Extra jets radiation in inclusive SUSY samples and SM backgrounds

Simon de Visscher
Universite catholique de Louvain
Centre for Particle Physics and Phenomenology (CP3)

J. Alwall (SLAC), F. Maltoni (UCL)

Euro-GDR SUSY - 13th November 07
Outline

1. Introduction

2. SM background simulation

3. SUSY signal simulation

4. Conclusion
Plan

1. Introduction

2. SM background simulation

3. SUSY signal simulation

4. Conclusion
Inclusive SUSY with 100 pb$^{-1}$ of data, B. Mellado, S. Padhi, S. L. Wu.

$\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}$, $\tilde{g}\tilde{q}$ simulated as 2→2 processes with Pythia. What would be the impact of extra-radiations simulated with M-E generator on the SUSY signals?

see also MLM work
Introduction

A first investigation of 2→3 and 2→4 has been done using Matrix-Element calculations for $\tilde{g}\tilde{g}$, $\tilde{u}_L\tilde{u}_L$, $\tilde{g}\tilde{u}_L$ at parton level.

New:
Now, the production of SUSY signals with additional radiation(s) calculated at Matrix-Element is possible up to hadronization level with MadGraph/MadEvent thanks to the ME/PS matching technique.
Processes

- Decays of \tilde{g} and \tilde{q} produces large MET (neutralinos) and High P_T jets
 We expect 4 or 5 high-P_T jets from decays + extra jets
- The backgrounds are mainly $W+$jets, $Z+$jets and $t\bar{t}+$jets.
- \Rightarrow A lot of extra-jets should be required for production of W and Z going to leptons
- \Rightarrow Up to 3 extra-jets should be required for production of $t\bar{t}$ inclusive

Production of SUSY and SM background with additional extra-jets will be done using ME/PS matching technique.

J.Alwall, F.Maltoni, S.de Visscher, Paper in preparation
Plan

1. Introduction
2. SM background simulation
3. SUSY signal simulation
4. Conclusion
Dealing with ME and PS

ME
- parton-level description
- valid when partons are hard and well separated
- needed for multi-jets description

PS
- down to hadron-level description
- valid when partons are collinear and/or soft
- needed for realistic studies

Both approaches have to be complementary, without any overlapping in the phase space.
Dealing with ME and PS

- Compute the $|\mathcal{M}|^2$ of $t\bar{t} + 0,1,2,3$ jets with ME generator
- Perform showering with PS software.

Problem: overlapping between samples of different multiplicities:
ex: a $t\bar{t} + 2$ ME partons $\sim t\bar{t} + 1$ ME parton + high p_T jet from showering!

Double counting problem
Matching techniques

To avoid this, use one of the ME/PS matching procedure: set of techniques used for generating correctly the extra-radiation, independently of the processes.

Implementation (J. Alwall and S. Höche) of MLM’s and CKKW methods in MG/ME
MLM in Madgraph/MadEvent

- **MLM philosophy:**
 - generate normally with M-E generator, with a distance (Cone or K_T) between extra-partons $>\text{cutoff}$ (gain in efficiency)
 - perform showering
 - group the showered partons (with Cone or K_T algo) into jets
 - match the jets with the extra-partons: this is where rejection of event take place (use the cutoff).

- **Modified MLM method:** use K_T

- All procedures available for online/local productions
 - http://madgraph.phys.ucl.ac.be,
 - http://madgraph.hep.uiuc.edu/
Matching parameters

Validation of matching parameters: use the differential jet rate distributions to control the matching.

- Invariance of the global shape with respect to the choice of the cutoff
- Smooth transition from one region of the phase-space to the other.

Systematic control of matching is mandatory (MatchChecker)!
W, Z and $t\bar{t}$

- ~ 4 M of $W^{\pm}+1,2,3,4$ jets (u,d,s,c), decays into leptons
- 2 M $Z+1,2,3,4$ jets (u,d,s,c,b), decays into leptons and ν (MET is important in the signals due to neutralino presence)
- 800 K $t\bar{t}+0,1,2,3$ jets (inclusive)
- Control of the productions with differential jet rates done
Plan

1. Introduction
2. SM background simulation
3. SUSY signal simulation
4. Conclusion
How to generate SUSY signals with matching technique?

The simulation of SUSY signals is based on the same technique as the SM background. Additional problem: double counting in the final states because of the presence of resonance \implies remove the events!

Note: same problem as for NLO corrections
Removal of events with resonances

- MadEvent uses the $|\mathcal{M}|^2$ as integration channels.
- When the amplitude of the resonant diagram is computed, the information about the resonance is extracted:
 \[\Rightarrow \text{if the propagator inv. mass} \in [\bar{m}_{\tilde{g},\tilde{q}} - 5\Gamma, \bar{m}_{\tilde{g},\tilde{q}} + 5\Gamma], \]
 it is written in the LHEF event file.
- The rejection take place at Pythia level
Impact of the matching

If the scale ($\sim \sum M$) of the process increases, the parton-shower extra-radiations should tend to increase and approach a M-E description.

Here: $t\bar{t}$+jets and $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$, $\tilde{q}\tilde{q}$+jets with and without matching (using Pythia shower scale=factorization scale=$M^2 + P_T^2$)

$$H_T = \sum_{\text{visible}} P_T + \text{MET}.$$

Matching impact is clearly important for the backgrounds (low masses) and not negligible for the SUSY signals.
New for SUSY: the decay chains (J. Alwall - T. Stelzer)

- Permit to decrease the number of diagrams by selecting the dominant ones.
- Allows for higher-multiplicity final states
- Spin correlation is consistently treated
- The information about the presence of the resonance is properly propagated up to the event level

An example of use: $pp \rightarrow u\chi_1^0\bar{b}b\mu^+\mu^-\chi_1^0$

A possibility written with MadGraph syntax:

$pp > (ur>un1)(go>b \ (b1>(b(n2>mu+(mul->mu-n1))))))$
Plan

1. Introduction
2. SM background simulation
3. SUSY signal simulation
4. Conclusion
Conclusion

- Inclusive SUSY searches have been done in the past in 2→2 mode ⇒ what about 2 → 2+jets?
- The ME/PS matching will be used for background simulation as well as SUSY signals: problem of double counting in final states solved!
- Impact of the matching is quite important on backgrounds and need to be more investigated for the high mass signals
- Decay chains are implemented
Back-up slides
The matching in MG/ME: the proc_card

```
# Begin PROCESS # This is TAG. Do not modify this line

pp>gogo @0            # First Process
QCD=99
QED=0
end_coup

pp>gogoj @1           # First Process
QCD=99
QED=0
end_coup

pp>gogojj @2          # First Process
QCD=99
QED=0
end_coup

done                  # Write 'done' to tell MG to stop
```
The matching in MG/ME: the run_card

Choose the matching scheme: MLM or CKKW:

```plaintext
F = fixed_ren_scale ! if .true. use fixed ren scale
F = fixed_fac_scale ! if .true. use fixed fac scale
174.0 = scale ! fixed ren scale
174.0 = dsqrt_q2fact1 ! fixed fact scale for pdf1
174.0 = dsqrt_q2fact2 ! fixed fact scale for pdf2
1 = scalefact ! scale factor for event-by-event scales

# Matching - Warning! ickkw > 0 is still beta
#******************************************************************************
1 = ickkw ! 0 no matching, 1 MLM, 2 CKKW matching
#
```

and choose the cutoff (<cutoff at pythia level)

```plaintext
0 = xptl ! minimum pt for at least one charged lepton

#******************************************************************************
# WBF cuts
#******************************************************************************
0 = xetamin ! minimum rapidity for two jets in the WBF case

#******************************************************************************
# Jet measure cuts
#******************************************************************************
33 = xqcut ! minimum kt jet measure between partons
```

Simon de Visscher

Introduction

SM background

SUSY signal

Conclusion
The matching in MG/ME: the pythia_card

Contains the value of the cutoff and the switch to remove events with on-shell \tilde{q} and \tilde{g}

```
!...Cutoff in jet measure for matching
QCUT = 60
!...Excluded resonances
EXCRES=1000021
EXCRES=1000001
EXCRES=2000001
EXCRES=1000002
EXCRES=2000002
EXCRES=1000003
EXCRES=2000003
EXCRES=1000004
EXCRES=2000004
```
MatchChecker (S de Visscher, P.Demin)

Package useful to validate a choice of matching parameter for a given "X + n jets" process, evaluate the impact of the matching,...

- Input: STDHEP files
- can compare any number of productions on different variables
 - Differential jet rates: $4 \rightarrow 3$, $3 \rightarrow 2$, $2 \rightarrow 1$, $1 \rightarrow 0$
 - $P_T(X)$, $\Delta(X_1, X_2)$, $M_{inv}(X)$, $\eta(X)$,...
 - $P_T(j_1, ..., j_4)$, $\eta(j_1, ..., j_4)$ with jet definition up to the user, and with minimal user’s P_T cut
 - $H_T(2, ...)$
 - MET

- Very simple to use: one card to fill, one command to execute...
- A Postscript report is done with everything organized (ToC, possibility of adding banners, sections...)
Decay chains

- Gauge invariant when narrow width approx. is valid
- BW cutoff at $\pm 5\Gamma$ from resonance mass in MadEvent.

Particularly useful:

- For spin correlation between particles in decays
 (Alves, Eboli, Plehn hep-ph/0605067)
- To include effects of pdf’s for non-zero widths
 (Berdine, Rainwater hep-ph/0703058)
- For spin studies in more complicated processes (WBF for SUSY particles pairs)