A Les Houches Interface for BSM Generators

Michel Herquet - UCLouvain/CP3

Les Houches 07 project with: J. Alwall, E. Boos, M. Quigg, A. Pukhov, P. Richardson, A. Sherstnev & <u>P. Skands</u> arXiv.0712.3311

Yet another interface ?

Outline

- The need for interfacing BSM generators
 Definition of the LH interface
- + Implementations in MG/ME 4 & Pythia 6
- A practical example
- + Conclusion

BSM simulation

Different tools for different needs

Decay of new particles

- Exact ME. Very precise, very slow & limited to <6
 particles final states
- 2. ME + no interference approx. Precise, slow & limited to <~8 particles final states
- Decay after event production using dedicated tools.
 Rather precise, moderately slow & need to deploy an extra tool compatible with the BSM model.
- 4. Decay with parton shower. Fast, flat phase space (as a default), new model need to be implemented in the PS software → Not necessary, could be improved !

Requirements

- Pass effortlessly all the required model parameters from ME to PS generators
- "Inspired" & compatible with previous LH standards:
 - SLHA2 for SUSY models parameters files
 - + LHEF2 XML format for event files

3 points proposal

- 1. Introduce new SLHA like blocks QNUMBERS for each BSM particle containing PDG code, spin, electric charge, colour representation and particle/antiparticle distinction
- 2. Use the existing MASS and DECAY blocks for new particles
- 3. Include the above information bewteen <slha> tags in the header of the LHEF2 file

Implementation in MG4

- MG/MEA already uses SLHA like files (param_card.dat) for mass & decay widths
- From version 4.1.43: the particle content of BSM models generated with the USRMOD or with FeynRules (see Claude's talk tomorrow) is transcribed as QNUMBERS blocks in the param_card.dat
- From version 4.1.47: the param_card.dat is stored between the special tags <slha> in the LHE file header

Implementation in Pythia 6

* Starting from version 6.414, Pythia is able to:

- read the QNUMBERS, MASS & DECAY information from the LHE file header for any model
- decay accordingly BSM particles in the final state. 2- and 3- body decays with flat phase space and simple colour flows are available

- Toy model containing
 - a "michelon", symbol mi, a new heavy top quark decaying with BR=0.5 into a top quark and a "sabrinon"
 - a "sabrinon", symbol sa, a new heavy scalar decaying into two gamma
- Implemented using the USRMOD (in the internal MG file particles.dat)

#MODEL	EXTENSION							
mi	mi~	F	S	MIMASS	MIWIDTH	Т	mi	3000001
sa	sa	S	D	SAMASS	SAWIDTH	S	sa	3000002
# END								

Output of the USRMOD scripts

BLOCK QNUMBERS 3000001 # mi

- 1 0 # 3 times electric charge
- 2 2 # number of spin states (2S+1)
- 3 3 # colour rep (1: singlet, 3: triplet, 8: octet)

4 1 # Particle/Antiparticle distinction (0=own anti) BLOCK QNUMBERS 3000002 # sa

- 1 0 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 0 # Particle/Antiparticle distinction (0=own anti)

Block MASS	<pre># Mass spectrum (kinematic masses)</pre>
3000001	1.0000000e+02
3000002	1.0000000e+02
DECAY 300000	1 1.00000000e+00 # MIWIDTH
DECAY 300000	2 1.00000000e+00 # SAWIDTH

After manual modifications

BLOCK QNUMBERS 3000001 # mi

- 1 2 # 3 times electric charge
- 2 2 # number of spin states (2S+1)
- 3 3 # colour rep (1: singlet, 3: triplet, 8: octet)

4 1 # Particle/Antiparticle distinction (0=own anti) BLOCK QNUMBERS 3000002 # sa

- 1 0 # 3 times electric charge
- 2 1 # number of spin states (2S+1)
- 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
- 4 0 # Particle/Antiparticle distinction (0=own anti)

Block MASS	<pre># Mass spectrum (kinematic masses)</pre>
3000001	5.0000000e+02
3000002	2.0000000e+02
DECAY 300000	1.00000000e+01 # MIWIDTH

0.5000000e+00	2	3000002	6	
DECAY 3000002	1.00000	000e+00	# SAWID	гн
1.00000000e+00	2	22	22	

Passing the LHE event file from MG

<event>

4 100 0.8624900E-02 0.9118800E+02 0.7818608E-02 0.1300000E+00

21 -1 0 0 502 501 0.000000000E+00 0.00000000E+00 0.40122922055E+03 0.40122922055E+03 0.000000000E+00 0. -1.

21 -1 0 0 501 503 0.000000000E+00 0.00000000E+00 -0.77132817073E+03 0.77132817073E+03 0.0000000000E+00 0. 1.

3000001 1 1 2 502 0 -0.16615260591E+03 0.17005836180E+03 -0.12778172790E+03 0.56820304896E+03 0.500000000E+03 0. -1.

-3000001 1 1 2 0 503 0.16615260591E+03 -0.17005836180E+03 -0.24231722227E+03 0.60435434232E+03 0.500000000E+03 0. -1. </event>

to Pythia 6 gives

* PYSLHA: Last Change 05 Nov 2007 - P.Z. Skands * (PYSLHA:) Reading in QNUMBERS for KF = 3000001 * (PYSLHA:) Reading in QNUMBERS for KF = 3000002 * (PYSLHA:) Reading in MASS entry for KF = 3000001, pole mass = 500.000 * (PYSLHA:) Reading in MASS entry for KF = 3000002, pole mass = 200.000 * (PYSLHA:) Reading in SLHA decay table for KF = 3000001: mi * (PYSLHA:) Reading in SLHA stable particle KF = 3000002: sa

and the decay chain is simulated accordingly in the STDHEP output

Perspectives

- CalcHEP and CompHEP will include the same information in their LHEF output
- HERWIG++ and PYTHIA8 will read this information in their LHEF interface
- * Evolution of the SLHA format towards a more generic, XML compliant format is envisaged
- First step towards a uniform format for BSM model parameters exchange ?

Conclusion

- A simple LH interface to easily pass particle information between different generators has been defined
- It can be used to decay any BSM particles at the parton shower level
- It has already been implemented in MG/MEA and Pythia6, and will be available soon in other generators

Thanks for your attention !