Measuring sparticles with the Matrix Element

- Status report -

Johan Alwall, SLAC

with Olivier Mattelaer (Louvain) and Ayres Freitas (Pittsburgh)

IPMU Focus Week, March 18, 2009

New Physics at the LHC

- Main difficulty: Events with jets and missing energy
 - No way to fully reconstruct event
 - Pair production with missing energy on both side of event → No resonance peaks
- How to distinguish between different models, and determine parameters of the model
 - Compare distributions (effective masses, edges/endpoints, angular distributions)
 - Find discriminating variables/functions

Discriminator functions

 Challenge: Construct discriminator function which uses kinematical information to distinguish between processes

Johan Alwall - Measuring sparticles with the ME

Discriminator functions

- Challenge: Construct discriminator function which uses kinematical information to distinguish between processes
 - Give a weight to each experimental event based on its probability to come from a particular process
 - Use maximum amount of information in the event

Discriminator functions

- Challenge: Construct discriminator function which uses kinematical information to distinguish between processes
 - Give a weight to each experimental event based on its probability to come from a particular process
 - Use maximum amount of information in the event
- Optimal function: The matrix element $|M_{lpha}|^2(oldsymbol{x})$
 - Contains all information about the process
 - Encodes dependence on all relevant parameters
 - Automatically reproduces any kinematical distribution

Difficulties

- Correspondance parton level objects detector level objects
 - Hadronization, detector resolution, detector mismeasurement
- Extra activity due to QCD radiation
 - ISR boosts central production process w.r.t. ME
 - Extra jets in event difficult distinguish decay jets and ISR jets

Detector-ME object matching

- Event selection
 - Must pick events with identical degrees of freedom as the matrix element considered

$$P(\boldsymbol{x}, \alpha) =$$

Prob for event *x* given α

$$|M_{\alpha}|^2(\boldsymbol{x})$$

Squared matrix element

Detector-ME object matching

- Event selection
 - Must pick events with identical degrees of freedom as the matrix element considered
- Transfer functions from objects to particles

$P(\boldsymbol{x}, \alpha) =$	$ M_{lpha} ^2(oldsymbol{y})W(oldsymbol{x},oldsymbol{y})$	
Prob	Squared	Transfer
for event	matrix	function
x given α	element	

Transfer functions

- New peaks in energy and angle variables
 - Here modeled by Gaussian, fit to detector simulation

$$\begin{split} W(\boldsymbol{x},\boldsymbol{y}) &\approx \prod_{i} \quad \frac{1}{\sqrt{2\pi}\sigma_{E,i}} e^{-\frac{(E_{i}^{rec} - E_{i}^{gen})^{2}}{2\sigma_{E,i}^{2}}} & \text{in energy} \\ &\times \frac{1}{\sqrt{2\pi}\sigma_{\phi,i}} e^{-\frac{(\phi_{i}^{rec} - \phi_{i}^{gen})^{2}}{2\sigma_{\phi,i}^{2}}} & \text{in azimuthal angle} \\ &\times \frac{1}{\sqrt{2\pi}\sigma_{\eta,i}} e^{-\frac{(\eta_{i}^{rec} - \eta_{i}^{gen})^{2}}{2\sigma_{\eta,i}^{2}}} & \text{in pseudo-rapidity} \end{split}$$

and the second second

Detector-ME object matching

• Event selection

- Must pick events with identical degrees of freedom as the matrix element considered
- Transfer functions from objects to particles

$$P(\boldsymbol{x}, \alpha) = \frac{1}{\sigma} \int d\phi(\boldsymbol{y}) |M_{\alpha}|^{2}(\boldsymbol{y}) W(\boldsymbol{x}, \boldsymbol{y})$$
Prob
for event Norm Phase Squared Transfer
space matrix function
x given α integral element

Phase space integration

- Need full phase space integral for every event and every parameter choice
 - Very time consuming
 - Need optimized phase space integration!
- Is it possible to optimize for any process topology?

YES!

MadWeight

 Artoisenet, Mattelaer, Lemaitre, Maltoni
 Automatic analytic alignment of integration variables with peaks in cross section and TFs

Example 1: Top mass

- Classical example
- ME method used (to great success) at the Tevatron
- Only one parameter: m_{τ}
- Perfect test example: Dileptonic decay

Example 1: Top mass

- 192 dileptonic top events (generated with MadEvent/Pythia/PGS)
- Input: 174.3 GeV Output: 173.1 ± 1.7 GeV

Johan Alwall - Measuring sparticles with the ME

- Imagine (crazy?) scenario with only 2j+MET events visible in the early data (i.e. events compatible with pair produced squarks decaying directly to dark matter)
- How simultaneously measure masses of squark and LSP?
- Matrix element extract maximum information!

-Log(L) for 100 events – still parton level

Johan Alwall - Measuring sparticles with the ME

-Log(L) for 100 events – blue below min+4

-Log(L) for 300 events – blue below min+4

-Log(L) for 600 events – blue below min+4

-Log(L) for 1100 events – blue below min+4

Initial state radiation

- Initial state QCD radiation results in boost of central process and extra jets
- Strong veto on extra jets
 → major reduction of statistics
- Moderate veto on extra jets $\rightarrow p_{T}$ boost affects event weight
- How to correct for the ISR radiation in events?

ME with initial state radiation

Two ways to deal with ISR corrections

- 1. Use the matrix element for central process + extra jet radiation (still to be done)
- 2. Boost and reweight event to correct for the ISR

Correction factor:

$$\frac{1}{p_{\perp E}^2} \frac{\alpha_s(p_{\perp E}^2)}{2\pi} P_j(z) \times \frac{f_j(x_i/z, p_{\perp E}^2)}{zf_i(x_i, p_{\perp E}^2)} \Delta_{\mathrm{ISR}}(p_{\perp E0}^2, p_{\perp E}^2)$$

ME with initial state radiation

Conclusions

- Matrix element weighting allows to extract maximum information from experimental events
- If used with care, it can be very powerful for difficult observables such as pure jets+MET
- LSP mass challenging even for ME method
- Need better treatment of ISR for the LHC
 - Several ideas under development
- Work (very much) in progress for squark and gluino mass measurements in pure jets+MET

Backup slides

Johan Alwall - Measuring sparticles with the ME

Shape of squark_R-LSP valley

- Energy of quark in squark decay frame: $E_q = (M_{\tilde{q}}^2 - M_{LSP}^2)/(2M_{\tilde{q}})$
- This is maximum $p_{\scriptscriptstyle T}$ of quark at threshold

