t̄

µ−

µ+

νµ

ν̄µ

b

b̄

h+

W−

t

t̄

µ−

µ+

νµ

ν̄µ

b

b̄

W+

W−
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Applications
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separate the signal t → H+b from the background t → W+b

3

t

t̄

µ−

µ+

νµ

ν̄µ

b

b̄

h+

W−

t

t̄

µ−

µ+

νµ

ν̄µ

b

b̄

W+
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Applications

Example 2 :
separate the signal t → H+b from the background t → W+b

3

t

t̄

µ−

µ+

νµ

ν̄µ

b

b̄

h+

W−

t

t̄

µ−

µ+

νµ

ν̄µ

b

b̄

W+

W−

define the discriminator

d = PS

PS+PB

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.2  0.4  0.6  0.8  1

Discriminant
background

signal
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Applications

Example 2 :
separate the signal t → H+b from the background t → W+b

3

t

t̄

µ−

µ+

νµ

ν̄µ

b

b̄

h+

W−

t

t̄

µ−

µ+

νµ

ν̄µ

b

b̄

W+

W−

define the discriminator

d = PS

PS+PB

750 background events

262 signal events

r = 25.9%

rmes = 21 ± 4%  0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.2  0.4  0.6  0.8  1

Discriminant
real data

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.2  0.4  0.6  0.8  1

Discriminant
real data

background
signal
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Applications

Example 2 :
separate the signal t → H+b from the background t → W+b

3

t

t̄

µ−

µ+

νµ

ν̄µ

b

b̄

h+

W−

t

t̄

µ−

µ+

νµ

ν̄µ

b

b̄

W+

W−

MH+ = MW+

σ = 1.632pb

L = 8.5fb−1

σmes = 1.7 ± 0.4pb
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Applications

Example 3 : slepton pair production

u

ū

µ̃r

µ̃r

µ−

µ+

χ̃1

χ̃1

aim : measure of the masses

mµ̃r
, mχ̃1 from a pure signal

sample

inputs : mµ̃r
= 144 GeV,

mχ̃1
= 96.7 GeV, 50 events

transfer function : delta except

on muon energies (5 %)
 40  42.5  45  47.5  50  52.5

 260

 280

 300

 320

 340

 360

 380

 400

 420

-1 0 1 2 3 4 5 6 7 8

mµr
+mχ1

 (GeV)

       7
       6
       5
       4
       3
       2
       1
       0

mµr
-mχ1

 (GeV)
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Applications

Example 3 : slepton pair production

u

ū

µ̃r

µ̃r

µ−

µ+

χ̃1

χ̃1

aim : measure of the masses

mµ̃r
, mχ̃1 from a pure signal

sample

inputs : mµ̃r
= 144 GeV,

mχ̃1
= 96.7 GeV, 50 events

transfer function : delta except

on muon energies (5 %)

∆ = 45.9 ± 1.5GeV
 810

 811

 812

 813

 814

 815

 816

 817

 818

 819

 40  42.5  45  47.5  50  52.5
mµr

-mχ1
 (GeV)

parabolic fit
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Applications

Example 4 : slepton photo-production (with Nicolas Schul UCL-CP3)

µ̃r

µ
−

µ
+

χ̃1

χ̃1

γ

γ

µ̃r aim : measure of the masses

mµ̃r
, mχ̃1 from a pure signal

sample

inputs : mµ̃r
= 118 GeV,

mχ̃1
= 97 GeV, 20 events

transfer function : delta except

on muon energies (5 %)  110  112  114  116  118  120
 90

 92

 94

 96

 98

 100

-20 0 20 40 60 80 100 120 140 160 180 200

      10
     9.5
       9

     8.5
       8

     7.5
       7

     6.5
       6

     5.5
       5

     4.5
       4

     3.5
       3

     2.5
       2

     1.5
       1

     0.5
       0mmur

(GeV)

mchi1
(GeV) 
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Conclusion

the Matrix Element method provides the best discriminator on an

event-by-event basis

both theoretical (|M |2) and experimental (x, W (x,y)) information is

used

the computation of the weights requires a specific phase space

generator

Given a arbitrary decay chain and the resolution function, MadWeight

determines automatically the best phase-space parametrization(s)

computes the weights for each experimental event

code available on madgraph.phys.ucl.ac.be (on the download page)
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Back-up slides
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Example of Application (II)

Higgs mass analysis

µ+

νµ

µ−

ν̄µ

W+

W−

H0

MadWeight – p. 26/29



Example of Application (II)

Higgs mass analysis

µ+

νµ

µ−

ν̄µ

W+

W−

H0

500 Monte Carlo events (MadGraph/Pythia/PGS)

input : mHiggs = 300 GeV, output : mHiggs = 300.9 ± 3.0 GeV
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Topology identification

input
Transfert function : specify if particle have delta-narrow-large
resolution on Energy
Parameter : charge the width of all propagator
Feynman Diagram : (come from MG)

choose ECS
rule 1a : minimize the content of the Black Box
rule 1b : minimize the number of quantities generated randomly
on blob
systematic comparaison between all type of ECS
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Topology identification

Block A

Block ?

ECS B

ν

ν

p2p3

p4
p1

p7p8

p5

p6

p9

m∗
−2

m∗
−3

m∗
−1

m∗
−4

m∗
−5

m∗
−6

m∗
−7
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Topology identification

Blob resolution
rule 1 : Particle with thin Transfer functions must be generated
by TF
rule 2 : Absolute priority of neutrino Block A-B-C (in this order)
rule 3 : Produce Multi solution for E-D block. Block effenciency
must depend trully on cinematics -> tricky

1. Maximaze alignment of propagator : priority in D-E, use fuse

2. No additional change of variable

3. Intermediate solution +local change : priority in D,Nothing,
don’t une fuse
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